首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 654 毫秒
1.
The use of microorganisms with hydrocarbon degrading capability and biosurfactant producers have emerged as an alternative for sustainable treatment of environmental passives. In this study 45 bacteria were isolated from samples contaminated with petrochemical residues, from which 21 were obtained from Landfarming soil contaminated with oily sludge, 11 were obtained from petrochemical industry effluents and 13 were originated directly from oily sludge. The metabolization capability of different carbon sources, growth capacity and tolerance, biosurfactant production and enzymes detection were determined. A preliminary selection carried out through the analysis of capability for degrading hydrocarbons showed that 22% of the isolates were able to degrade all carbon sources employed. On the other hand, in 36% of the isolates, the degradation of the oily sludge started within 18–48 h. Those isolates were considered as the most efficient ones. Twenty isolates, identified based on partial sequencing of the 16S rRNA gene, were pre-selected. These isolates showed ability for growing in a medium containing 1% of oily sludge as the sole carbon source, tolerance in a medium containing up to 30% of oily sludge, ability for biosurfactant production, and expression of enzymes involved in degradation of aliphatic and aromatic compounds. Five bacteria, identified as Stenotrophomonas acidaminiphila BB5, Bacillus megaterium BB6, Bacillus cibi, Pseudomonas aeruginosa, and Bacillus cereus BS20 were shown to be promising for use as inoculum in bioremediation processes (bioaugmentation) of areas contaminated with petrochemical residues since they can use oily sludge as the sole carbon source and produce biosurfactants.  相似文献   

2.
The objective of this study was to evaluate the role of PGPR consortium and fertilizer alone and in combination on the physiology of maize grown under oily sludge stress environment as well on the soil nutrient status. Consortium was prepared from Bacillus cereus (Acc KR232400), Bacillus altitudinis (Acc KF859970), Comamonas (Delftia) belonging to family Comamonadacea (Acc KF859971) and Stenotrophomonasmaltophilia (Acc KF859973). The experiment was conducted in pots with complete randomized design with four replicates and kept in field. Oily sludge was mixed in ml and Ammonium nitrate and Diammonium phosphate (DAP) were added at 70 ug/g and 7ug/g at sowing. The plant was harvested at 21 d for estimation of protein, proline and antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD). To study the degradation, total petroleum hydrocarbon was extracted by soxhelt extraction and extract was analyzed by GC-FID at different period after incubation. Combined application of consortium and fertilizer enhanced the germination %, protein and, proline content by 90,130 and 99% higher than untreated maize plants. Bioavailability of macro and micro nutrient was also enhanced with consortium and fertilizer in oily sludge. The consortium and fertilizer in combined treatment decreased the superoxide dismutase (SOD), peroxidase dismutase (POD) of the maize leaves grown in oily sludge. Degradation of total petroleum hydrocarbon (TPHs) was 59% higher in combined application of consortium and fertilizer than untreated maize at 3 d. The bacterial consortium can enhanced the maize tolerance to oily sludge and enhanced degradation of total petroleum hydrocarbon (TPHs). The maize can be considered as tolerant plant species to remediate oily sludge contaminated soils.  相似文献   

3.
A field-scale study was conducted in a 4000 m2 plot of land contaminated with an oily sludge by use of a carrier-based hydrocarbon-degrading bacterial consortium for bioremediation. The land belonged to an oil refinery. Prior to this study, a feasibility study was conducted to assess the capacity of the bacterial consortium to degrade oily sludge. The site selected for bioremediation contained approximately 300 tons of oily sludge. The plot was divided into four blocks, based on the extent of contamination. Blocks A, B, and C were treated with the bacterial consortium, whereas Block D was maintained as an untreated control. In Block A, at time zero, i.e., at the beginning of the experiment, the soil contained as much as 99.2 g/kg of total petroleum hydrocarbon (TPH). The application of a bacterial consortium (1 kg carrier-based bacterial consortium/10 m2 area) and nutrients degraded 90.2% of the TPH in 120 days, whereas in block D only 16.8% of the TPH was degraded. This study validates the large-scale use of a carrier-based bacterial consortium and nutrients for the treatment of land contaminated with oily sludge, a hazardous hydrocarbon waste generated by petroleum industry. Received: 20 October 2000 / Accepted: 22 March 2001  相似文献   

4.
Anthracene, phenanthrene, and pyrene are polycyclic aromatic hydrocarbon (PAHs) that display both mutagenic and carcinogenic properties. They are recalcitrant to microbial degradation in soil and water due to their complex molecular structure and low solubility in water. This study presents the characterization of an efficient PAH (anthracene, phenanthrene, and pyrene)-degrading microbial consortium, isolated from a petrochemical sludge landfarming site. Soil samples collected at the landfarming area were used as inoculum in Warburg flasks containing soil spiked with 250 mg kg-1 of anthracene. The soil sample with the highest production of CO2-C in 176 days was used in liquid mineral medium for further enrichment of anthracene degraders. The microbial consortium degraded 48%, 67%, and 22% of the anthracene, phenanthrene, and pyrene in the mineral medium, respectively, after 30 days of incubation. Six bacteria, identified by 16S rRNA sequencing as Mycobacterium fortuitum, Bacillus cereus, Microbacterium sp., Gordonia polyisoprenivorans, two Microbacteriaceae bacteria, and a fungus identified as Fusarium oxysporum were isolated from the enrichment culture. The consortium and its monoculture isolates utilized a variety of hydrocarbons including PAHs (pyrene, anthracene, phenanthrene, and naftalene), monoaromatics hydrocarbons (benzene, ethylbenzene, toluene, and xylene), aliphatic hydrocarbons (1-decene, 1-octene, and hexane), hydrocarbon mixtures (gasoline and diesel oil), intermediary metabolites of PAHs degradation (catechol, gentisic acid, salicylic acid, and dihydroxybenzoic acid) and ethanol for growth. Biosurfactant production by the isolates was assessed by an emulsification index and reduction of the surface tension in the mineral medium. Significant emulsification was observed with the isolates, indicating production of high-molecular-weigh surfactants. The high PAH degradation rates, the wide spectrum of hydrocarbons utilization, and emulsification capacities of the microbial consortium and its member microbes indicate that they can be used for biotreatment and bioaugumentation of soils contaminated with PAHs.  相似文献   

5.
Melanoidins, complex biopolymer of amino-carbonyl compounds are the major coloring and polluting constituents of distillery wastewaters. In this study, three aerobic melanoidin-degrading bacteria (RNBS1, RNBS3 and RNBS4) were isolated from soil contaminated with distillery effluent and characterized as Bacillus licheniformis (RNBS1), Bacillus sp. (RNBS3) and Alcaligenes sp. (RNBS4) by biochemical tests and 16S rRNA gene sequence analysis. The degradation of synthetic and natural melanoidins was studied by using the axenic and mixed bacterial consortium. Results have revealed that the mixed consortium was more effective compared to axenic culture decolorizing 73.79 and 69.83% synthetic and natural melanoidins whereas axenic cultures RNBS1, RNBS3 and RNBS4 decolorized 65.88, 62.56 and 66.10% synthetic and 52.69, 48.92 and 59.64% natural melanoidins, respectively. The HPLC analysis of degraded samples has shown reduction in peak areas compared to controls, suggesting that decrease in color intensity might be largely attributed to the degradation of melanoidins by isolated bacteria.  相似文献   

6.
Two novel and versatile bacterial consortia were developed for the biodegradation of hydrocarbons. They were isolated from crude oil from the Cormorant Field in the North Sea (MPD-7) and from sediment associated with mangrove roots (MPD-M). The bacterial consortia were able to degrade both aliphatic and aromatic hydrocarbons in crude oils very effectively in seawater (35 g/L NaCl) and synthetic media containing 0 to 100 g/L NaCl (1.7 M). Salinities over twice that of normal seawater decreased the biodegradation rates. However, even at the highest salinity biodegradation was significant. Ratios of nC17 to pristane and nC18 to phytane were significantly lowered across the range of salinity. The lowest values were at 0 and 20 g/L (0.34 M). Phytane was degraded in preference to pristane. The degradation of these compounds was constant over the salinity range, with evidence of a slight increase for consortium MPD-M with increasing salinity. In general, the consortium isolated from mangrove root sediments was more efficient in metabolizing North Sea crude oil than the consortium isolated from Cormorant crude oil. The 5 strains that comprise MPD-M have been tentatively identified as species of the genera Marinobacter, Bacillus, and Erwinia. This is the first report of hydrocarbon-degrading consortia isolated from crude oil and mangrove sediments that are capable of treating oily wastes over such a wide range of salinity. Received June 30, 1999; accepted May 29, 2000.  相似文献   

7.
The effect of successive inoculation with hydrocarbon-degrading bacteria on the dynamics of petroleum hydrocarbons degradation in soil was investigated in this study. Oily sludge was used as a source of mixed hydrocarbons pollutant. Two bacterial consortia composed of alkanes and polycyclic aromatic hydrocarbon degraders were constructed from bacteria isolated from soil and oily sludge. These consortia were applied to incubated microcosms either in one dose at the onset of the incubation or in two doses at the beginning and at day 62 of the incubation period, which lasted for 198 days. During this period, carbon mineralization was evaluated by respirometry while total petroleum hydrocarbons and its fractions were gravimetrically evaluated by extraction from soil and fractionation. Dosing the bacterial consortia resulted in more than 30% increase in the overall removal of total petroleum hydrocarbons from soil. While alkane removal was only slightly improved, aromatic and asphaltic hydrocarbon fraction removal was significantly enhanced by the addition of the second consortium. Polar compounds (resins) were enriched only as a result of aromatics and asphaltene utilization. Nonetheless, their concentration declined back to the original level by the end of the incubation period.  相似文献   

8.
A sequential anaerobic–aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus—GC subgroup B.  相似文献   

9.
The main purpose of the study was to isolate strains of bacteria capable of degrading hydrocarbons from contaminated mangroves and to investigate the ability of the isolated bacteria to degrade total petroleum hydrocarbons (TPH) in a microcosm model of an oily sludge. The potential use of these bacteria strains as environmental clean-up agents was tested by culturing them with six different polyaromatic hydrocarbon (PAH) compounds (phenothiazine, fluorene, fluoranthene, dibenzothiophene, phenanthrene, and pyrene). Six viable and culturable bacteria were isolated, and the 16S rDNA sequence for each was amplified using the primers 9F and 1510R. Sequence results were compared using the National Center for Biotechnology Information (NCBI) BLAST program and, combined with phenotypic and phylogenetic data, were used to identify three strains that belonged to the Bacillus genus and were most closely related (98–99%) to Bacillus aquimaris, Bacillus megaterium, and Bacillus pumilus. The other three strains were closely related (98–100%) to Flexibacteraceae bacterium, Halobacilus trueperi, and Rhodobacteraceae bacterium. Two isolates, BA-PZN and BM-PFFP, which were related to Bacillus aquimaris and Bacillus megaterium, respectively, were further characterized and showed great potential for the removal of more complex hydrocarbon compounds in the oily microcosm model.  相似文献   

10.
Different bioremediation techniques (natural attenuation, biostimulation and bioaugmentation) in contaminated soils with two oily sludge concentrations (1.5% and 6.0%) in open and closed microcosms systems were assessed during 90 days. The results showed that the highest biodegradation rates were obtained in contaminated soils with 6% in closed microcosms. Addition of microbial consortium and nutrients in different concentrations demonstrated higher biodegradation rate of total petroleum hydrocarbons (TPH) than those of the natural attenuation treatment. Soils treated in closed microcosms showed highest removal rate (84.1 ± 0.9%) when contaminated at 6% and bacterial consortium and nutrients in low amounts were added. In open microcosms, the soil contaminated at 6% using biostimulation with the highest amounts of nutrients (C:N:P of 100:10:1) presented the highest degradation rate (78.7 ± 1.3%). These results demonstrate that the application of microbial consortium and nutrients favored biodegradation of TPH present in oily sludge, indicating their potential applications for treatment of the soils impacted with this important hazardous waste.  相似文献   

11.
204 bacterial isolates from four Greek refinery sludge deposition sites were investigated for the presence of nahH and alkJ genes encoding key enzymes of both aromatic and aliphatic hydrocarbon degradation pathways by PCR and DNA hybridisation. Members of Pseudomonas, Acinetobacter, Bacillus, Rhodococcus and Arthrobacter play important role in bioremediation processes in sandy/loam soil contaminated with oil and nahH and alkJ genes were present in the 73% of the isolates. Consortia of bacterial isolates that were used for biodegradation of aliphatic and aromatic hydrocarbons in crude oil using liquid cultures exhibited rates from 35% to 48% within 10 days of incubation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Biodegradation of Oil Tank Bottom Sludge using Microbial Consortia   总被引:1,自引:1,他引:0  
We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur–aromatic compounds (31–55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.  相似文献   

13.
Summary A Rhodotorula sp., isolated from soil, which showed a versttile capacity to degrade various aromatic and aliphatic hydrocarbons, was used to treat oil sludge. As a result of treatment, there was significant cecrease in BOD, COD and contents of various petroleum fractions. The susceptibility to degradation was in the following order: saturate fraction>aromatic fraction>asphaltic fraction.  相似文献   

14.
The aim of the current study was to analyze the abundance and activity of soil microflora in response to fipronil residues, as well as conjointly to isolate and identify bacteria for the bioremediation of fipronil contaminated soils in the cardamom plantations of Idukki district, Kerala. Soil samples collected from rhizosphere areas of six completely different cardamom plantations were analyzed for fipronil residues, physicochemical properties, biochemical properties, and microbial abundance. Biodegradation studies using isolated bacteria were done both in liquid medium and in soil microcosm fortified with fipronil. Fipronil residues were detected in all sampling sites. Canonical correlation analysis revealed that the influence of fipronil on soil physicochemical properties was more pronounced than that on soil microbial properties. The presence of fipronil residues in the soil did not adversely affect bacterial abundance and activity. Two bacterial strains Staphylococcus arlettae and Bacillus thuringiensis could degrade fipronil in both liquid culture and soil. Paired sample T-test and degradation kinetic study recorded that the bacterial strain S. arlettae was more efficient (81.94%) in fipronil degradation than B. thuringiensis (65.98%). The results revealed the potential for in situ bioremediation of fipronil contaminated soil by bioaugmentation using efficient bacterial isolates.  相似文献   

15.
The rhizospheres and phyllospheres of peas, beans, tomatoes, and squash raised in a desert sand soil mixed with 0.5% crude oil were rich in oil-utilizing bacteria and accommodated large numbers of free-living diazotrophic bacteria, with potential for hydrocarbon utilization. According to their 16S rRNA-sequences, the cultivable oil-utilizing bacteria were affiliated with the following genera, arranged in decreasing frequency: Bacillus, Ochrobactrum, Enterobacter, Rhodococcus, Arthrobacter, Pontola, Nocardia, and Pseudoxanthomonas. Diazotrophic isolates were affiliated with Rhizobium, Bacillus, Rhodococcus, Leifsonia, Cellulosimicrobium, Stenotrophomonas, Kocuria, Arthrobacter, and Brevibacillus. The crude oil–utilizing and diazotrophic isolates grew, with varying growth intensities, on individual aliphatic (C8 to C40) and aromatic hydrocarbons, as sole sources of carbon and energy. Quantitative gas liquid chromatographic measurements showed that representative bacterial isolates eliminated pure n-hexadecane, n-decosane, phenanthrene, and crude oil from the surrounding liquid media. Cultivation of oily sand–soil samples with any of the four tested crops led to enhanced oil degradation in that soil, as compared with the degradation in uncultivated oily sand–soil samples.  相似文献   

16.
In this study, the abilities of two microbial consortia (Y and F) to degrade aliphatic–aromatic hydrocarbon mixtures were investigated. Y consortium preferentially degraded the aromatic hydrocarbon fractions in kerosene, while F consortium preferentially degraded the aliphatic hydrocarbon fractions. Degradation experiments were performed under aerobic conditions in sealed bottles containing liquid medium and n-octane or n-decane as representative aliphatic hydrocarbons or toluene, ethylbenzene or p-xylene as representative aromatic hydrocarbons (all at 100 mg/l). Results demonstrated that the Y consortium degraded p-xylene more rapidly than n-octane. It degraded toluene, ethylbenzene and p-xylene more rapidly than decane. In comparison, the F consortium degraded n-octane more rapidly than toluene, ethylbenzene or p-xylene, and n-decane more rapidly than toluene, ethylbenzene or p-xylene. 16S rRNA gene sequencing revealed that the Y consortium was dominated by Betaproteobacteria and the F consortium by Gammaproteobacteria, and in particular Pseudomonas. This could account for their metabolic differences. The substrate preferences of the two consortia showed that the aliphatic–aromatic hydrocarbon binary mixtures, especially the n-decane–toluene/ethylbenzene/p-xylene pairs, reflected their degradation ability of complex hydrocarbon compounds such as kerosene. This suggests that aliphatic–aromatic binary systems could be used as a tool to rapidly determine the degradation preferences of a microbial consortium.  相似文献   

17.
Three 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)-mineralizing bacteria were isolated from the secondary sludge of a pulp and paper industry. The isolates used 2,3,4,6-TeCP as a source of carbon and energy and were capable of degrading this compound, as indicated by stoichiometric release of chloride and biomass formation. Based on 16S rRNA gene sequence analysis, the bacteria were identified as Bacillus megaterium (CL3), Staphylococcus suciri (CL10), and Bacillus thuringensis (CL11). High-performance liquid chromatography (HPLC) analysis revealed that these isolates were able to degrade 2,3,4,6-TeCP at higher concentrations (600 mg/L or 2.5 mM). A consortia of the isolates completely removed 2,3,4,6-TeCP from the sludge obtained from a pulp and paper mill within 2 weeks when supplemented at a rate of 100 mg/L or 0.43 mM. A bacterial consortium also significantly reduced absorbable organic halogen (AOX) and extractable organic halogen (EOX) by 63% and 68%, respectively, from the sludge. These isolates have a high potential to remove 2,3,4,6-TeCP and may be used for remediation of pulp paper mill waste containing 2,3,4,6-TeCP.  相似文献   

18.
Recent studies have shown that the cyanobacterium Microcoleus chthonoplastes forms a consortium with heterotrophic bacteria present within the cyanobacterial sheath. These studies also show that this consortium is able to grow in the presence of crude oil, degrading aliphatic heterocyclic organo-sulfur compounds as well as alkylated monocyclic and polycyclic aromatic hydrocarbons. In this work, we characterize this oil-degrading consortium through the analysis of the 16S rRNA gene sequences. We performed the study in cultures of Microcoleus grown in mineral medium and in cultures of the cyanobacterium grown in mineral medium supplemented with crude oil. The results indicate that most of the clones found in the polluted culture correspond to well-known oil-degrading and nitrogen-fixing microorganisms, and belong to different phylogenetic groups, such as the Alpha, Beta, and Gamma subclasses of Proteobacteria, and the Cytophaga/Flavobacteria/Bacteroides group. The control is dominated by one predominant organism (88% of the clones) closely affiliated to Pseudoxanthomonas mexicana (similarity of 99.8%). The presence of organisms closely related to well-known nitrogen fixers such as Rhizobium and Agrobacterium suggests that at least some of the cyanobacteria-associated heterotrophic bacteria are responsible for nitrogen fixation and degradation of hydrocarbon compounds inside the polysaccharidic sheath, whereas Microcoleus provides a habitat and a source of oxygen and organic matter.  相似文献   

19.
Previous studies showed that cabbage leaf extract (CLE) added to the growth medium can noticeably promote the degradation of nitro aromatic compounds by specific consortium of bacteria upon their growth. For further development of the approach for contaminated soil remediation it was necessary to evaluate the qualitative and/or quantitative composition of different origin CLE and their relevance on the growth of explosives-degrading bacteria. Six CLE (different by species, cultivars and harvesting time) were tested and used as additives to the growth medium. It was shown that nitro aromatic compounds can be identified in the FT-IR absorption spectra by the characteristic band at 1,527 cm−1, and in CLE by the characteristic band at 1,602 cm−1. The intensity of the CLE band at 1,602 cm−1 correlated with the concentration of total nitrogen (R 2 = 0.87) and decreased upon the growth of bacteria. The content of nitrogen in CLE differed (0.22–1.00 vol.%) and significantly influenced the content of total carbohydrates (9.50–16.00% DW) and lipids [3.90–9.90% dry weight (DW)] accumulated in bacterial cells while the content of proteins was similar in all samples. Though this study showed quantitative differences in the composition of the studied CLE and the response of bacterial cells to the composition of the growth media, and proved the potential of this additive for remediation of contaminated soil. It was shown that analysis of CLE and monitoring of the conversion of nitro aromatic compounds can be investigated by FT-IR spectroscopy as well as by conventional chemical methods.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are common ubiquitous pollutants existing in nature with high recalcitrance and toxicity. In this study a bacterium capable of aerobic degradation of high molecular weight PAHs (with special reference to pyrene) was isolated by selective enrichment culture technique from oil refinery effluent sludge. The isolate was characterized as Achromobacter xylooxidans by 16S rRNA gene sequence analysis technique. For the first time it is hereby reported a bacterium capable of effectively degrading pyrene (up to 80%), as evident by reverse phase high performance liquid chromatographic analysis (RP-HPLC). After incubation of Achromobacter xylooxidans in minimal salt medium (MSM) containing pyrene, at concentration of 200 mg/L, as sole source of carbon and energy, there was decrease in pyrene concentration concomitant with increase in bacterial cell protein concentration. RP-HPLC analysis revealed that pyrene was degraded into three metabolites viz. I, II and III. The RP-HPLC eluent fraction were collected from 2.5 to 32.0 min by repeated injection of degraded sample, concentrated and analyzed on gas chromatography mass spectroscopy (GC-MS) for metabolite identification. The fraction shows 1-hydroxypyrene, 1-hydroxy-6-methoxypyrene and 1,6dimethoxypyrene as metabolic product of pyrene degradation, on the basis of their m/z values. On contrary to the reported PAH degradation with reference to pyrene by different isolates till date; the efficient degradation, as evident by RP-HPLC, by this isolate holds a promising potential for planning of bioremediation strategies of contaminated sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号