首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 456 毫秒
1.
J R Petithory  W P Jencks 《Biochemistry》1988,27(23):8626-8635
The binding of Ca2+ and the resulting change in catalytic specificity that allows phosphorylation of the calcium ATPase of sarcoplasmic reticulum by ATP were examined by measuring the amount of phosphoenzyme formation from [32P]ATP, or 45Ca incorporation into vesicles, after the simultaneous addition of ATP and EGTA at different times after mixing enzyme and Ca2+ (25 degrees C, pH 7.0, 5 mM MgSO4, 0.1 M KCl). A "burst" of calcium binding in the presence of high [Ca2+] gives approximately 12% phosphorylation and internalization of two Ca2+ at very short times after the addition of Ca2+ with this assay. This shows that calcium binding sites are available on the cytoplasmic-facing side of the free enzyme. Calcium binding to these sites induces the formation of cE.Ca2, the stable high-affinity form of the enzyme, with k = 40 s-1 at saturating [Ca2+] and a half-maximal rate at approximately 20 microM Ca2+ (from Kdiss = 7.4 X 10(-7) M for Ca.EGTA). The formation of cE.Ca2 through a "high-affinity" pathway can be described by the scheme E 1 in equilibrium cE.Ca1 2 in equilibrium cE.Ca2, with k1 = 3 X 10(6) M-1 s-1, k2 = 4.3 X 10(7) M-1 s-1, k-1 = 30 s-1, k-2 = 60 s-1, K1 = 9 X 10(-6) M, and K2 = 1.4 X 10(-6) M. The approach to equilibrium from E and 3.2 microM Ca2+ follows kobsd = kf + kr = 18 s-1 and gives kf = kr = 9 s-1. The rate of exchange of 45Ca into the inner position of cE.Ca2 shows an induction period and is not faster than the approach to equilibrium starting with E and 45Ca. The dissociation of 45Ca from the inner position of cE.45Ca.Ca in the presence of 3.2 microM Ca2+ occurs with a rate constant of 7 s-1. These results are inconsistent with a slow conformational change of free E to give cE, followed by rapid binding-dissociation of Ca2+.  相似文献   

2.
N Stahl  W P Jencks 《Biochemistry》1987,26(24):7654-7667
Phosphorylation of the sarcoplasmic reticulum calcium ATPase, E, is first order with kb = 70 +/- 7 s-1 after free enzyme was mixed with saturating ATP and 50 microM Ca2+; this is one-third the rate constant of 220 s-1 for phosphorylation of enzyme preincubated with calcium, cE.Ca2, after being mixed with ATP under the same conditions (pH 7.0, Ca2+-loaded vesicles, 100 mM KCl, 5 mM Mg2+, 25 degrees C). Phosphorylation of E with ATP and Ca2+ in the presence of 0.25 mM ADP gives approximately 50% E approximately P.Ca2 with kobsd = 77 s-1, not the sum of the forward and reverse rate constants, kobsd = kf + kr = 140 s-1, that is expected for approach to equilibrium if phosphorylation were rate limiting. These results show that (1) kb represents a slow conformational change, rather than phosphoryl transfer, and (2) different pathways are followed for the phosphorylation of E and of cE.Ca2. The absence of a lag for phosphorylation of E with saturating ATP and Ca2+ indicates that all other steps, including the binding of Ca2+ ions and phosphoryl transfer, have rate constants of greater than 500 s-1. Chase experiments with unlabeled ATP or with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) show that the rate constants for dissociation of [gamma-32P]ATP and Ca2+ are comparable to kb. Dissociation of ATP occurs at 47 s-1 from E.ATP.Ca2+ and at 24 s-1 from E.ATP. Approximately 20% phosphorylation occurs following an EGTA chase 4.5 ms after the addition of 300 microM ATP and 50 microM Ca2+ to enzyme. This shows that Ca2+ binds rapidly to the free enzyme, from outside the vesicle, before the conformational change (kb). The fraction of Ca2+-free E.[gamma-32P]ATP that is trapped to give labeled phosphoenzyme after the addition of Ca2+ and a chase of unlabeled ATP is half-maximal at 6.8 microM Ca2+, with a Hill slope of n = 1.8. The calculated dissociation constant for Ca2+ from E.ATP.Ca2 is approximately 2.2 X 10(-10) M2 (K0.5 = 15 microM). The rate constant for the slow phase of the biphasic reaction of E approximately P.Ca2 with 1.1 mM ADP increases 2.5-fold when [Ca2+] is decreased from 50 microM to 10 nM, with half-maximal increase at 1.7 microM Ca2+. This shows that Ca2+ is dissociating from a different species, aE.ATP.Ca2, that is active for catalysis of phosphoryl transfer, has a high affinity for Ca2+, and dissociates Ca2+ with k less than or equal to 45 s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Phosphorylation by ATP of E.*Ca2 (sarcoplasmic reticulum vesicles (SRV) with bound 45Ca2+) during 5-10 ms leads to the occlusion of 2 *Ca2+/EPtot [quench by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) alone] in both "empty" (10 microM free Ca2+in) or "loaded" SRV (20-40 mM free Ca2+in). The rate of Ca2+ "internalization" from the occluded E approximately P.*Ca2 was measured by using an ADP + EGTA quench; a *Ca2+ ion that is not removed by this quench is defined as internalized. In the presence of 20-40 mM unlabeled Ca2+ inside SRV, 1 *Ca2+/EPtot is internalized from 45Ca-labeled E approximately P.*Ca2 with a first-order rate constant of kl = 34 s-1. Empty SRV take up 2 *Ca2+/EPtot with the same initial rate, but the overall rate constant is kobsd = 17 s-1. The apparent rate constant (kb = 17 s-1) for internalization of the second *Ca2+ is inhibited by [Ca]in, with K0.5 approximately 1.3 mM and a Hill coefficient of n = 1.1. These data show that the two Ca2+ ions are internalized sequentially, presumably from separate sequential sites in the channel. [32P]EP.Ca2 obtained by rapid mixing of E.Ca2 with [gamma-32P]ATP and EGTA disappears in a biphasic time course with a lag corresponding to approximately 34 s-1, followed by EP* decay with a rate constant of approximately 17 s-1. This shows that both Ca2+ ions must be internalized before the enzyme changes its specificity for catalysis of phosphoryl transfer to water instead of to ADP. Increasing the concentration of ATP from 0.25 to 3 mM accelerates the rate of 45Ca2+ internalization from 34 to 69 s-1 for the first Ca2+ and from 17 to 34 s-1 for the second Ca2+. High [ATP] also accelerates both phases of [32P]EP.Ca2 disappearance by the same factor. The data are consistent with a single form of ADP-sensitive E approximately P.Ca2 that sequentially internalizes two ions. The intravesicular volume was estimated to be 2.0 microL/mg, so that one turnover of the enzyme gives 4 mM internal [Ca2+].  相似文献   

4.
J R Petithory  W P Jencks 《Biochemistry》1986,25(16):4493-4497
The calcium adenosinetriphosphatase of sarcoplasmic reticulum, preincubated with Ca2+ on the vesicle exterior (cE X Ca2), reacts with 0.3-0.5 mM Mg X ATP to form covalent phosphoenzyme (E approximately P X Ca2) with an observed rate constant of 220 s-1 (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4, 23 microM free external Ca2+, intact SR vesicles passively loaded with 20 mM Ca2+). If the phosphoryl-transfer step were rate-limiting, with kf = 220 s-1, the approach to equilibrium in the presence of ADP, to give 50% EP and kf = kr, would follow kobsd = kf + kr = 440 s-1. The reaction of cE X Ca2 with 0.8-1.2 mM ATP plus 0.25 mM ADP proceeds to 50% completion with kobsd = 270 s-1. This result shows that phosphoryl transfer from bound ATP to the enzyme is not the rate-limiting step for phosphoenzyme formation from cE X Ca2. The result is consistent with a rate-limiting conformational change of the cE X Ca2 X ATP intermediate followed by rapid (greater than or equal to 1000 s-1) phosphoryl transfer. Calcium dissociates from cE X Ca2 X ATP with kobsd = 80 s-1 and ATP dissociates with kobsd = 120 s-1 when cE X Ca2 X ATP is formed by the addition of ATP to cE X Ca2. However, when E X Ca2 X ATP is formed in the reverse direction, from the reaction of E approximately P X Ca2 and ADP, Ca2+ dissociates with kobsd = 45 s-1 and ATP dissociates with kobsd = 35 s-1. This shows that different E X Ca2 X ATP intermediates are generated in the forward and reverse directions, which are interconverted by a conformational change.  相似文献   

5.
Ca2+ binding and internalization in sarcoplasmic reticulum ATPase can be investigated by the use of La3+ as a Ca2+ analog. Displacement kinetics of Ca2+ bound by La3+ in native vesicles is a slow biphasic process (k1 = 0.55 s-1 and k2 = 0.05 s-1) that is consistent with the existence of two Ca2+ binding populations whereas in leaky vesicles there appears to be a single population (k = 0.57 s-1). Rapid quench experiments demonstrate that Ca2+ internalization occurs with an initial burst (approximately 8 nmol/mg protein) associated with the presence of a phosphate-donor substrate in the reaction medium. While acid quenching for measurements of phosphoenzyme is instantaneous, La3+ quenching allows completion of one catalytic and transport cycle due to the slow La3+ exchange with Ca2+. This explains the apparent inconsistencies in the kinetics and stoichiometry of phosphoenzyme formation and Ca2+ internalization that are observed under certain experimental conditions.  相似文献   

6.
A M Hanel  W P Jencks 《Biochemistry》1990,29(21):5210-5220
The calcium-transport ATPase (CaATPase) of rabbit sarcoplasmic reticulum preincubated with 0.02 mM Ca2+ (cE.Ca2) is phosphorylated upon the addition of 0.25 mM LaCl3 and 0.3 mM [gamma-32P]ATP with an observed rate constant of 6.5 s-1 (40 mM MOPS, pH 7.0, 100 mM KCl, 25 degrees C). La.ATP binds to cE.Ca2 with a rate constant of 5 X 10(6) M-1 s-1, while ATP, Ca2+, and La3+ dissociate from cE.Ca2.La.ATP at less than or equal to 1 s-1. The reaction of ADP with phosphoenzyme (EP) formed from La.ATP is biphasic. An initial rapid loss of EP is followed by a slower first-order disappearance, which proceeds to an equilibrium mixture of EP.ADP and nonphosphorylated enzyme with bound ATP. The fraction of EP that reacts in the burst (alpha) and the first-order rate constant for the slow phase (kb) increase proportionally with increasing concentrations of ADP to give maximum values of 0.34 and 65 s-1, respectively, at saturating ADP (KADPS = 0.22 mM). The burst represents rapid phosphoryl transfer and demonstrates that ATP synthesis and hydrolysis on the enzyme are fast. The phosphorylation of cE.Ca2 by La.ATP at 6.5 s-1 and the kinetics for the reaction of EP with ADP are consistent with a rate-limiting conformational change in both directions. The conformational change converts cE.Ca2.La.ATP to the form of the enzyme that is activated for phosphoryl transfer, aE.Ca2.La.ATP, at 6.5 s-1; this is much slower than the analogous conformational change at 220 s-1 with Mg2+ as the catalytic ion [Petithory & Jencks (1986) Biochemistry 25, 4493]. The rate constant for the conversion of aE.Ca2.La.ATP to cE.Ca2.La.ATP is 170 s-1. ATP does not dissociate measurably from aE.Ca2.La.ATP. Labeled EP formed from cE.Ca2 and La.ATP with leaky vesicles undergoes hydrolysis at 0.06 s-1. It is concluded that the reaction mechanism of the CaATPase is remarkably similar with Mg.ATP and La.ATP; however, the strong binding of La.ATP slows both the conformational change that is rate limiting for EP formation and the dissociation of La.ATP. An interaction between La3+ at the catalytic site and the calcium transport sites decreases the rate of calcium dissociation by greater than 60-fold. When cE-Ca2 is mixed with 0.3 mM ATP and 1.0 mM Cacl2, the phosphoenzyme is formed with an observed rate constant of 3 s-1. The phosphoenzyme formed from Ca.ATP reacts with 2.0 mM ADP and labeled ATP with a rate constant of 30 s-1; there may be a small burst (alpha less than or equal to 0.05).  相似文献   

7.
Rate constants for most of the steps of the reaction cycle of the sarcoplasmic reticulum calcium-ATPase are similar or identical with Ca2+ or Sr2+ as the transported ions in spite of the large differences in the size and affinity of Ca2+ and Sr2+ (5 mM MgCl2, 100 mM KCl, pH 7.0, 25 degrees C). Phosphorylation of cE.Sr2 and cE.Ca2 by ATP occurs with kp = 220-235 s-1, whereas phosphorylation of E.ATP+Ca2+ or Sr2+ is consistent with kb = 50-70 s-1. Hydrolysis of E approximately P.Sr2 and E approximately P.Ca2 occurs with kt = 20 s-1, and the addition of 7 mM ADP to E approximately P.Sr2 or to E approximately P.Ca2 gives a burst of approximately 43% dephosphorylation, followed by dephosphorylation with k = 46 s-1. However, one Sr2+ ion dissociates from cE.Sr2 and from cE.ATP.Sr2 with k congruent to 120 s-1, whereas one Ca2+ ion dissociates from cE.Ca2 with k = 38 s-1 and from cE.ATP.Ca2 with k = 80 s-1.  相似文献   

8.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The sequential binding of Sr2+ and Ca2+ to the cytoplasmic transport sites of the sarcoplasmic reticulum calcium ATPase allows the formation of two different mixed complexes: cE.Sr.Ca, with Sr2+ bound to the "inner" site and Ca2+ bound to the "outer" site, and cE. Ca.Sr, with Ca2+ bound to the inner site and Sr2+ bound to the outer site (pH 7.0, 25 degrees C, 10 mM MgCl2, 100 mM KCl). Both cE.Sr.45Ca and cE.45Ca.Sr react with ATP to internalize one 45Ca/phosphoenzyme. The value of K0.5 = 83 microM Sr2+ for activation of the enzyme for phosphorylation by ATP is much larger than K0.5 = 28 microM Sr2+ for inhibition of phosphoenzyme formation from inorganic phosphate (eta H = 1.0-1.3). These results are consistent with the sequential binding of two strontium ions with negative cooperativity and dissociation constants of KSr1 = 35 microM and KSr2 = 55 microM. The species cE.Sr2 and cE.Ca2 react rapidly with ATP but not inorganic phosphate. However, enzyme with one strontium bound, cE.Sr, does not react with either inorganic phosphate or ATP. Therefore, the conformational changes in the enzyme that alter the chemical specificity for phosphorylation by ATP and by inorganic phosphate are different. This requires the existence of at least three forms of the unphosphorylated enzyme with three different chemical specificities for catalysis.  相似文献   

10.
The decomposition of 32P phosphorylated enzyme intermediate formed by incubation of sarcoplasmic reticulum ATPase with [gamma-32P]ATP was studied following dilution of the reaction medium with a large excess of nonradioactive ATP. The phosphoenzyme decomposition includes two kinetic components. The fraction of intermediate undergoing slower decomposition is minimal in the presence of low (microM) Ca2+ and maximal in the presence of high (mM) Ca2+. A large fraction of phosphoenzyme undergoes slow decomposition when the Ca2+ concentration is high inside the vesicles, even if the Ca2+ concentration in the medium outside the vesicles is low. Parallel measurements of ATPase steady state velocity in the same experimental conditions indicate that the apparent rate constant for the slow component of phosphoenzyme decomposition is inadequate to account for the steady state ATPase velocity observed under the same conditions and cannot be the rate-limiting step in a single, obligatory pathway of the catalytic cycle. On the contrary, the steady state enzyme velocity at various Ca2+ concentrations is accounted for by the simultaneous contribution of both phosphoenzyme fractions undergoing fast and slow decomposition. Contrary to its slow rate of decomposition in the forward direction of the cycle, the phosphoenzyme pool formed in the presence of high Ca2+ reacts rapidly with ADP to form ATP in the reverse direction of the cycle. Detailed analysis of these experimental observations is consistent with a branched pathway following phosphoryl transfer from ATP to the enzyme, whereby the phosphoenzyme undergoes an isomeric transition followed by ADP dissociation, or ADP dissociation followed by the isomeric transition. The former path is much faster and is prevalent when the intravesicular Ca2+ concentration is low. When the intravesicular Ca2+ concentration rises, a pool of phosphoenzyme is formed by reverse equilibration through the alternate path. In the absence of ADP this intermediate decays slowly in the forward direction, and in the presence of ADP it decays rapidly in the reverse direction of the cycle.  相似文献   

11.
45Ca2+-40Ca2+ exchangeability of 45Ca bound to the calcium transport sites of unphosphorylated sarcoplasmic reticulum Ca2+-ATPase at equilibrium has been found to be heterogeneous: Half of the bound calcium is [Ca2+]-dependent in a slowly exchangeable (k less than 0.3 s-1), "occluded" state in the Ca2+-ATPase, and the other calcium is [Ca2+]-independent in a rapidly exchangeable (k approximately 0.3 s-1), "unoccluded" state (Nakamura, J. (1986) Biochim. Biophys. Acta 870, 495-501). In this paper, the two different forms of exchangeable calcium were studied after phosphorylation of the enzyme by ATP without added Mg2+ at pH 7.0 and 0 degree C. By the phosphorylation, the degree of the occlusion became higher (k less than 0.03 s-1). The unoccluded calcium was, however, not significantly affected. The more highly occluded calcium exchanged at the same rate as the decay rate of the phosphoenzyme (EP) in the steady state at a ratio of about 1:1. The occluded calcium was relieved by dephosphorylation of EP by ADP. These results suggest that 1 mol of ADP-sensitive EP more highly occluded 1 mol of calcium, already occluded before phosphorylation. After transformation of ADP-sensitive EP to its ADP-insensitive form by the addition of 20 mM Mg2+ at pH 8.8, the unoccluded calcium was rapidly (k = 0.1-0.3 s-1) released from the transformed EP. However, the occluded calcium was maintained in an occluded state in which the calcium was slowly (k approximately 0.01 s-1) released from the EP without exchange. The results suggest that calcium occlusion in the ADP-sensitive EP is not relieved by the loss of ADP sensitivity of the EP itself.  相似文献   

12.
The mechanism of the sarcoplasmic reticulum Ca2+-ATPase was investigated at low temperatures (0 to -12 degrees C). Transient states of the enzyme were studied by two complementary techniques: intrinsic protein fluorescence and rapid filtration on Millipore filters. Intrinsic fluorescence was used to distinguish conformational states of the protein and to evaluate the rate of conversion between these states. Filtrations were used to measure the evolution of the active sites during the transition; the time resolution was 2-5 s. At sub-zero temperatures this time is shorter than the lifetime of most of the enzymatic states which have been detected. In this paper the mechanism of Ca2+ binding to the protein is investigated in the absence of nucleotides. Two basic experiments are described; (1) Kinetics of calcium binding and dissociation over a wide range of calcium concentration. (2) Kinetics of calcium exchange (45Ca2+ in equilibrium 40Ca2+) at constant concentration. The results obtained in the first series of experiments are consistent with a sequential binding to two interacting Ca2+ binding sites. Calcium ions have very fast access to a site with low apparent affinity (Kd approximately 25 microM). Occupation of this site induces a slow conformational change which increased its apparent affinity and reveals a second site of high apparent affinity. At equilibrium the two sites are not equivalent in terms of rate of exchange. Two different rates were detected k fast greater than 0.2 s-1, k slow approximately 0.015 s-1 at -10 degrees C. Removal of Ca2+ from the fast exchanging site by addition of EGTA accelerates the rate of release of the slow exchanging one. A model is proposed with two interacting Ca2+-binding sites. A set of parameters has been obtained which produces correctly the Ca2+-binding curve and the fluorescence level at equilibrium as well as the rate constants of the calcium-induced fluorescence changes over a very wide range of Ca2+ concentrations (0.02 to 150 microM). The non-equivalence of the two classes of site and the meaning of the initial low-affinity binding are discussed.  相似文献   

13.
Acetyl phosphate is hydrolyzed by the calcium ATPase of leaky sarcoplasmic reticulum vesicles from rabbit skeletal muscle with Km = 6.5 mM and kcat = 7.9 s-1 in the presence of 100 microM calcium (180 mM K+, 5 mM MgSO4, pH 7.0, 25 degrees C). In the absence of calcium, hydrolysis is 6% of the calcium-dependent rate at low and 24% at saturating concentrations of acetyl phosphate. Values of K0.5 for calcium are 3.5 and 2.2 microM (n = 1.6) in the presence of 1 and 50 mM acetyl phosphate, respectively; inhibition by calcium follows K0.5 = 1.6 mM (n approximately 1.1) with 50 mM acetyl phosphate and K0.5 = 0.5 mM (n approximately 1.3) with 1.5 mM ATP. The calcium-dependent rate of phosphoenzyme formation from acetyl phosphate is consistent with Km = 43 mM and kf = 32 s-1 at saturation; decomposition of the phosphoenzyme occurs with kt = 16 s-1. The maximum fraction of phosphoenzyme formed in the steady state at saturating acetyl phosphate concentrations is 43-46%. These results are consistent with kc congruent to 30 s-1 for binding of Ca2+ to E at saturating [Ca2+], to give cE.Ca2, in the absence of activation by ATP. Phosphoenzyme formed from ATP and from acetyl phosphate shows the same biphasic reaction with ADP, rate constants for decomposition that are the same within experimental error, and similar or identical activation of decomposition by ATP. It is concluded that the reaction pathways for acetyl phosphate and ATP in the presence of Ca2+ are the same, with the exception of calcium binding and phosphorylation; an alternative, faster route that avoids the kc step is available in the presence of ATP. The existence of three different regions of dependence on ATP concentration for steady state turnover is confirmed; activation of hydrolysis at high ATP concentrations involves an ATP-induced increase in kt.  相似文献   

14.
J Myung  W P Jencks 《FEBS letters》1991,278(1):35-37
The E-E* model for calcium pumping by the CaATPase of sarcoplasmic reticulum includes two distinct conformational states of the enzyme, E and E*. Exterior Ca2+ binds only to E and interior Ca2+ binds only to E*. Therefore, it is expected that there will be competition between the binding of calcium to the unphosphorylated enzyme from the two sides of the membrane. The equilibrium concentration of cECa2, the enzyme with Ca2+ bound at the exterior site, was measured at different Ca2+ concentrations with empty sarcoplasmic reticulum vesicles (SRV) and with SRV loaded with 40 mM Ca2+ by reaction with 0.5 mM [gamma-32P]ATP plus 20 mM EGTA for 13 ms (100 mM KCl, 5 mM MgSO4, 40 mM Mops/KOH, pH 7.0, 25 degrees C). The sigmoidal dependence on free exterior calcium concentration of the concentration of cECa2, measured as [32P]phosphoenzyme, is identical with empty and loaded SRV, within experimental error. The value of K0.5 is 2.8 microM, and the Hill coefficient is 2. This result shows that there is no competition between binding of Ca2+ to the outside and the inside of the membrane. This is consistent with a model in which the vectorial specificity for calcium binding is controlled by the chemical state of the enzyme, rather than a simple conformational change. It is concluded that there are not two interconverting forms of the free enzyme, E and E*, instead the vectorial specificity for binding and dissociation of Ca2+ is determined by the state of phosphorylation of the CaATPase.  相似文献   

15.
The photophysics of the complex forming reaction of Ca2+ and Fura-2 are investigated using steady-state and time-resolved fluorescence measurements. The fluorescence decay traces were analyzed with global compartmental analysis yielding the following values for the rate constants at room temperature in aqueous solution with BAPTA as Ca2+ buffer: k01 = 1.2 x 10(9)s-1, k21 = 1.0 x 10(11) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 2.2 x 10(7) s-1, and with EGTA as Ca2+ buffer: k01 = 1.4 x 10(9) s-1, k21 = 5.0 x 10(10) M-1 s-1, k02 = 5.5 x 10(8) s-1, k12 = 3.2 x 10(7) s-1. k01 and k02 denote the respective deactivation rate constants of the Ca2+ free and bound forms of Fura-2 in the excited state. k21 represents the second-order rate constant of binding of Ca2+ and Fura-2 in the excited state, whereas k12 is the first-order rate constant of dissociation of the excited Ca2+:Fura-2 complex. The ionic strength of the solution was shown not to influence the recovered values of the rate constants. From the estimated values of k12 and k21, the dissociation constant K*d in the excited state was calculated. It was found that in EGTA Ca2+ buffer pK*d (3.2) is smaller than pKd (6.9) and that there is negligible interference of the excited-state reaction with the determination of Kd and [Ca2+] from fluorimetric titration curves. Hence, Fura-2 can be safely used as an Ca2+ indicator. From the obtained fluorescence decay parameters and the steady-state excitation spectra, the species-associated excitation spectra of the Ca2+ free and bound forms of Fura-2 were calculated at intermediate Ca2+ concentrations.  相似文献   

16.
The sarcoplasmic calcium-binding protein (SCP) of the sandworm Nereis possesses three Ca2(+)-Mg2+ sites but no Ca2(+)-specific site. Binding of Mg2+, but not of Ca2+, displays a marked positive cooperativity. The apparent cooperativity of Ca2+ binding in the presence of Mg2+ results from the allostery in Mg2+ dissociation. Binding of the first Ca2+ or Mg2+ induces all the conformational change, monitored by Trp fluorescence. In displacement reactions the conformational changes occur in the step SCP.Mg3----SCP.Ca1Mg2. Stopped-flow experiments indicate that Trp fluorescence changes upon Ca2(+)-binding are instantaneous whereas Mg2(+)-binding involves a fast pre-equilibrium (Keq = 28 M-1), followed by two slow consecutive conformational changes with k1 = 13.5 s-1 and k2 = 0.21 s-1. The fluorescence change after dissociation of Ca2+ from SCP is monophasic with k = 0.02 s-1; that after Mg2+ dissociation is biphasic with k1 = 0.8 s-1 and k2 = 0.1 s-1. Trp life time measurements also indicate that Ca2(+)- and Mg2(+)-induced conformational changes are completely different. Displacement of bound Ca2+ by Mg2+ can be described by two consecutive reactions in which the first (without fluorescence change) corresponds to the dissociation of the last Ca2+ (k1 = 2.4 s-1) and the second (k2 = 0.45 s-1) to the final conformational change observed upon direct Mg2+ binding. Displacement of bound Mg2+ by Ca2+ follows the kinetic scheme of simple competition; the conformational rate constant approaches asymptotically (up to the limit of 129 s-1) the dissociation rate of Mg2+ as the concentration of Ca2+ increases. In summary, after fast dissociation of Ca2+ or Mg2+, Nereis SCP slowly converts to the metal-free configuration, but in Ca2(+)-Mg2+ exchange reactions, the conformational changes are nearly as fast as the cation dissociation reactions.  相似文献   

17.
Sarcoplasmic reticulum vesicles of rabbit skeletal muscle are able to accumulate Ca2+ or Sr2+ at the expense of ATP hydrolysis. Depending on the conditions used, vesicles loaded with Ca2+ can catalyze either an ATP in equilibrium Pi exchange or the synthesis of ATP from ADP and Pi. Both reactions are impaired in vesicles loaded with Sr2+. The Sr2+ concentration required for half-maximal ATPase activity increases from 2 microM to 60-70 microM when the Mg2+ concentration is raised from 0.5 to 50 mM. The enzyme is phosphorylated by ATP in the presence of Sr2+. The steady state level of phosphoenzyme varies depending on both the Sr2+ and Mg2+ concentrations in the medium. Phosphorylation of the enzyme by Pi is inhibited by both Ca2+ and Sr2+. In the presence of 2 and 20 mM Mg2+, half-maximal inhibition is attained in the presence of 4 and 8 microM Ca2+ or in the presence of 0.24 mM and more than 2 mM Sr2+, respectively. After the addition of Sr2+, the phosphoenzyme is cleaved with two different rate constants, 0.5-1.5 s-1 and 10-18 s-1. The fraction of phosphoenzyme cleaved at a slow rate is smaller the higher the Sr2+ concentration in the medium. Ca2+ inhibition of enzyme phosphorylation by Pi is overcome by the addition of ITP. This is not observed when Ca2+ is replaced by Sr2+.  相似文献   

18.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

19.
The property of intensive 45Ca2+ uptake by A-431 human epidermoidal carcinoma cells was indicated to be an influx, not binding to the cell surface, since the two apparent dissociation constants (Kd) between 45Ca2+ and cells were almost the same when measured in either the presence or absence of 1 mM [ethylenebis (oxyethylenenitrilo)]tetraacetic acid (EGTA); these constants were approximately 5-10 x 10(-6) and 1 x 10(-4) M, respectively, which are much higher than the chelating constant of EGTA for Ca2+ (approximately 10(-11) M). Furthermore, addition of A23187, a calcium ionophore, rapidly released the 45Ca2+ incorporated into cells at both 37 degrees C and 0 degrees C. The 45Ca2+ associated with the cells was slowly released or exchanged when cells were incubated in medium depleted of Ca2+, or in that containing 1 mM non-radioactive Ca2+. The ability of A-431 cells to respond to extracellular ATP by elevating their level of intracellular calcium ions, as well as by producing inositol trisphosphate (InsP3), was suppressed in cells depleted of cellular calcium. These data suggest that calcium ions are extensively incorporated or exchanged with those outside the cells, maintained as stored calcium, and involved in production of InsP3, when A-431 cells are stimulated by ATP to trigger the signal transduction system.  相似文献   

20.
Cooperative calcium binding (apparent Kd = 1.04 X 10(-6) M) to the ATPase of sarcoplasmic reticulum vesicles occurs with a maximal stoichiometry of 2 mols of divalent cation/mol of enzyme in the absence of ATP. The bound calcium is distributed into two pools which undergo fast or slow isotopic exchange, respectively. The two pools retain a 1:1 molar ratio under various conditions and are both located within a protein crevice, as suggested by their cooperative interaction and exchange kinetics. Following enzyme phosphorylation by ATP, both pools of bound calcium are "internalized" (cannot be displaced by quench reagents). If following 45Ca2+ binding, isotopic dilution is obtained in the medium by adding 40Ca2+ with ATP, internalization of both pools of bound 45Ca2+ (2 mol/mol of phosphoenzyme) is still observed within the first enzyme cycle. When the cycle is reversed by addition of excess ADP soon after ATP, only half of the internalized 45Ca2+ is released from the enzyme into the medium outside the vesicles, while the other half remains with the vesicles. If half of the bound 45Ca2+ is exchanged (fast exchange) with 40Ca2+ previous to the addition of ATP, none of the remaining 45Ca2+ is released outside the vesicles upon reversal of the enzyme cycle. Therefore, the pool of bound calcium which undergoes slower exchange with the outside medium, is the first to be released inside the vesicles upon enzyme phosphorylation. A sequential mechanism of calcium binding and translocation is proposed, that accounts for binding cooperativity and exchange kinetics, presteady state transients following addition of ATP, and the Ca2+ concentration dependence of ATPase activity in steady state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号