首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
  • Changes in seed lipid composition during ageing are associated with seed viability loss in many plant species. However, due to their small seed size, this has not been previously explored in orchids. We characterized and compared the seed viability and fatty acid profiles of five orchid species before and after ageing: one tropical epiphytic orchid from Indonesia (Dendrobium strebloceras), and four temperate species from New Zealand, D. cunninghamii (epiphytic), and Gastrodia cunninghamii, Pterostylis banksii and Thelymitra nervosa (terrestrial).
  • Seeds were aged under controlled laboratory conditions (3-month storage at 60% RH and 20 °C). Seed viability was tested before and after ageing using tetrazolium chloride staining. Fatty acid methyl esters from fresh and aged seeds were extracted through trans-esterification, and then analysed using gas chromatography–mass spectrometry.
  • All species had high initial viability (>80%) and experienced significant viability loss after ageing. The saturated, polyunsaturated, monounsaturated and total fatty acid content decreased with ageing in all species, but this reduction was only significant for D. strebloceras, D. cunninghamii and G. cunninghamii.
  • Our results suggest that fatty acid degradation is a typical response to ageing in orchids, albeit with species variation in magnitude, but the link between fatty acid degradation and viability was not elucidated. Pterostylis banksii exemplified this variation; it showed marked viability loss despite not having a significant reduction in its fatty acid content after ageing. More research is required to identify the effect of ageing on fatty acid composition in orchids, and its contribution to seed viability loss.
  相似文献   

3.
Abstract Measuring the fate of seeds between seed production and seedling establishment is critical in understanding mechanisms of recruitment limitation of plants. We examined seed fates to better understand the recruitment dynamics of four resprouting shrubs from two families (Fabaceae and Epacridaceae) in temperate grassy woodlands. We tested whether: (i) pre‐dispersal seed predation affected seed rain; (ii) post‐dispersal seed predation limited seed bank accumulation; (iii) the size of the seed bank was related to seed size; and (iv) viable seeds accumulated in the soil after seed rain. There was a distinct difference in seed production per plant between plant families with the legumes producing significantly more seeds per individual than the epacrids. Seed viability ranged from 43% to 81% and all viable had seed or fruit coat dormancy broken by heat or scarification. Pre‐dispersal predation by Lepidopteran larvae removed a large proportion of seed from the legume seed rain but not the epacrids. Four species of ants (Notoncus ectatomoides, Pheidole sp., Rhytidoponera tasmaniensis and Iridomyrmex purpureus) were major post‐dispersal seed removers. Overall, a greater percentage of Hardenbergia (38%) and Pultenaea (59%) seeds were removed than the fleshy fruits of Lissanthe (14%) or Melichrus (0%). Seed bank sizes were small (<15 seeds m?2) relative to the seed rain and no significant accumulation of seed in the soil was detected. Lack of accumulation was attributed to seed predation as seed decay was considered unlikely and no seed germination was observed in our study sites. Our study suggests that seed predation is a key factor contributing to seed‐limited recruitment in grassy woodland shrubs by reducing the number of seeds stored in the soil.  相似文献   

4.
Seed coat surfaces of 127 species, representing 23 sections of the genusEuphorbia L. (Euphorbiaceae) have been examined with the scanning electron microscope (SEM). Various surface patterns and cell wall structures are described. In some groups the seed coat is rather uniform (e.g. in sect.Euphorbium), in other sections even closely related species can be separated by seed coat morphology (e.g.Tithymalus). The taxonomic application of testa micromorphology and the possible systematic position of certain taxa are briefly discussed. The seed coat cells of all species in sect.Tithymalus show remarkable intercellulares filled with small particles, which are described in detail for the first time.
  相似文献   

5.
Soybean (Glycine max) produces seeds that are rich in unsaturated fatty acids and is an important oilseed crop worldwide. Seed oil content and composition largely determine the economic value of soybean. Due to natural genetic variation, seed oil content varies substantially across soybean cultivars. Although much progress has been made in elucidating the genetic trajectory underlying fatty acid metabolism and oil biosynthesis in plants, the causal genes for many quantitative trait loci (QTLs) regulating seed oil content in soybean remain to be revealed. In this study, we identified GmFATA1B as the gene underlying a QTL that regulates seed oil content and composition, as well as seed size in soybean. Nine extra amino acids in the conserved region of GmFATA1B impair its function as a fatty acyl–acyl carrier protein thioesterase, thereby affecting seed oil content and composition. Heterogeneously overexpressing the functional GmFATA1B allele in Arabidopsis thaliana increased both the total oil content and the oleic acid and linoleic acid contents of seeds. Our findings uncover a previously unknown locus underlying variation in seed oil content in soybean and lay the foundation for improving seed oil content and composition in soybean.  相似文献   

6.
7.
Most seed predation studies focus on either pre- or post-dispersal predation and may therefore underestimate the role of predation in regulating plant populations. We therefore estimated total seed predation of an invasive tree, mesquite (Leguminoseae: Prosopis spp.), by examining the entire seed pool from tree to seed bank. The spatio-temporal dynamics of total seed predation was examined by sampling across its Australian distribution and through time. The main predator was a host-specialist multivoltine beetle, Algarobius prosopis L. (Bruchidae), previously introduced as a biocontrol agent. Seed predation exceeded 20% in all seed stages (in pods on and off the tree, and seeds within woody endocarps (capsules) and free seeds on and in the ground) but was consistently highest in capsules on the ground (up to 90%). Pre-dispersal predation contributed little. Total seed predation rates were primarily determined by predation rates on the most persistent seed stage, in this case fallen pods if only pods are considered and seeds in capsules for the total seed pool. This pattern was consistent across the surveyed taxa, regions, years and seasonally. Predation rate was relatively unaffected by seed density, potentially because densities were always low (<150 seeds m−2). Average total seed predation within a region reached 55%, but we conclude that any population regulation of mesquite by seed predation will principally be through reduced seed bank persistence. Our results highlight the need to consider the entire seed pool, especially the often cryptic and overlooked long-lived stages, when determining seed loss to predation and its likely population consequences.  相似文献   

8.
9.
Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed‐plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed‐specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss‐of‐function atper1 mutants, atper1‐1 and atper1‐2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild‐type seeds. The suppressed primary seed dormancy of atper1‐1 was completely reduced by deletion of CYP707A genes. Furthermore, loss‐of‐function of AtPER1 cannot enhance the seed germination ratio of aba2‐1 or ga1‐t, suggesting that AtPER1‐enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild‐type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.  相似文献   

10.
The non-native, invasive haplotype of Phragmites australis is rapidly invading tidal and non-tidal wetlands across North America. Phragmites has the potential to spread by seeds and rhizomes. Seed viability and dormancy differences were quantified among 18 patches of non-native Phragmites in subestuarine wetlands in developed (i.e., suburbanized) vs. forested watersheds of the Chesapeake Bay. We used tetrazolium and germination assays to assess seed viability and compared germination percentages and rate of germination among fresh seeds, cold–moist treated seeds, and warm–dry treated seeds to evaluate seed dormancy. Seed viability was <1% in most patches but a few patches produced abundant viable seeds (5–21%). Seed viability, however, did not differ significantly between wetlands in forested vs. developed watersheds. Contrary to studies of Phragmites seed dormancy in European populations, some Phragmites seeds were dormant at maturity; cold–moist treated seeds germinated faster and to higher percentages than fresh seeds or warm–dry treated seeds.  相似文献   

11.
Erucic acid is a valuable industrial fatty acid with many applications. The main producers of this acid are today high erucic rapeseed (Brassica napus) and mustard (Brassica juncea), which have 45%–50% of erucic acid in their seed oils. Crambe abyssinica is an alternative promising producer of this acid as it has 55%–60% of erucic acid in its oil. Through genetic modification (GM) of three genes, we have previously increased the level of erucic acid to 71% (68 mol%) in Crambe seed oil. In this study, we further investigated different aspects of oil biosynthesis in the developing GM Crambe seeds in comparison with wild‐type (Wt) Crambe, rapeseed and safflower (Carthamus tinctorius). We show that Crambe seeds have very low phosphatidylcholine‐diacylglycerol interconversion, suggesting it to be the main reason why erucic acid is limited in the membrane lipids during oil biosynthesis. We further show that GM Crambe seeds have slower seed development than Wt, accompanied by slower oil accumulation during the first 20 days after flowering (DAF). Despite low accumulation of erucic acid during early stages of GM seed development, nearly 86 mol% of all fatty acids accumulated between 27 and 50 DAF was erucic acid, when 40% of the total oil is laid down. Likely bottlenecks in the accumulation of erucic acid during early stages of GM Crambe seed development are discussed.  相似文献   

12.
Seed sowing is a common early step in restoration, but seed consumers can impede plant establishment and alter community structure. Moreover, seed consumers vary in feeding behaviors and the relative importance of different seed consumer groups during restoration are not well understood. At 12 first‐year prairie restorations in Michigan, we studied seed predation using seed removal trays to ask: What is the relative magnitude of seed removal by insects and mammals? Do seed removal rates change over the growing season? Do habitat edges influence seed removal? At what rates are 10 prairie plant species' seeds removed by mammals and insects? Seed removal depended on consumer type, time of year, and seed species. Insects accounted for the majority of seed removal, contrary to previous research in similar systems. In May, insects removed 1.8 times more seeds than mammals, while in August, they removed 5.1 times more. There was greater seed removal in August. During May 28% of seeds were removed, compared to 54% of seeds removed during August, an increase driven by insects. Edge proximity did not influence seed removal. Certain seed species were removed more than others. For example, Lespedeza capitata (round‐headed bush clover) was always removed at high rates, whereas Coreopsis lanceolata (lance‐leaved coreopsis) and Andropogon gerardii (big bluestem) were always removed at low rates. Mammals and insects showed different preferences for several species. This research suggests a prominent role of seed predation, particularly by insects, for early prairie restoration dynamics, with influences varying temporally and among species.  相似文献   

13.
Abstract: We investigated habitat characteristics, seed type and seed size variation between and within 41 populations of the heteromorphic saltmarsh annual Spergularia salina. 95% of the investigated populations were truly heteromorphic regarding unwinged or winged seeds but either of the seed types could dominate in individual populations. 39% of all seed capsules contained mixed seed types, in 43% of capsules the seeds were exclusively unwinged, and in 18% only winged seeds were found. In a closer survey in one of the populations (at Tullgarn, 5850'N, 1737'E), albeit predominantly heteromorphic, again capsules either contained mostly unwinged or winged seeds: 59% of the capsules had mixed contents, 21% contained exclusively unwinged seeds, and 21 % produced only winged seeds. Seed weight varied up to 10-fold, with an overall mean of 77.2μg. 27% of this variation was due to variation among populations, 52% was explained by variation between individuals, and 21% was due to variation within individuals. Seed weight was positively correlated with the frequency of winged seeds per capsule, especially within populations, and negatively correlated to seed number. The frequency of winged seeds in each capsule and seed weight was positively correlated with population density both between and within populations.  相似文献   

14.
Seed dispersal ecology of Bactris acanthocarpa Mart. (Arecaceae), an Atlantic forest understory palm, was investigated during two years as an attempt to test the following predictions: (i) seeds of Bactris are dispersed by mammals and large-gaped birds; (ii) Bactris benefits from seed dispersal in terms of seed predation avoidance, improvement of seed germination and seedling survival; and (iii) spatial distribution of adults is related to patterns of seed dispersal. The study was conducted at Dois Irmãos Reserve, a 387.4-ha reserve of Atlantic forest in northeastern Brazil (8º S–35º W). Black–rumped agoutis (Dasyprocta prymnolopha) and Guianan squirrels (Sciurus aestuans) were identified as the seed dispersers/predators, moving seeds short distances (< 4 m from parents) and at low rates (0.04-0.05 diaspore/palm/day). Pyrene burial prevented seed predation by vertebrates and reduced by half seed infestation by Scolytidae beetles. Only buried pyrenes germinated. Pyrene predation was not correlated with distance from conspecific adults. In contrast, early seedling mortality was higher near conspecific adults. Most adults (64%) had their nearest conspecific adult neighbour > 4 m away in contrast to 96% of seedlings that occurred concentrated within 4 m from adults (77% under the palm crowns). Here, we present evidence that spatial distribution of B. acanthocarpa is partly due to low rates of seed removal, short-distance seed dispersal by agoutis and squirrels, and early seedling mortality associated with presence of seedlings under palm crowns.  相似文献   

15.
The genera of theRafflesiaceae show a marked diversity in the structure of their ovules and seeds. Evolutionary trends are recognizable in ovule orientation and number of integuments. A change from anatropous ovules inApodantheae andMitrastemoideae towards incomplete anatropy inRafflesieae and orthotropy inCytineae occurs, next to a change from bitegmic ovules inApodantheae towards unitegmy with rudimentary outer integuments inRafflesieae andCytineae and full unitegmy inMitrastemoideae.—The differences in ovule structure are clearly reflected in the seeds. The seeds are essentially exotegmic, have very small embryos and an oily endosperm.—Seed structure strongly confirms the existing subfamilial classification and supports additional arguments for the generic status ofApodanthes. It does not support a separate status of the genusBerlinianche. InRafflesiaceae, seed micromorphology is only of limited use at the species level. As far as known seed dispersal is endo- or exozoochorous in all genera.  相似文献   

16.
Germplasm of 21 diverse Argyranthemum taxa was collected from contrasting ecological zones in the Canary Islands. Seed dormancy was considerable in the majority of taxa. Extensive investigations, based on a germination test procedure algorithm for Asteraceae, with achenes from ray and disc florets of five contrasting taxa identified a procedure to promote full (85%) germination of the seeds from both ray and disc florets of all five taxa; viz, excision of the seeds from the achenes, followed by testing at 15°C with 2.6×10-3 m GA3 co-applied. Subsequent tests showed that this regime was effective in promoting full germination in seeds from both ray and disc florets of the remaining 16 taxa. The results are discussed in the context of ex situ plant germplasm conservation.  相似文献   

17.
In Neotropical forests, mammals act as seed dispersers and predators. To prevent seed predation and promote dispersal, seeds exhibit physical or chemical defenses. Collared peccaries (Pecari tajacu) cannot eat some hard seeds, but can digest chemically defended seeds. Central American agoutis (Dasyprocta punctata) gnaw through hard‐walled seeds, but cannot consume chemically defended seeds. The objectives of this study were to determine relative peccary and agouti abundances within a lowland forest in Costa Rica and to assess how these two mammals affect the survival of large seeds that have no defenses (Iriartea deltoidea, Socratea exorrhiza), physical defenses (Astrocaryum alatum, Dipteryx panamensis), or chemical defenses (Mucuna holtonii) against seed predators. Mammal abundances were determined over 3 yrs from open‐access motion‐detecting camera trap photos. Using semi‐permeable mammal exclosures and thread‐marked seeds, predation and dispersal by mammals for each seed species were quantified. Abundances of peccaries were up to six times higher than those of agoutis over 3 yrs, but neither peccary nor agouti abundances differed across years. Seeds of A. alatum were predominantly dispersed by peccaries, which did not eat A. alatum seeds, whereas non‐defended and chemically defended seeds suffered high levels of predation, mostly by peccaries. Agoutis did not eat M. holtonii seeds. Peccaries and agoutis did not differ in the distances they dispersed seeds. This study shows that seed fates are contingent upon many factors such as seed defenses, frugivore–granivore abundances, and seed‐handling capabilities. Mammal–seed interactions are complex; the outcomes of these interactions depend on the inherent characteristics of seeds and their potential dispersers.  相似文献   

18.
The impact of the weevil Apion ulicis on the dispersal and quality of gorse (Ulex europaeus) seeds was examined in southern Chile in 1991 and 1992. Seed dispersal was assessed by counting the number of seeds captured by rows of seed traps placed at 0.7, 1.4, and 2.8 m from 12 weevil-infested and 12 weevil-free gorse plants arranged in a split-plot randomized complete block design. Seed weight and germinability were also measured. The influence of gorse pod location on host utilization by the weevil and the hypothetical subsequent change on seed dispersal were also studied. Gorse seed production and dispersal were significantly (P ≤ 0.001) decreased by A. ulicis in 1991 but not in 1992. Individual seed weight and germinability were not adversely affected by weevil infestation. Pod location did not affect host utilization by the insect, nor did it influence seed dispersal or quality.  相似文献   

19.
Seed characteristics were measured in 71 Eastern Australian rainforest species representing 30 families. Sensitivity to desiccation to low moisture contents (< 10%) occurred in 42% of species. We estimate, based on findings from 100 species from this present study and previously published reports, that 49% of Eastern Australian rainforest species have non‐orthodox seeds. Germination level and time to 50% germination were not significantly different between desiccation sensitive (DS) and desiccation tolerant (DT) seeds. The estimation of seed desiccation sensitivity based on predictors is an important tool underpinning ex situ conservation efforts. Seed characteristics differed significantly between DS and DT seeds; that is, DS seeds had: (i) larger fruits (19 949 mg vs 8322 mg); (ii) larger seeds (1663 mg vs 202 mg); (iii) higher seed moisture contents (49.7% vs 35.5% fresh weight); (iv) lower oil content (7.3% vs 24.8% yield); and (v) less investment in seed coats (0.19 vs 0.48 seed coat ratio). Only 25% of DS seeded species had oily seeds compared with 87% of DT seeded species. Most green embryos were DS. Seed coat ratio was the best predictor of seed DS (80% correctly predicted). Seed moisture content at maturity was also related to germination time. Mean seed size was correlated (?0.657, P = 0.01) with mean seed oil content in 46 species. Further research on seed storage physiology of possible oily and/or DS seeded species is crucial to ensure future long‐term security of this biodiversity, particularly for species currently threatened in situ and/or of socioeconomic importance in Eastern Australian rainforests.  相似文献   

20.
The effects of equilibration under different air relative humidities (RH, 1 – 90 %) and temperatures (35 and 45 °C) on soybean (Glycine max) and wheat (Triticum aestivum) seeds were studied using different techniques. Seed moisture content, electrical conductivity (EC) of seed leachate and per cent seed germination were measured following standard procedures, and compared with nuclear magnetic resonance spin-spin relaxation time (T2) measurements. Moisture contents of soybean and wheat seeds, following the reverse sigmoidal trend, were greater at 35 than at 45 °C at any particular RH. Changes in T2 were related to the changes in germination percentage and leachate EC of both soybean and wheat seeds. Equilibrating soybean seeds at RH 11 % decreased germination percentage with corresponding decrease in T2. On the contrary, EC of seed leachate increased. In wheat seeds equilibrated at 45 °C, T2 was maximal at RH 5.5 %. T2 declined in seeds equilibrated at high RH (> 80 %) together with low germination percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号