首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Pteridine reductase 1 (PTR1) is an essential enzyme of pterin and folate metabolism in the protozoan parasite Leishmania. The present work is focused on the degradation of PTR1 during growth phase in Leishmania donovani. Western blot analysis with PTR1-GFP transfected promastigotes revealed that PTR1 protein was degraded in the stationary phase of growth at the time when the parasites were undergoing metacyclogenesis. Fluorescence microscopy revealed cytoplasmic localization of GFP tagged protein extending to the flagellum in these stationary phase promastigotes, implying that degradation of the protein was not by the usual multivesicular tubule lysosome (MVT) pathway. A probable destruction box of nine amino acids Q63ADLSNVAK71 and possible lysine residue K156 was identified in L. donovani PTR1 to be the site for ubiquitin conjugation. This suggests that PTR1 degradation during the stationary phase of growth is mediated by the proteasome. This leads to lower levels of H4-biopterin, which favors metacyclogenesis, and subsequently results in a highly infective stage of the parasite. Therefore, this finding has importance to identify new target molecule like the proteasome for therapeutic intervention.  相似文献   

2.
Pteridine reductase (PTR1) is an NADPH-dependent short-chain reductase found in parasitic trypanosomatid protozoans. The enzyme participates in the salvage of pterins and represents a target for the development of improved therapies for infections caused by these parasites. A series of crystallographic analyses of Leishmania major PTR1 are reported. Structures of the enzyme in a binary complex with the cofactor NADPH, and ternary complexes with cofactor and biopterin, 5,6-dihydrobiopterin, and 5,6,7,8-tetrahydrobiopterin reveal that PTR1 does not undergo any major conformational changes to accomplish binding and processing of substrates, and confirm that these molecules bind in a single orientation at the catalytic center suitable for two distinct reductions. Ternary complexes with cofactor and CB3717 and trimethoprim (TOP), potent inhibitors of thymidylate synthase and dihydrofolate reductase, respectively, have been characterized. The structure with CB3717 reveals that the quinazoline moiety binds in similar fashion to the pterin substrates/products and dominates interactions with the enzyme. In the complex with TOP, steric restrictions enforced on the trimethoxyphenyl substituent prevent the 2,4-diaminopyrimidine moiety from adopting the pterin mode of binding observed in dihydrofolate reductase, and explain the inhibition properties of a range of pyrimidine derivates. The molecular detail provided by these complex structures identifies the important interactions necessary to assist the structure-based development of novel enzyme inhibitors of potential therapeutic value.  相似文献   

3.
Reduced pteridines are required for a number of important cellular functions. Trypanosomatid parasites, unlike their mammalian hosts, are pteridine auxotrophs and salvage the precursor pteridines from the host and reduce them to the respective biologically active tetrahydro forms using parasite-encoded enzymes. These enzymes may offer selective drug targets. In Leishmania, pteridine reductase 1 (PTR1), the primary enzyme for reducing pterins, is also responsible for resistance to antifolate drugs. Typically, PTR1 is more active with fully oxidized biopterin and folate than with their reduced counterparts. We have identified an enzyme, TcPTR2 of Trypanosoma cruzi, which though very similar to PTR1 in its primary sequence, can reduce only dihydrobiopterin and dihydrofolate and not oxidized pteridines. The structures of an inhibitor (methotrexate) and a substrate (dihydrofolate) complex of this enzyme demonstrate that the orientation of the substrate and the inhibitor in the active site of TcPTR2 are different from each other. However, the orientation of each ligand is similar to that of the corresponding ligand in Leishmania major PTR1 complexes.  相似文献   

4.
Pteridine reductase 1 (PTR1, EC 1.5.1.33) is a NADPH dependent short-chain reductase (SDR) responsible for the salvage of pterins in the protozoan parasite Leishmania. This enzyme acts as a metabolic bypass for drugs targeting dihydrofolate reductase, therefore, for successful antifolate chemotherapy to be developed against Leishmania, it must target both enzyme activities. Based on homology model drawn on recombinant pteridine reductase isolated from a clinical isolate of L. donovani, we carried out molecular modeling and docking studies with two compounds of dihydrofolate reductase specificity showing promising antileishmanial activity in vitro. Both the inhibitors appeared to fit well in the active pocket revealing the tight binding of the carboxylic acid ethyl ester group of pyridine moiety to pteridine reductase and identify the important interactions necessary to assist the structure based development of novel pteridine reductase inhibitors.  相似文献   

5.
Biopterin is required for growth of the protozoan parasite Leishmania and is salvaged from the host through the activities of a novel biopterin transporter (BT1) and broad-spectrum pteridine reductase (PTR1). Here we characterize Leishmania major quinonoid-dihydropteridine reductase (LmQDPR), the key enzyme required for regeneration and maintenance of H(4)biopterin pools. LmQDPR shows good homology to metazoan quinonoid-dihydropteridine reductase and conservation of domains implicated in catalysis and regulation. Unlike other organisms, LmQDPR is encoded by a tandemly repeated array of 8-9 copies containing LmQDPR plus two other genes. QDPR mRNA and enzymatic activity were expressed at similar levels throughout the infectious cycle. The pH optima, kinetic properties, and substrate specificity of purified LmQDPR were found to be similar to that of other qDPRs, although it lacked significant activity for non-quinonoid pteridines. These and other data suggest that LmQDPR is unlikely to encode the dihydrobiopterin reductase activity (PTR2) described previously. Similarly LmQDPR is not inhibited by a series of antifolates showing anti-leishmanial activity beyond that attributable to dihydrofolate reductase or PTR1 inhibition. qDPR activity was found in crude lysates of Trypanosoma brucei and Trypanosoma cruzi, further emphasizing the importance of H(4)biopterin throughout this family of human parasites.  相似文献   

6.
The protozoan parasite Leishmania is a folate and pterin auxotroph. The main biopterin transporter (BT1) and pterin reductase (PTR1) have already been characterized in Leishmania. In this study, we have succeeded in generating a BT1 and PTR1 null mutant in the same Leishmania tarentolae strain. These cells are viable with growth properties indistinguishable from wildtype cells. However, in response to the inactivation of BT1 and PTR1, at least one of the folate transporter genes was deleted, and the level of the folylpolyglutamate synthetase activity was increased, leading to increased polyglutamylation of both folate and methotrexate (MTX). Secondary events following gene inactivation should be considered when analyzing a phenotype in Leishmania. The BT1/PTR1 null mutant is hypersensitive to MTX, but in a step-by-step fashion, we could induce resistance to MTX in these cells. Several resistance mechanisms were found to co-exist including a reduced folate and MTX accumulation, demonstrating that cells with no measurable biopterin uptake but also greatly reduced folate uptake are viable, despite their auxotrophy for each of these substrates. The resistant cells have also amplified the gene coding for the MTX target dihydrofolate reductase. Finally, we found a marked reduction in MTX polyglutamylation in resistant cells. These studies further highlight the formidable ability of Leishmania cells to bypass the blockage of key metabolic pathways.  相似文献   

7.
Withaferin A is an abundant withanolide present in Withania somnifera leaves and to some extent in roots. It has been known for its profound anti-cancer properties, but its role in counteracting the Leishmania donovani infection has to be explored. Pteridine reductase 1 (PTR1) is involved in pteridine salvage and an important enzyme for the parasite growth, which could be targeted for the development of an efficient antileishmanial drug. We employed molecular docking studies to identify the binding mode of withaferin A with PTR1 in silico. We further cloned, expressed, and purified PTR1 of L. donovani and performed the enzyme kinetics using the Michaelis–Menten equation and enzyme inhibition studies with withaferin A by plotting the Lineweaver–Burk graph, which followed an uncompetitive mode of inhibition. We also showed the inhibition of the enzyme in the crude lysate of treated parasites. Thus, our study contributes towards understanding the mode of action of withaferin A against L. donovani parasite.  相似文献   

8.
The protozoan Trypanosoma brucei has a functional pteridine reductase (TbPTR1), an NADPH-dependent short-chain reductase that participates in the salvage of pterins, which are essential for parasite growth. PTR1 displays broad-spectrum activity with pterins and folates, provides a metabolic bypass for inhibition of the trypanosomatid dihydrofolate reductase and therefore compromises the use of antifolates for treatment of trypanosomiasis. Catalytic properties of recombinant TbPTR1 and inhibition by the archetypal antifolate methotrexate have been characterized and the crystal structure of the ternary complex with cofactor NADP+ and the inhibitor determined at 2.2 A resolution. This enzyme shares 50% amino acid sequence identity with Leishmania major PTR1 (LmPTR1) and comparisons show that the architecture of the cofactor binding site, and the catalytic centre are highly conserved, as are most interactions with the inhibitor. However, specific amino acid differences, in particular the placement of Trp221 at the side of the active site, and adjustment of the beta6-alpha6 loop and alpha6 helix at one side of the substrate-binding cleft significantly reduce the size of the substrate binding site of TbPTR1 and alter the chemical properties compared with LmPTR1. A reactive Cys168, within the active site cleft, in conjunction with the C-terminus carboxyl group and His267 of a partner subunit forms a triad similar to the catalytic component of cysteine proteases. TbPTR1 therefore offers novel structural features to exploit in the search for inhibitors of therapeutic value against African trypanosomiasis.  相似文献   

9.
PTR1, the gene promoting MTX resistance following gene amplification or DNA transfection in Leishmania tarentolae and selected mutants, has been cloned and heavily overexpressed (>100 mg/liter) in Escherichia coli strain BL21 (DE3). Protein has been purified, essentially to homogeneity, in two steps, via ammonium sulfate precipitation and chromatography on DEAE-Trisacryl. The active proteins are tetramers and display optimal pteridine reductase activity at pH 6.0 using biopterin as substrate and NADPH as the reduced dinucleotide cofactor. 2,4-Diaminopteridine substrate analogues are strong competitive inhibitors (K(i) approximately 38 --> 3 nM) against the pterin substrate and both NADP(+) and folate are inhibitors although somewhat weaker. Dihydropteridines are poor substrates compared to the fully oxidized pteridine. Kinetic analysis affords the usual Michaelis constants and in addition shows that inhibition by NADP(+) allows the formation of ternary nonproductive complexes with folate. The kinetic results are consistent with a sequential ordered bi-bi kinetic mechanism in which first NADPH and then pteridine bind to the free enzyme. Sequence comparisons suggest that PTR1 belongs to the short-chain dehydrogenase/reductase (SDR) family containing an amino-terminal glycine-rich dinucleotide binding site plus a catalytic Y(Xaa)(3)K motif. In accord with this observation, the mutants K16A, Y37D, and R39A and the double mutants K17A:R39A and Y37D:R39A all show a two- to threefold lower binding affinity for NADPH and exhibit low or zero activity. Two Y(Xaa)(3)K regions are present in wild-type PTR1 at 152 and 194. Only Y194F gives protein with zero activity. This observation coupled with affinity labeling of PTR1 by oNADP(+) (2', 3'-dialdehyde derivative of NADP(+)) followed by NaBH(4) reduction, V8 protease digestion, and mass spectral analysis suggests that the motif participating in catalysis is that at 194. The mutation K198Q eliminates inactivation by oNADP(+) supporting the hypothesis that K198 is associated with nucleotide orientation, as has been demonstrated for similar lysine residues in other members of the SDR family.  相似文献   

10.
Trypanothione reductase (TR) is an NADPH-dependent flavoprotein oxidoreductase central to thiol metabolism in all the trypanosomatids including Leishmania. The unique presence of this enzyme in trypanosomatids and absence in mammalian host make this enzyme an attractive target for the development of the antileishmanials. Complete open reading frame encoding trypanothione reductase from Leishmania donovani (Dd8 strain, causative agent of Indian visceral leishmaniasis) was cloned, sequenced, and expressed in Escherichia coli strain BL21 (DE3) as glutathione S-transferase fusion protein. The conditions were developed for overexpression of fusion protein in soluble form and purification of the recombinant protein to homogeneity. The recombinant LdTR was 54.68 kDa in size, dimeric in nature, and reduces oxidized trypanothione to reduced form. The kinetic parameters for trypanothione disulfide are K(m), 50 microM; k(cat), 18,181 min(-1); and k(cat)/K(m), 6.06x10(6) M(-1) s(-1). The yield of recombinant LdTR was approximately 16 mg/L bacterial culture and accounted for 6% of the total soluble proteins. The expressed protein was inhibited by known TR inhibitors as well as by SbIII, the known antileishmanial compound. This is the first report of large-scale production of any leishmanial TR in E. coli.  相似文献   

11.
Leishmania major and Leishmania donovani cells freshly isolated from infected animals divided slowly as axenic promastigotes but the addition of biopterin in the culture medium greatly enhanced their growth. However, when cells were subjected to serial passages and adapted to culture, this growth-promoting effect of biopterin was no longer observed. Genetic analysis of these culture-adapted Leishmania cells demonstrated that the genes coding for the pterin reductase PTR1 or for the biopterin transporter BT1 were over-expressed. This suggests that Leishmania cells adapted to culture were more efficient in utilizing biopterin, an essential growth factor in Leishmania.  相似文献   

12.
We tested a general method for the identification of drug resistance loci in the trypanosomatid protozoan parasite Leishmania major. Genomic libraries in a multicopy episomal cosmid vector were transfected into susceptible parasites, and drug selections of these transfectant libraries yielded parasites bearing cosmids mediating resistance. Tests with two antifolates led to the recovery of cosmids encoding DHFR-TS or PTR1, two known resistance genes. Overexpression/selection using the toxic nucleoside tubercidin similarly yielded the TOR (toxic nucleoside resistance) locus, as well as a new locus (TUB2) conferring collateral hypersensitivity to allopurinol. Leishmania synthesize ergosterol rather than cholesterol, making this pathway attractive as a chemotherapeutic target. Overexpression/selection using the sterol synthesis inhibitors terbinafine (TBF, targeting squalene epoxidase) and itraconazole (ITZ, targeting lanosterol C(14)-demethylase) yielded nine new resistance loci. Several conferred resistance to both drugs; several were drug-specific, and two TBF-resistant cosmids induced hypersensitivity to ITZ. One TBF-resistant cosmid encoded squalene synthase (SQS1), which is located upstream of the sites of TBF and ITZ action in the ergosterol biosynthetic pathway. This suggests that resistance to "downstream" inhibitors can be mediated by increased expression of ergosterol biosynthetic intermediates. Our studies establish the feasibility of overexpression/selection in parasites and suggest that many Leishmania drug resistance loci are amenable to identification in this manner.  相似文献   

13.
Leishmania parasites are pteridine auxotrophs that use an NADPH-dependent pteridine reductase 1 (PTR1) and NADH-dependent quinonoid dihydropteridine reductase (QDPR) to salvage and maintain intracellular pools of tetrahydrobiopterin (H(4)B). However, the African trypanosome lacks a credible candidate QDPR in its genome despite maintaining apparent QDPR activity. Here we provide evidence that the NADH-dependent activity previously reported by others is an assay artifact. Using an HPLC-based enzyme assay, we demonstrate that there is an NADPH-dependent QDPR activity associated with both TbPTR1 and LmPTR1. The kinetic properties of recombinant PTR1s are reported at physiological pH and ionic strength and compared with LmQDPR. Specificity constants (k(cat)/K(m)) for LmPTR1 are similar with dihydrobiopterin (H(2)B) and quinonoid dihydrobiopterin (qH(2)B) as substrates and about 20-fold lower than LmQDPR with qH(2)B. In contrast, TbPTR1 shows a 10-fold higher k(cat)/K(m) for H(2)B over qH(2)B. Analysis of Trypanosoma brucei isolated from infected rats revealed that H(4)B (430 nM, 98% of total biopterin) was the predominant intracellular pterin, consistent with a dual role in the salvage and regeneration of H(4)B. Gene knock-out experiments confirmed this: PTR1-nulls could only be obtained from lines overexpressing LmQDPR with H(4)B as a medium supplement. These cells grew normally with H(4)B, which spontaneously oxidizes to qH(2)B, but were unable to survive in the absence of pterin or with either biopterin or H(2)B in the medium. These findings establish that PTR1 has an essential and dual role in pterin metabolism in African trypanosomes and underline its potential as a drug target.  相似文献   

14.
Visceral leishmaniasis or kala-azar is caused by the dimorphic parasite Leishmania donovani in the Indian subcontinent. Treatment options for kala-azar are currently inadequate due to various limitations. Currently, drug discovery for leishmaniases is oriented towards rational drug design; the aim is to identify specific inhibitors that target particular metabolic activities as a possible means of controlling the parasites without affecting the host. Leishmania salvages pteridin from its host and reduces it using pteridine reductase 1 (PTR1, EC 1.5.1.33), which makes this reductase an excellent drug target. Recently, we identified six alkamides and one benzenoid compound from the n-hexane fraction of the fruit of Piper longum that possess potent leishmanicidal activity against promastigotes as well as axenic amastigotes. Based on a homology model derived for recombinant pteridine reductase isolated from a clinical isolate of L. donovani, we carried out molecular modeling and docking studies with these compounds to evaluate their binding affinity. A fairly good agreement between experimental data and the results of molecular modeling investigation of the bioactive and inactive compounds was observed. The amide group in the conjugated alkamides and the 3,4-methylenedioxystyrene moiety in the benzenoid compound acts as heads and the long aliphatic chain acts as a tail, thus playing important roles in the binding of the inhibitor to the appropriate position at the active site. The remarkably high activity of a component containing piperine and piperine isomers (3.36:1) as observed by our group prompted us to study the activities of all four isomers of piperine—piperine (2E,4E), isopiperine (2Z,4E), isochavicine (2E,4Z), and chavicine (2Z,4Z)—against LdPTR1. The maximum inhibitory effect was demonstrated by isochavicine. The identification of these predicted inhibitors of LdPTR1 allowed us to build up a stereoview of the structure of the binding site in relation to activity, affording significant information that should prove useful during the structure-based design of leishmanicidal drugs.  相似文献   

15.
Pteridine reductase (PTR1) is a short-chain reductase (SDR) responsible for the salvage of pterins in parasitic trypanosomatids. PTR1 catalyzes the NADPH-dependent two-step reduction of oxidized pterins to the active tetrahydro-forms and reduces susceptibility to antifolates by alleviating dihydrofolate reductase (DHFR) inhibition. Crystal structures of PTR1 complexed with cofactor and 7,8-dihydrobiopterin (DHB) or methotrexate (MTX) delineate the enzyme mechanism, broad spectrum of activity and inhibition by substrate or an antifolate. PTR1 applies two distinct reductive mechanisms to substrates bound in one orientation. The first reduction uses the generic SDR mechanism, whereas the second shares similarities with the mechanism proposed for DHFR. Both DHB and MTX form extensive hydrogen bonding networks with NADP(H) but differ in the orientation of the pteridine.  相似文献   

16.
Trypanosoma and Leishmania are parasitic protozoa that cause a variety of diseases, which include African sleeping sickness and oriental sore. Attempts to determine pharmaceutically exploitable differences between host and parasite biochemistry have identified the unique trypanothione pathway as a possible target. This pathway includes the enzyme trypanothione reductase, the parasite analogue of glutathione reductase.  相似文献   

17.
During its life cycle, the protozoan parasite Leishmania experiences oxidative stress when interacting with macrophages. Reduced pterins are known scavengers of reactive oxygen and nitrogen intermediates. Leishmania has a pteridine reductase, PTR1, whose main function is to provide reduced pterins. We investigated the role of PTR1 in resistance to oxidative and nitrosative stress in Leishmania tarentolae, Leishmania infantum, and Leishmania major PTR1?/? mutants. The PTR1?/? cells of the three species were more sensitive to H2O2- and NO-induced stress. Using a fluorescent probe allowing ROI quantification, we demonstrated an increase in intracellular oxidant molecules in the PTR1?/? mutants. The disruption of PTR1 increased metacyclogenesis in L. infantum and L. major. We purified metacyclic parasites from PTR1?/? mutants and control cells and tested their intracellular survival in the J774 mouse cell line and in human monocyte-derived macrophages. Our results showed that PTR1?/? null mutants survived less in both macrophage models compared to control cells and this decrease was more pronounced in macrophages activated for oxidant production. This study demonstrates that one physiological role of reduced pterins in Leishmania is to deal with oxidative and nitrosative species, and a decreased ability to provide reduced pterins leads to decreased intracellular survival.  相似文献   

18.
以家榆种子为试材,采用种子活力检测技术、激光共聚焦显微镜技术、蛋白质S-亚硝基化检测技术,结合多种相关抑制剂的使用,研究了NO对种子老化的影响及其作用机制。结果表明:(1)外源NO可显著提升老化处理后种子的活力,NO清除剂cPTIO可降低老化处理后种子的活力,且此影响可被NO供体硝普钠所恢复。(2)硝酸还原酶底物亚硝酸钠、类一氧化氮合酶底物L-精氨酸(L-Arg)均可提高老化处理后种子的活力,2种酶的抑制剂可降低种子活力,且此影响可被NO供体硝普钠所恢复,即硝酸还原酶与类一氧化氮合酶可参与种子老化过程中NO的产生。(3)种子老化过程中NO首先在子叶中合成,随后在胚根尖部、生长点与下胚轴等部位出现,蛋白质S-亚硝基化水平与NO在种子中产生的时间特点一致。研究认为,NO可提高种子抗老化能力,种子内NO可通过硝酸还原酶途径和类一氧化氮合酶途径产生,且与种子蛋白质S-亚硝基化水平相关。  相似文献   

19.
Leishmania is a protozoan parasite responsible for significant morbidity and mortality worldwide. Few parasites have been subjected to proteomic analysis to date, but a genome sequencing project for Leishmania major is currently underway, making these studies possible. Here we present a high resolution proteome for L. major comprising almost 3700 spots, making it the most complete two-dimensional gel representation of a parasite proteome generated to date. We have identified a number of landmark proteins by mass spectrometry and show that several of these are valid for the related species Leishmania donovani infantum. We have also observed several forms and fragments of alpha- and beta-tubulins and show that the number and amount of these fragments increase with the age of the parasite culture. Trypanothione reductase (TRYR), which replaces glutathione reductase in trypanosomatid parasites, is an essential protein specific to these parasites and as such is under considerable scrutiny as a drug target. Two-dimensional gel analysis of a L. major strain overexpressing TRYR revealed increased amounts of five spots, all at the predicted molecular weight for TRYR and differing by 0.08 pH units in pI. Mass spectrometry identified four of these as TRYR, leading to the novel suggestion that it could be post-translationally modified. Finally quantitative comparative analysis of a methotrexate-resistant mutant of L. major generated in vitro found that a known primary resistance mediator, the pteridine reductase PTR1, was overexpressed. This constitutes the first proteomic analysis of drug resistance in a parasite and also the clearest identification of a primary drug resistance mechanism using this approach. Together these results provide a framework for further proteomic studies of Leishmania species and demonstrate that these tools are valuable for the essential study of potential drug targets and drug resistance mechanisms.  相似文献   

20.
Pteridine reductase is a promising target for development of novel therapeutic agents against Trypanosomatid parasites. A 3D-QSAR pharmacophore hypothesis has been generated for a series of L. major pteridine reductase inhibitors using Catalyst/HypoGen algorithm for identification of the chemical features that are responsible for the inhibitory activity. Four pharmacophore features, namely: two H-bond donors (D), one Hydrophobic aromatic (H) and one Ring aromatic (R) have been identified as key features involved in inhibitor-PTR1 interaction. These features are able to predict the activity of external test set of pteridine reductase inhibitors with a correlation coefficient (r) of 0.80. Based on the analysis of the best hypotheses, some potent Pteridine reductase inhibitors were screened out and predicted with anti-PTR1 activity. It turned out that the newly identified inhibitory molecules are at least 300 fold more potent than the current crop of existing inhibitors. Overall the current SAR study is an effort for elucidating quantitative structure-activity relationship for the PTR1 inhibitors. The results from the combined 3D-QSAR modeling and molecular docking approach have led to the prediction of new potent inhibitory scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号