首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
2.
Oceanic islands host a disproportionately high fraction of endangered or recently extinct endemic species. We report on species extinctions among endemic Azorean beetles following 97% habitat loss since AD 1440. We infer extinctions from historical and contemporary records and examine the influence of three predictors: geographical range, habitat specialization and body size. Of 55 endemic beetle species investigated (out of 63), seven can be considered extinct. Single-island endemics (SIEs) were more prone to extinction than multi-island endemics. Within SIEs restricted to native habitat, larger species were more extinction-prone. We thus show a hierarchical path to extinction in Azorean beetles: species with small geographical range face extinction first, with the larger bodied ones being the most threatened. Our study provides a clear warning of the impact of habitat loss on island endemic biotas.  相似文献   

3.
We investigated the relationship between abundance and geographic range structure of 258 North American landbirds. For this purpose we used six measures of range structure based upon fractal geometry and geostatistics, and three ecological characteristics that can influence avian distribution. Permanent residents (PRs) that were abundant showed little fragmentation of their abundance surface at the periphery of their breeding range. Conversely, common Neotropical migrants (NTMs) exhibited low fragmentation of their central populations the abundance surface was smoother for PRs than NTMs or short-distance migrants (SDMs). indicating that changes in abundance occurred more gradually across space for this group. The areas of high abundance for grassland species had little demographic fragmentation, but other populations showed little spatial autocorrelation in abundance. Species that bred in late-successional forests were relatively rare compared to species breeding in other habitat types. Among carnivores. PRs had a higher average abundance than either NTMs or SDMs. Although carnivores had more distributional gaps within their ranges than other trophic groups, the number of gaps did not differ between rare and abundant species, indicating that increased abundance did not change their presence. absence distribution maps. Knowledge of patterns and variations of geographic range structure among species may provide insights into processes that shape and maintain the biodiversity of a continent.  相似文献   

4.
Primates worldwide are faced with increasing threats making them more vulnerable to extinction. Anthropogenic disturbances, such as habitat degradation and fragmentation, are among the main concerns, and in Madagascar, these issues have become widespread. As this situation continues to worsen, we sought to understand how fragmentation affects primate distribution throughout the island. Further, because species may exhibit different sensitivity to fragmentation, we also aimed to estimate the role of functional traits in mitigating their response. We collated data from 32 large-bodied lemur species ranges, consisting of species from the families Lemuridae (five genera) and Indriidae (two genera). We fitted Generalized Linear Models to determine the role of habitat fragmentation characteristics, for example, forest cover, patch size, edge density, and landscape configuration, as well as the protected area (PA) network, on the species relative probability of presence. We then assessed how the influence of functional traits (dietary guild, home range size) mitigate the response of species to these habitat metrics. Habitat area had a strong positive effect for many species, and there were significantly negative effects of fragmentation on the distribution of many lemur species. In addition, there was a positive influence of PAs on many lemur species’ distribution. Functional trait classifications showed that lemurs of all dietary guilds are negatively affected by fragmentation; however, folivore-frugivores show greater flexibility/variability in terms of habitat area and landscape complexity compared to nearly exclusive folivores and frugivores. Furthermore, species of all home range sizes showed a negative response to fragmentation, while habitat area had an increasingly positive effect as home range increased in size. Overall, the general trends for the majority of lemur species are dire and point to the need for immediate actions on a multitude of fronts, most importantly landscape-level reforestation efforts.  相似文献   

5.
Species can respond differently when facing environmental changes, such as by shifting their geographical ranges or through plastic or adaptive modifications to new environmental conditions. Phenotypic modifications related to environmental factors have been mainly explored along latitudinal gradients, but they are relatively understudied through time despite their importance for key ecological interactions. Here we hypothesize that the average bumblebee queen body size has changed in Belgium during the last century. Based on historical and contemporary databases, we first tested if queen body sizes changed during the last century at the intraspecific level among four common bumblebee species and if it could be linked to global warming and/or habitat fragmentation as well as by the replacement by individuals from new populations. Then, we assessed body size changes at the community level, among 22 species, taking into account species population trends (i.e. increasing, stable or decreasing relative abundance). Our results show that the average queen body size of all four bumblebee species increased over the last century. This size increase was significantly correlated to global warming and habitat fragmentation, but not explained by changes in the population genetic structure (i.e. colonization). At the community level, species with stable or increasing relative abundance tend to be larger than declining species. Contrary to theoretical expectations from Bergmann's rule (i.e. increasing body size in colder climates), temperature does not seem to be the main driver of bumblebee body size during the last century as we observed the opposite body size trend. However, agricultural intensification and habitat fragmentation could be alternative mechanisms that shape body size clines. This study stresses the importance of considering alternative global change factors when assessing body size change.  相似文献   

6.
One of the most important tasks in conservation biology is identifying species at risk from extinction and establishing the most likely factors influencing this risk. Here, we consider an ecologically well-defined, monophyletic group of organisms, the true hawks of the family Accipitridae, which are not only among the most studied, but also contain some of the rarest bird species in the world. We investigate which intrinsic and extrinsic factors, covering morphology, life history and ecology, covary with International Union for the Conservation of Nature and Natural Resources threat status, as well as global population size and geographic range size. By decomposing threat status into population size and range size, we test whether any factors are generally important: we found that species with less habitat specialization, a larger clutch size and more plumage polymorphism were associated with lower extinction risk and larger population and range sizes. Species with special habitat requirements might be less capable of dealing with habitat transformation and fragmentation, while species with small clutch sizes might not be able to reverse population declines. Plumage polymorphism might indicate the size of the species' gene pool and could be a good marker of extinction risk. The analyses also emphasized that no single factor is likely to be sufficient when predicting the threat of extinction.  相似文献   

7.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

8.
Species differ in the size of their geographical ranges, but it is unclear how this is affected by the intrinsic properties of various habitat types. Using data on range sizes for 490 species of aquatic Coleoptera from the Iberian Peninsula we show that running-water (lotic) species have much smaller distributional ranges than those occurring in standing water (lentic). This robust association of habitat type and range size has independently arisen in at least four monophyletic coleopteran lineages, in Hydradephaga, Hydrophiloidea, Hydraenidae and Byrrhoidea, and several more times within these main groups. We propose that this pattern is due to different evolutionary dynamics of both habitat types: stagnant water bodies are more likely to completely disappear, requiring frequent migration of resident populations. Rivers and streams, on the contrary, have more temporal and spatial continuity, and therefore permit the long-term persistence of local populations. In less permanent habitats species will require a greater geographical mobility, which indirectly results in a larger size range. The less dispersive populations of running water should also have reduced gene flow, increasing the probability of allopatric speciation, and thus reducing the average range of more widespread ancestral species. These differences in population parameters, and the frequency of transitions between the two habitat types, may have strong macroevolutionary consequences, in particular regarding speciation rates and possible morphological specializations.  相似文献   

9.
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.  相似文献   

10.
Habitat loss leads to species extinctions, both immediately and over the long term as ‘extinction debt’ is repaid. The same quantity of habitat can be lost in different spatial patterns with varying habitat fragmentation. How this translates to species loss remains an open problem requiring an understanding of the interplay between community dynamics and habitat structure across temporal and spatial scales. Here we develop formulas that characterise extinction debt in a spatial neutral model after habitat loss and fragmentation. Central to our formulas are two new metrics, which depend on properties of the taxa and landscape: ‘effective area’, measuring the remaining number of individuals and ‘effective connectivity’, measuring individuals’ ability to disperse through fragmented habitat. This formalises the conventional wisdom that habitat area and habitat connectivity are the two critical requirements for long‐term preservation of biodiversity. Our approach suggests that mechanistic fragmentation metrics help resolve debates about fragmentation and species loss.  相似文献   

11.
Abstract. An ability to predict species' sensitivities to habitat loss and fragmentation has important conservation implications, and numerous hypotheses have been proposed to explain interspecific differences observed in human-dominated landscapes. We used occupancy data collected on 32 species of vertebrates (16 mammals and 16 amphibians) in an agricultural landscape of Indiana, USA, to compare hypotheses that focus on different causal mechanisms underlying interspecific variation in responses to habitat alteration: (1) body size; (2) morphology and development; (3) behaviour; (4) niche breadth; (5) proximity to range boundary; and multiple-process models combining main effects and interactions of hypotheses (1)–(2) and (4)–(5). The majority of habitat alteration occurred over a century ago and coincided with extinction of several species; thus, our study dealt only with variation in responses of extant species that often are considered 'resistant' to human modifications of native habitat. Corrected Akaike scores and Akaike weights provided strongest support for models incorporating niche breadth and proximity to range boundary. Measures of dietary and habitat breadth obtained from the literature were negatively correlated with sensitivity to habitat alteration. Additionally, greater sensitivity was observed for species occurring at the periphery of their geographical ranges, especially at northern or western margins. Body size, morphological, developmental and behavioural traits were inferior predictors of tolerance to fragmentation for the species and landscape we examined. Our findings reinforce the importance of niche breadth as a predictor of species' responses to habitat alteration. They also highlight the importance of viewing the effects of habitat loss and fragmentation in a landscape within a biogeographical context that considers a species' level of adaptation to local environmental conditions.  相似文献   

12.
Following habitat fragmentation, the remnant faunal community will undergo a period of species loss or 'relaxation.' Theory predicts that species with particular life-history traits, such as a small population size, small geographical range, low fecundity and large body size, should be more vulnerable to fragmentation. In this study, we investigated the relationships between the above life-history traits and the fragmentation vulnerability index (the number of islands occupied) of five lizard species inhabiting recently isolated land-bridge islands in the Thousand Island Lake, China. Data on life-history traits were collected from field surveys (population density) and from the literature (body size, clutch size and geographical range size). The species–area relationships for lizards sampled from the mainland versus on the islands differed significantly (i.e. the number of species inhabiting islands was decreased relative to similar-sized areas on the mainland), indicating that species extinction has occurred on all of the study islands following isolation. For the fragmentation vulnerability index, model selection based on Akaike's information criterion identified natural density at mainland sites as the best correlate of vulnerability to fragmentation, supporting the hypothesis that rare species are most vulnerable to local extinction and will be lost first from fragmented landscapes. In contrast, there was little evidence for an effect of lizards' snout–vent length, clutch size or geographical range size on fragmentation vulnerability. Identification of species traits that render some species more vulnerable to fragmentation than others has important implications for conservation and can be used to aid direct management efforts.  相似文献   

13.
Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring.  相似文献   

14.
Aim Habitat loss and degradation pose a major threat to biodiversity, which can result in the extinction of habitat characteristic species. However, many species exhibit a delayed response to environmental changes because of the slow intrinsic dynamics of populations, resulting in extinction debt. We assess directly the changes in habitat characteristic species composition by comparing historical (1923) and current inventories in highly fragmented grasslands. We aim to characterize the species that constitute extinction debt in European calcareous grasslands. Location Europe, Estonia, 59–60° N, 24–25° E. Methods We related eleven life‐history traits and selected habitat preferences to local extinctions of populations in grasslands where extinction debt has been largely paid. Traits were chosen to describe species dispersal and persistence abilities and were quantified from databases. Results The studied grasslands have lost 90% of their area and 30% of their characteristic plant populations in 90 years. Species more prone to local population extinction were characterized by shorter life span, self‐pollination, a lack of clonal growth, fewer seeds per shoot, lower average height, lower soil nitrogen preference and higher requirements for light, indicating a limited ability to tolerate the range of changes in biotic and abiotic conditions of the sites. Locally extinct populations were also characterized by wind‐dispersed seeds, lower seed weight and lower terminal velocity of seeds, suggesting that species strategies for long‐distance dispersal are not favoured in highly fragmented landscapes. Thus, both increased habitat isolation and decreased habitat quality are important in determining local population extinction. Main conclusions Populations more prone to local extinction were characterized by a number of life‐history traits, demonstrating a greater extinction risk for species with poorer abilities for local persistence and competition. Our results can be applied to less degraded grasslands where the extinction debt is not yet paid to determine those species most susceptible to future extinction.  相似文献   

15.
Species are thought to have more restricted niches towards their range boundaries, although this has rarely been quantified systematically. We analysed transect data for 41 butterfly species along climatic gradients within Britain and show that 71% of species have broader niches at sites with milder winters. Shifts in habitat associations are considerable across most species' ranges; averaged across all 41 species, we estimate that if 26% of individuals were associated with the favoured habitat on the species' warmest transect, then 70% of individuals would be confined to this habitat on the species' coldest transect. Species with more southerly distributions in Britain showed the greatest changes in their habitat associations. We conclude that geographic variation in realized niche breadth is common and relatively large, especially near range boundaries, and should be taken into account in conserving species under changing climates.  相似文献   

16.
Habitat loss and fragmentation due to urbanization are the most pervasive threats to biodiversity in southern California. Loss of habitat and fragmentation can lower migration rates and genetic connectivity among remaining populations of native species, reducing genetic variability and increasing extinction risk. However, it may be difficult to separate the effects of recent anthropogenic fragmentation from the genetic signature of prehistoric fragmentation due to previous natural geological and climatic changes. To address these challenges, we examined the phylogenetic and population genetic structure of a flightless insect endemic to cismontane southern California, Stenopelmatus'mahogani' (Orthoptera: Stenopelmatidae). Analyses of mitochondrial DNA sequence data suggest that diversification across southern California began during the Pleistocene, with most haplotypes currently restricted to a single population. Patterns of genetic divergence correlate with contemporary urbanization, even after correcting for (geographical information system) GIS-based reconstructions of fragmentation during the Pleistocene. Theoretical simulations confirm that contemporary patterns of genetic structure could be produced by recent urban fragmentation using biologically reasonable assumptions about model parameters. Diversity within populations was positively correlated with current fragment size, but not prehistoric fragment size, suggesting that the effects of increased drift following anthropogenic fragmentation are already being seen. Loss of genetic connectivity and diversity can hinder a population's ability to adapt to ecological perturbations commonly associated with urbanization, such as habitat degradation, climatic changes and introduced species. Consequently, our results underscore the importance of preserving and restoring landscape connectivity for long-term persistence of low vagility native species.  相似文献   

17.
Aim Local‐scale diversity patterns are not necessarily regulated by contemporary processes, but may be the result of historical events such as habitat changes and selective extinctions that occurred in the past. We test this hypothesis by examining species‐richness patterns of the land snail fauna on an oceanic island where forest was once destroyed but subsequently recovered. Location Hahajima Island of the Ogasawara Islands in the western Pacific. Methods Species richness of land snails was examined in 217 0.25 × 0.25 km squares during 1990–91 and 2005–07. Associations of species richness with elevation, current habitat quality (proportion of habitat composed of indigenous trees and uncultivated areas), number of alien snail species, and proportion of forest loss before 1945 in each area were examined using a randomization test and simultaneous autoregressive (SAR) models. Extinctions in each area and on the entire island were detected by comparing 2005–07 records with 1990–91 records and previously published records from surveys in 1987–91 and 1901–07. The association of species extinction with snail ecotype and the above environmental factors was examined using a spatial generalized linear mixed model (GLMM). Results The level of habitat loss before 1945 explained the greatest proportion of variation in the geographical patterns of species richness. Current species richness was positively correlated with elevation in the arboreal species, whereas it was negatively correlated with elevation in the ground‐dwelling species. However, no or a positive correlation was found between elevation and richness of the ground‐dwelling species in 1987–91. The change of the association with elevation in the ground‐dwelling species was caused by greater recent extinction at higher elevation, possibly as a result of predation by malacophagous flatworms. In contrast, very minor extinction levels have occurred in arboreal species since 1987–91, and their original patterns have remained unaltered, mainly because flatworms do not climb trees. Main conclusions The species‐richness patterns of the land snails on Hahajima Island are mosaics shaped by extinction resulting from habitat loss more than 60 years ago, recent selective extinction, and original faunal patterns. The effects of habitat destruction have remained long after habitat recovery. Different factors have operated during different periods and at different time‐scales. These findings suggest that historical processes should be taken into account when considering local‐scale diversity patterns.  相似文献   

18.

Aim

Species geographical range sizes play a crucial role in determining species vulnerability to extinction. Although several mechanisms affect range sizes, the number of biotic interactions and species climatic tolerance are often thought to play discernible roles, defining two dimensions of the Hutchinsonian niche. Yet, the relative importance of the trophic and the climatic niche for determining species range sizes is largely unknown.

Location

Central and northern Europe.

Time period

Present.

Major taxa studied

Gall-inducing sawflies and their parasitoids.

Methods

We use data documenting the spatial distributions and biotic interactions of 96 herbivore species, and their 125 parasitoids, across Europe and analyse the relationship between species range size and the climatic and trophic dimensions of the niche. We then compare the observed relationships with null expectations based on species occupancy to understand whether the relationships observed are an inevitable consequence of species range size or if they contain information about the importance of each dimension of the niche on species range size.

Results

We find that both niche dimensions are positively correlated with species range size, with larger ranges being associated with wider climatic tolerances and larger numbers of interactions. However, diet breadth appears to more strongly limit species range size. Species with larger ranges have more interactions locally and they are also able to interact with a larger diversity of species across sites (i.e. higher β-diversity), resulting in a larger number of interactions at continental scales.

Main conclusions

We show for the first time how different aspects of species diet niches are related to their range size. Our study offers new insight into the importance of biotic interactions in determining species spatial distributions, which is critical for improving understanding and predictions of species vulnerability to extinction under the current rates of global environmental change.  相似文献   

19.
Global circulation models predict an increase in mean annual temperature between 2.1 and 4.6 °C by 2080 in the northern temperate zone. The associated changes in the ratio of extinctions and colonizations at the boundaries of species ranges are expected to result in northward range shifts for a lot of species. However, net species colonization at northern boundary ranges, necessary for a northward shift and for range conservation, may be hampered because of habitat fragmentation. We report the results of two forest plant colonization studies in two fragmented landscapes in central Belgium. Almost all forest plant species (85%) had an extremely low success of colonizing spatially segregated new suitable forest habitats after c . 40 years. In a landscape with higher forest connectivity, colonization success was higher but still insufficient to ensure large-scale colonization. Under the hypothesis of net extinction at southern range boundaries, forest plant species dispersal limitation will prevent net colonization at northern range boundaries required for range conservation.  相似文献   

20.
Species’ ranges are complex often exhibiting multidirectional shifts over space and time. Despite the strong fingerprint of recent historical climate change on species’ distributions, biotic factors such as loss of vegetative habitat and the presence of potential competitors constitute important yet often overlooked drivers of range dynamics. Furthermore, short‐term changes in environmental conditions can influence the underlying processes of local extinction and local colonization that drive range shifts, yet are rarely considered at broad scales. We used dynamic state‐space occupancy models to test multiple hypotheses of the relative importance of major drivers of range shifts of Golden‐winged Warblers (Vermivora chrysoptera) and Blue‐winged Warblers (V. cyanoptera) between 1983 and 2012 across North America: warming temperatures; habitat changes; and occurrence of congeneric species, used here as proxy for biotic interactions. Dynamic occupancies for both species were most influenced by spatial relative to temporal variation in temperature and habitat. However, temporal variation in temperature anomalies and biotic interactions remained important. The two biotic factors considered, habitat change and biotic interactions, had the largest relative effect on estimated extinction rates followed by abiotic temperature anomalies. For the Golden‐winged Warbler, the predicted presence of the Blue‐winged Warbler, a hypothesized competitor, most influenced extinction probabilities, contributing to evidence supporting its role in site‐level species replacement. Given the overall importance of biotic factors on range‐wide dynamic occupancies, their consideration alongside abiotic factors should not be overlooked. Our results suggest that warming compounds the negative effect of habitat loss emphasizing species’ need for habitat to adapt to a changing climate. Notably, even closely related species exhibited individual responses to abiotic and biotic factors considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号