首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A novel protein RGPR-p117 was discovered as regucalcin gene promoter region-related protein that binds to the TTGGC motif using a yeast one-hybrid system. RGPR-p117 is localized in the nucleus of kidney cells, and overexpression of RGPR-p117 can modulate regucalcin protein and its mRNA expression in the cloned normal rat kidney proximal tubular epithelial NRK52E cells. This study was undertaken to determine whether overexpression of RGPR-p117 enhances the regucalcin promoter activity using the -710/+18 LUC construct (wild-type) or -710/+18 LUC construct (mutant) with deletion of -523/-435 including TTGGC motif. NRK52E cells (wild-type) or stable HA-RGPR-p117/phCMV2-transfected cells (transfectant) were cultured in Dulbecco's minimum essential medium (DMEM) containing 5% bovine serum (BS). Wild-type cells or transfectants were transfected with the -710/+18 LUC construct vector or the -710/+18 LUC construct with deletion of -523/-435. Wild-type cells or transfectants with subconfluency were cultured for 48 h in a DMEM medium containing either vehicle, BS (5%), or parathyroid hormone (1-34) (PTH; 10(-7) M). Luciferase activity in wild-type cells was significantly increased with culture of BS or PTH. This increase was significantly blocked in the presence of various protein kinase inhibitors (staurosporine and PD 98059). Luciferase activity in transfectants was significantly increased as compared with that of wild-type cells in the absence of BS or PTH. The increase in luciferase activity in transfectants was completely decreased in mutant with deletion of -523/-435 sequence of regucalcin promoter. This was also seen using the -710/+18 LUC construct with deletion of -523/-503 sequence containing TTGGC motif. The increase in luciferase activity in transfectants was not significantly enhanced with culture of BS (5%), PTH (10(-7) M), Bay K 8644 (10(-6) M), phorbol 12-myristate 13-acetate (PMA; 10(-6) M), or N(6), 2'-dibutyryl cyclic adenosine 3', 5'-monophosphate (DcAMP; 10(-4) M). The increase in luciferase activity in transfectants was completely inhibited with culture of dibucaine (10(-6) M), staurosporine (10(-9) M), PD 98059 (10(-8) M), wortmannin (10(-8) M), genistein (10(-6) M), vanadate (10(-6) M), or okadaic acid (10(-6) M) which are inhibitors of various kinases and protein phosphatases. This study demonstrates that RGPR-p117 can enhance the regucalcin promoter activity which is related to the NF-1 consensus sequences including TTGGC motif, and that its enhancing effect is partly mediated through phosphorylation and dephosphorylation in NRK52E cells.  相似文献   

4.
5.
The presence and expression for the gene encoding a novel regucalcin gene promoter region-related protein (RGPR-p117) in various species was investigated by using Southern "zoo blot" and Northern hybridization analyses. A "zoo blot" analysis demonstrated that RGPR-p117 gene was widely conserved in various species including human, rat, mouse, dog, cow, pig, rabbit, chicken, fish, C. elegans and yeast. The gene was not found in Xenopus. Northern blot analysis showed that RGPR-p117 mRNA was expressed in the liver of human, rat, mouse, and rabbit as a single mRNA of approximately 4.5 kb, respectively. However, homologous mRNA was not found in the liver of Xenopus. The expression of RGPR-p117 mRNA in liver was clearly enhanced 5 h after a single intraperitoneal administration of CaCl(2) (5 mg Ca(2+)/100 g body weight) to rats. The RGPR-p117 mRNA is also expressed in the cloned H4-II-E rat hepatoma cells, although this expression was weak as compared with that of liver tissues. Moreover, the RGPR-p117 mRNA expression in H4-II-E cells was stimulated in the presence of dibutyryl cAMP, PMA, insulin, 17beta-estradiol, or serum in culture medium. The present study demonstrates that the RGPR-p117 gene is conserved in various species, and that its expression is stimulated by intracellular signaling factors.  相似文献   

6.
The transcriptional regulation of regucalcin gene expression   总被引:1,自引:0,他引:1  
  相似文献   

7.
The binding of nuclear factor on the promoter region of the regucalcin gene and the expression of regucalcin in the kidney cortex of rats was investigated. Nuclear extracts from kidney cortex were used for oligonucleotide competition gel mobility shift assay. An oligonucleotide between position –523 and –506 in the 5-flanking region of the rat regucalcin gene, which contains a nuclear factor I (NF1) consensus motif TTGGC(N)6CC, competed with the probe for the binding of the nuclear protein from kidney cortex. The mutation of TTGGC in the consensus sequence caused an inhibition of the binding of nuclear factors. The binding of nuclear factor on the 5-flanking region was clearly reduced in the kidney cortex obtained at 1, 2, and 3 days after a single intraperitoneal administration of cisplatin (1.0 mg/100 g body wt) to rats. Moreover, cisplatin administration caused a remarkable decrease in regucalcin mRNA levels and regucalcin concentration in the kidney cortex. Also, serum regucalcin concentration was significantly decreased by cisplatin administration. Meanwhile, serum urea nitrogen concentration was markedly elevated by cisplatin administration. The present study demonstrates that the specific nuclear factor binds to the NF1-like sequence in the promotor region of regucalcin gene in the kidney cortex of rats, and that the nuclear factor binding and regucalcin expression are suppressed by cisplatin administration.  相似文献   

8.
9.
10.
11.
The existence of nuclear factors which bind to the 5-flanking region of calcium-binding protein regucalcin gene in rats was investigated. We previously reported that rat regucalcin mRNA is expressed in a highly tissue-specific manner; the mRNA was mainly present in the liver but only slightly in the kidney. When the nuclear proteins extracted from the liver and kidney of rats were used in the gel mobility shift assays, a protein-DNA complex was uniquely formed with the DNA fragment containing the upstream region from the first exon of rat regucalcin gene. On the other hand, this complex was not found by using the nuclear extracts from rat brain, spleen, and heart. The nuclear proteins of these extracts, however, could specifically bind to the DNA fragment containing the first exon region of rat regucalcin gene, although Northern blot analysis did not show detectable amount of regucalcin mRNA levels in rat brain, spleen, and heart. The present study demonstrates that the existence of nuclear protein components which bind to the regucalcin gene. These identified components may be involved in the tissue-specific regulation of regucalcin gene expression.  相似文献   

12.
13.
14.
The existence and expression of gene encoding the Ca2+-binding protein regucalcin in various species and tissues were investigated with Southern and Northern hybridization analyses using regucalcin cDNA (0.9 kb of open reading frame). Genomic Southern hybridization analysis demonstrated that regucalcin gene was widely conserved among higher animals including human, monkey, rat, mouse, dog, bovine, rabbit and chicken. The gene was not found in yeast. The Northern blot analysis of poly (A)+RNAs extracted from the liver of various species showed that regucalcin mRNA was predominantly expressed in rat and mouse, although the expression was also seen in human, bovine and chicken. Furthermore, the enzyme-linked immunoadsorbent assay (ELISA) with rabbit-anti-regucalcin IgG indicated that hepatic regucalcin concentration was most pronounced in rat as compared with that of guinea pig, mouse and chicken. These observations show that the gene expression of regucalcin and its protein synthesis is unique in the liver of rats, suggesting the existence of a specific mechanism in demonstrating regucalcin synthesis from gene.  相似文献   

15.
16.
17.
18.
19.
20.
Role of regucalcin in calcium signaling   总被引:5,自引:0,他引:5  
Yamaguchi M 《Life sciences》2000,66(19):1769-1780
Regucalcin was discovered in 1978 as a calcium-binding protein that does not contain EF-hand motif of Ca(2+)-binding domain [M. Yamaguchi and T. Yamamoto, Chem. Pharm. Bull. 26 1915-1918 (1978)]. In recent years, regucalcin has been demonstrated to play an important role as a regulatory protein in Ca2+ signaling in rat liver and kidney cells. The organization of the rat regucalcin gene consists of seven exons and six introns. The mRNA is mainly present in liver and kidney with a size of 1.8 kb. Hepatic regucalcin mRNA expression has been shown to be stimulated by various factors including calcium, calcitonin, insulin, and estrogen in rats. The mRNA is also expressed in hepatoma cells (Morris hepatoma, HepG2, and rat hepatoma H4-II-E cells). Regucalcin plays a role in the maintenance of intracellular Ca2+ homeostasis due to activating Ca2+ pump enzymes in the plasma membrane (basolateral membrane) and microsomes of liver and renal cortex cells. Moreover, regucalcin has an inhibitory effect on the activation of Ca2+/calmodulin-dependent enzymes and protein kinase C. Also, regucalcin has been demonstrated to regulate nuclear function in liver cells; it can inhibit Ca(2+)-activated DNA fragmentation, DNA and RNA synthesis, protein kinase and protein phosphatase activities in the nuclei. Such an effect is also seen in the nuclei of regenerating rat liver. Regucalcin may play a physiological role in the control for overexpression of proliferative cells. Regucalcin has been proposed to be an important regulatory protein in Ca2+ signaling system, and it plays a multifunctional role in liver and kidney cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号