首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transport of iodide was studied in porcine thyroid follicle cells cultured in bicameral chambers. The continuous layer of polarized follicle cells, joined by tight junctions, formed a diffusion barrier between the two compartments (apical and basal) of the culture chamber. Uptake and efflux of 125I- at either surface (apical and basolateral) of the cells were thus possible to determine. Protein binding of iodide was inhibited by methimazole (10(-3) M) in all experiments. Radioiodide was taken up by the cells from the basal medium in a thyroid-stimulating hormone (TSH)-dose dependent manner with a maximal cell/medium ratio of 125I- of about 50 in cultures prestimulated with 0.1 to 1 mU/ml for 2 days. This uptake was inhibited by perchlorate and ouabain. In contrast, 125I- was not taken up from the apical medium. In preloaded cells, iodide efflux was rapidly (within 1-2 min) and dose-dependently (0.1-10 mU/ml) stimulated by TSH. Bidirectional measurements revealed that TSH stimulated iodide efflux in apical direction, leaving efflux in basal direction unchanged. In experiments with continuous uptake of label from the basal compartment, the TSH-stimulated efflux in apical direction had a duration of 4 to 6 min and resulted in a reduction in the cellular content of radioiodide by up to 80%. Decreased levels of cellular 125I- remained for at least 15 min after TSH addition. From our observations we conclude that the TSH-regulated uptake and efflux of iodide take place at opposite surfaces of the porcine thyroid follicle cell. Acutely stimulated iodide efflux is not the result of an increased permeability for iodide in the entire plasma membrane but only in the apical domain of this membrane. This implicates the presence of an iodide channel mediating TSH-stimulated efflux across the apical plasma membrane of the follicle cell. The mechanism is suggested to facilitate a vectorial transport of iodide in apical direction, i.e., to the lumen of the intact follicle.  相似文献   

2.
The retinal pigment epithelium (RPE) from the chick embryo was cultured on permeable support. Using confluent cultures and analysis of the incubation medium, the present study demonstrates that RPE cells cultured on permeable membrane retain functional polarity, a characteristic of the RPE in vivo. The degree of intercellular permeability in the confluent RPE cultures was estimated by following [3H]inulin movement from the apical side to the basal side of the cultures. Twenty-four hours after exposure of the apical side of the culture to [3H]inulin, the 3H concentration in the apical medium remained at 3.4 to 4.4 times of that in the basal medium. The barrier function of RPE disappears in the presence of EDTA. Net unidirectional fluid movement from the apical side of the cultures to the basal side of the cultures is regularly observed in confluent RPE cultures. The rate varies among different preparations of cultures and the highest is 1.60-1.84 microliters/cm2/h. When cultures are given 26 h of [35S]methionine, more than 20 bands with molecular weights ranging from 20,000 to greater than 250,000 Da can be detected in the medium as assessed by autoradiography of SDS-polyacrylamide gels. While six macromolecules appear to be equally concentrated in the basal medium and the apical medium, the majority are in higher concentration in the basal medium. Analysis of the 10% TCA-precipitable fraction of the medium showed that the specific activities in the apical medium and basal medium were 24.0 +/- 0.4 X 10(6) and 46.4 +/- 0.2 X 10(6) (mean +/- SEM, N = 8) cpm/ml/mg RPE protein, respectively. When cultures react with VIP (vasoactive intestinal peptide), the elevated intracellular cyclic AMP is extruded into the medium bathing the cells. However, the rate of extrusion into the basal medium is twice as fast as that into the apical medium. Electron microscopy of the confluent RPE cultures shows morphological polarization of the cells. The intercellular spaces appear to be closed at the apical side of the cells by junctional complexes consisting of tight junctions, zonular adherens junctions, and gap junctions.  相似文献   

3.
《The Journal of cell biology》1989,109(6):2817-2832
Studies of the developing trophectoderm in the mouse embryo have shown that extensive cellular remodeling occurs during epithelial formation. In this investigation, confocal immunofluorescence microscopy is used to examine the three-dimensional changes in cellular architecture that take place during the polarization of a terminally differentiated epithelial cell line. Madin-Darby canine kidney cells were plated at a low density on permeable filter supports. Antibodies that specifically recognize components of the tight junction, adherens junction, microtubules, centrosomes, and the Golgi complex were used to study the spatial remodeling of the cytoarchitecture during the formation of the polarized cell layer. The immunofluorescence data were correlated with establishment of functional tight junctions as measured by transepithelial resistance and back-exchange of the cell surface, labeled with metabolites of the fluorescent lipid analogue N-(7-[4- nitrobenzo-2-oxa-1,3-diazole]) aminocaproyl sphingosine. 1 d after plating, single cells had microtubules, radiating from a broad region, that contained the centrosomes and the Golgi complex. 2 d after plating, the cells had grown to confluence and had formed functional tight junctions close to the substratum. The centrioles had split and no longer organized the microtubules which were running above and below the nucleus. The Golgi complex had spread around the nucleus. By the fifth day after plating, the final polarized state had been achieved. The junctional complex had moved greater than 10 microns upward from its basal location. The centrioles were together below the apical membrane, and the Golgi complex formed a ribbon-like convoluted structure located in the apical region above the nucleus. The microtubules were organized in an apical web and in longitudinal microtubule bundles in the apical-basal axis of the columnar cell. The longitudinal microtubules were arranged with their minus ends spread over the apical region of the cell and their plus ends toward the basal region. These findings show that there is an extensive remodeling of epithelial cytoarchitecture after formation of cell-cell contacts. Reorganization of the microtubule network results in functional polarization of the cytoplasm.  相似文献   

4.
Redistribution of surface macromolecules in dissociated epithelial cells   总被引:32,自引:22,他引:10       下载免费PDF全文
A number of ultrastructural and cytochemical techniques were used to study intact epithelial cells lining the frog urinary bladder: high resolution autoradiography after administration of [3H]glucosamine or [3H]fucose; 125I iodination of external protein; concanavalin A-peroxidase, periodic acid-chromic acid silver methenamine; and colloidal thorium. Results indicate that the material (probably glycoprotein) coating the apical surface differs from that which lines the lateral and basal surfaces. After dissociation and isolation of the epithelial cells, the material previously confined to the apical surface invaded progressively the opened "tight junctions" (about 5 min), then the lateral membranes (about 40 min), and finally the basal membrane (about 80 min): at that time, the whole cell surface was entirely enveloped by the apical material. Since, on the one hand, the reacting material was confined to the apical surface when the tight junctions were closed (in intact epithelial cells) and since, on the other hand, the apical material was sliding down the laterobasal membranes when the tight junctions were opened (in dissociated cells), it may be concluded that tight junctions contribute to maintain the cell surface specialization in epithelia.  相似文献   

5.
An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrix-ensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar-like multicellular architecture. This culture system is unique among models of epithelial cell polarity in that it demonstrates several aspects of epithelial cell polarization: vectorial secretion, apical junctions, a sequestered compartment and formation of a basal lamina. These lumina-containing structures therefore reproduce the dual role of mammary epithelia to secrete vectorially and to sequester milk proteins. Thus, in addition to maintaining tissue-specific cytodifferentiation and function, a basement membrane promotes the expression of tissue-like morphogenesis.  相似文献   

6.
Sub-multilayer of MCF-7 cell, an established human breast carcinoma cell line, was achieved by culturing the cells on millipore filters for a long time. The superficial layer cells maintained their membrane polarity features as MCF-7 cells in monolayers did. MAM-6, a human milk fat globule membrane antigen, was polarized distributed in apical domain of 97.5% superficial layer cells revealed by immunoperoxidase cytochemistry. Whereas, among the low layer cells, which had no free surface (apical domain) toward the culture medium and did not show morphological polarity features, only 12.9% expressed surface MAM-6 with weak immunoperoxidase staining and random distribution. But the immunostaining for detecting cytoplasmic MAM-6 in low layer cells was stronger than that in superficial layer cells, indicating that the vectorial delivery and insert of MAM-6 carrying glycoprotein to the plasma membrane seemed to be stopped or declined and became undirectional in the later situation. The study demonstrates that an asymmetric spatial environment, which is composed of a liquid phase space and a solid phase space, is crucial for the establishment of epithelial membrane polarity of MCF-7 cells.  相似文献   

7.
Isolated porcine thyroid cells cultured in suspension in Eagle Minimum Essential Medium supplemented with calf serum (5-20%) reorganize to form vesicles, i.e. closed structures in which all cells have an inverted polarity as compared to that found in follicles: the apical membranes are bathed by the culture medium. Under these conditions, cells neither concentrate iodide nor respond to acute thyrotropin (TSH) stimulation. When embedded in collagen gel, these vesicles undergo polarity reversal to form follicles. We describe here the change in the orientation of cell polarity and the subsequent reappearance of specific thyroid functions. Six hr after embedding, membrane areas in contact with collagen fibers show basal characteristics. At this time, cells begin to concentrate iodide and to respond to acute TSH stimulation (iodide efflux and increased cAMP levels). Most cells form follicles 24 hr after embedding, but 48 hr are required for the transformation of all vesicles into follicles. This occurs without opening of the tight junctions. Iodide organification is detected 24 hr after embedding, when periodic acid-Schiff positive material, identified as thyroglobulin by immunofluorescence, accumulates in the lumen. Iodide concentration and organification, as well as response to TSH stimulation reach maximal levels after 3 days in the collagen matrix. After a 5-day culture in the collagen matrix in the absence of TSH, cell activity can be stimulated by chronic treatment with low hormone concentrations (10-100 microU/ml). As shown with thyroid cells grown in monolayer on permeable substrates (Chambard M., et al., 1983, J. Cell Biol. 96, 1172-1177), iodide uptake and cAMP-mediated TSH responses are expressed when the halogen and the hormone have direct access to the basal membrane. Organification, on the contrary, requires a closed apical compartment.  相似文献   

8.
Using confocal microscopy and morphometry, we analyzed the expression of connexin26 (Cx26) and ZO-1 in rat cochlea during the postnatal period to elucidate spatiotemporal changes in gap junctions and tight junctions during auditory development. We also studied changes in these junctions in experimental endolymphatic hydrops in the guinea pig. In the adult rat cochlear lateral wall, Cx26 was detected in fibrocytes in the spiral ligament and in the basal cell layer of the stria vascularis, whereas ZO-1 was detected in the apical surfaces of marginal cells and in the basal cell layer. During postnatal development, Cx26 expression increased mainly in the spiral ligament, whereas ZO-1 expression increased in the basal cell layer. The morphometry of Cx26 showed a sigmoid time course with a rapid increase on postnatal day (PND) 14, whereas that of ZO-1 showed a marked increase on PND 7. In experimental endolymphatic hydrops, the expression of Cx26 significantly decreased, whereas there were no obvious changes in the expression of ZO-1. These results indicate that gap junctions and tight junctions in the cochlea increase in a different spatiotemporal manner during the development of auditory function and that gap junctions and tight junctions in the cochlea are differentially regulated in experimental endolymphatic hydrops. (J Histochem Cytochem 49:573-586, 2001)  相似文献   

9.
An epithelial cell line (MDCK) was used to prepare monolayers which, in vitro, develop properties of transporting epithelia. Monolayers were formed by plating cells at high densities (10(6) cells/cm2) on collagen- coated nylon cloth disks to saturate the area available for attachment, thus avoiding the need for cell division. An electrical resistance developed within 4-6 h after plating and achieved a steady-state value of 104 +/- 1.8 omega-cm2 after 24 h. Mature monolayers were morphologically and functionally polarized. They contained junctional complexes composed of desmosomes and tight junctions with properties similar to those of "leaky" epithelia. Monolayers were capable of maintaining a spontaneous electrical potential sensitive to amiloride, produced a net water flux from the apical to basal side, and discriminated between Na+ and Cl- ions. The MDCK permeability barrier behaves as a "thin" membrane with negatively charged sites. It has: (a) a linear conductance/concentration relationship; (b) an asymmetric instantaneous current/voltage relationship; (c) a reduced ability to discriminate between Na+ and Cl- caused by lowering the pH; and (d) a characteristic pattern of ionic selectivity which suggests that the negatively charged sites are highly hydrates and of medium field strength. Measurements of Na+ permeability of electrical and tracer methods ruled out exchange diffusion as a mechanism for ion permeation and the lack of current saturation in the I/deltapsi curves does not support the involvement of carriers. The discrimination between Na+ and Cl- was severely but reversibly decreased at low pH, suggesting that Na+-specific channels which exclude Cl- contain acidic groups dissociated at neutral pH. Bound Ca++ ions are involved in maintaining the integrity of the junctions in MDCK monolayers as was shown by a reversible drop of resistance and opening of the junctions in Ca++-free medium containing EGTA. Several other epithelial cell lines are capable of developing a significant resistance under the conditions used to obtain MDCK monolayers.  相似文献   

10.
Inside-out porcine thyroid follicles in culture undergo polarity reversal after being embedded in collagen gel. The newly-formed follicles reexpress some specific thyroid functions lost in inside-out follicles (Chambard et al., 1984. We present here an ultrastructural study of the inversion of polarity in this model system. This process takes place within 24 to 48 hr, without any opening of the original tight junctions, as shown by fixation in the presence of ruthenium red. A general shrinkage of cellular aggregates was noted soon after embedding. At the apical pole, three different modifications were observed: structural changes appeared in the kinocilium, microvilli and underlying cytoskeleton as early as 10 min after embedding, mainly when the apical pole of the cells was in close contact with the collagen fibers; large cytoplasmic lamellipod- or pseudopod-like extensions, covering the adjacent apical domain, protruded from outer apical regions; some other apical areas invaginated and formed channels inside the aggregates. The last two processes prevented close contact between apical cell surfaces and collagen fibers and allowed a persistence of the initial polarity in some of the cells. Newly-formed lumens were closed 24 hr after embedding in gel and the outer surface of the cellular aggregates in close contact with collagen fibers looked like a basal membrane. These mechanisms proceeded at different rates and involved different numbers of cells, but they all appeared to be related to the transformation of inside-out follicles into follicular structures.  相似文献   

11.
Retinal pigmented epithelium (RPE) from 7-day-old chicken embryos (stages 29 to 31) was isolated and dissociated into single cells using different procedures. The results were assessed in two ways. (1) The yield of single RPE cells per embryo was determined, and their ability to form pigmented colonies in clonal culture was tested. The most efficient and gentle procedure included isolation of the RPE in EDTA solution, trypsinization at low temperature and low enzyme concentration in the presence of EDTA, followed by incubation in culture medium for up to 4 hr. The completely dissociated cells thus obtained had a much higher plating efficiency and more uniform pattern of colony growth and differentiation than those obtained under any other conditions tested. (2) The effects of different treatments on cell junctions and morphological integrity of the cells were determined by transmission electron microscopy. EDTA solution yielded excellent separation of the epithelial sheet from the mesenchyme by dissociating it from Bruch's membrane, but had little effect on the junctions between adjacent RPE cells. Trypsinization of the epithelium under various conditions separated the basal lateral cell borders and caused loss of gap junctions, but left many cells still joined by apical tight junctions. Final disruption of the tight junctions occurred during recovery of the trypsinized cells in culture medium and was accompanied by dedifferentiation of the RPE cells.  相似文献   

12.
The polyene antibiotic filipin combines with cholesterol in membranes to form complexes that are readily identifiable in the electron microscope. The distribution of filipin-cholesterol (FC) complexes is most easily studied by freeze-fracture. Larval epidermis of Tenebrio molitor (Insecta, Coleoptera) was maintained in vitro for 48 hr, since the electrophysiological properties of the cells are best characterized under these conditions. The cells were fixed in buffered 3.0% glutaraldehyde at RT for 15 min, transferred to fresh fixative containing 1% DMSO and filipin (final concentration; 0.5 mg/ml) for 3 hr RT. Control cells were treated in fixative containing 1% DMSO only. In freeze fracture replicas, FC complexes appear on the plasma membrane as large circular protrusions measuring 26.5 +/- 6.8 nm (x +/- s.d.) n = 50, in diameter and 17.1 +/- 2.8 nm, n = 50, in height and 11.7 +/- 2.6 nm, n = 25, in depth. Protrusions are about two times more frequent on the E face while pits are several times more frequent on the P face. FC complexes are most abundant (greater than 50/mu m2) on the basal membrane surface of the cells but are excluded from regions of hemidesmosomal plaques that anchor the cells to the basal lamina. FC complexes are also abundant on the apical surfaces of the cells where cuticle secretion occurs. In the lateral regions below the junctional belt, FC complexes are less numerous but often appear to increase in frequency in a graded fashion away from the junctional region. The septate junctions are relatively free of FC complexes except in regions where they open to form islands. These islands often contain gap junctions but the FC complexes rarely invade the particle domains of the gap junctions. Single FC complexes were seen in three out of a total of 97 gap junctions. Exposure of the epidermis to 20-hydroxyecdysone for 24 hr in vitro did not induce the appearance of FC complexes within the cell junctions.  相似文献   

13.
人乳腺癌细胞株MCF-7细胞于微孔滤膜上经较长时间培养后形成亚多层。表层细胞保持了单层MCF-7细胞所具有的形态学极性与膜极性特征。免疫酶细胞化学技术显示,97.5%的细胞表达了表面乳脂球膜抗原MAM-6,并且该抗原呈顶面极性分布。深层细胞没有面向培养液的游离面,缺乏形态学极性特征,仅??12.9%的细胞表达表面MAM-6,且呈无极性随机分布。深层细胞胞质的MAM-6免疫染色强度大于表层细胞。本研究结果提示,非对称性空间环境(由液相空间与固相空间构成)对于MCF-7细胞的膜极性的建立是必需的。  相似文献   

14.
The possible role of TGF-beta-like molecules in skeletal pattern formation in the embryonic vertebrate limb was studied by analyzing the mechanism of enhancement of chondrogenesis in chick wing bud mesenchyme in vitro and testing for the presence and distribution of endogenous TGF-beta-like activity in this tissue. Transient exposure (3-6 hr) to TGF-beta 1 (1-2 ng/ml) on the day after plating resulted in a 1.5- to 2-fold enhancement of accumulation of Alcian blue (pH 1.0)-stainable extracellular matrix 5 days later. The enhancement of differentiation was preceded by an acceleration and an increase in the extent of precartilage condensation formation, visualized by Hoffman Modulation Contrast microscopy a day after TGF-beta treatment. In contrast, neither condensation nor subsequent chondrogenesis was stimulated by transient treatment with TGF-beta 1 on the day of plating. The effectiveness of a TGF-beta treatment regimen in enhancing chondrogenesis was correlated with its effectiveness in stimulating condensation formation. Exposures to the factor for 3-6 hr on the day after plating, which most consistently stimulated both condensation formation and chondrogenesis, also corresponded to a peak in the enhancement of the steady-state level of fibronectin mRNA (fourfold to eightfold over control levels) measured at the end of the treatment period. The elevation in fibronectin mRNA levels brought about by this treatment persisted throughout the period of condensation. Endogenous TGF-beta-like activity was detected in limb mesenchyme: extracts of freshly isolated and cultured limb tissues contained 6-25 pg TGF-beta-like activity per 1 x 10(6) cells by the Mv1Lu cell proliferation inhibition assay, and indirect immunofluorescence using a polyclonal antibody directed against a TGF-beta-related peptide indicated a patchy distribution of endogenous TGF-beta-like reactivity within a day after culture. These findings are discussed in relation to the "fibronectin prepattern" hypothesis for limb pattern formation.  相似文献   

15.
Tight junctions (TJ) are essential components of polarized epithelia, and E-cadherin is important for their formation and maintenance. The bronchial epithelial cell line, 16HBE14o- expresses E- and P-cadherin, but not N-cadherin. E- and P-cadherin levels changed during culture, the former increasing after confluence, and the latter were markedly reduced. All detectable E-cadherin was bound to β- and γ-catenins. We investigated involvement of E-cadherin with epithelial integrity using an E-cadherin specific, function-blocking antibody, SHE78-7. Surprisingly, apical SHE78-7 exposure caused a prompt fall in transepithelial resistance (TER), while TER remained unchanged for 8 hrs after basal exposure then dropped. SHE78-7 exposure increased epithelial permeability to mannitol, inulin, and 9.5 kDa and 77 kDa dextrans and caused fragmentation and loss of the tight junction protein, ZO-1, from the cell borders in some areas. Ultrastructural studies showed that all junctional intercellular contact was lost in the center of SHE78-7 induced lesions. Near the lesion periphery, epithelial structure was maintained, but TJs were dysfunctional as shown by ruthenium red penetration. Analysis of epithelial penetration by SHE78-7 revealed discrete, local defects in the apical barrier at the top of some cell hills that permitted rapid access of the antibody to E-cadherin near the apical surface. In contrast, after basal exposure, antibody initially engaged with E-cadherin nearer the basal surface and only accessed apical E-cadherin later. Taken together with the TER measurements, these data suggest compartmentalization of E-cadherin function within 16HBE14o- cells, with only the apical E-cadherin adjacent to the tight junctions contributing to the function of the latter.  相似文献   

16.
Recent evidence suggests an interaction between immune, enteric neural and fibroblasts in the regulation of intestinal function. Earlier, we have reported that lipopolysaccharide (LPS) induced cell proliferation, collagen synthesis and production of proinflammatory mediators in lamina propria fibroblasts. In this report, we investigated the change in transepithelial resistance (TER) as a marker of epithelial barrier function by lipopolysaccharide (LPS) and its modulation by human small intestinal lamina propria fibroblasts (HSILPF). Epithelial cells incubated with LPS alone did not show any change in the TER at any concentration or prolonged exposure. However, co-cultivation of epithelial cells with lamina propria fibroblasts which had been exposed to LPS resulted in a rapid decrease in TER by 2 hr. The decrease in the TER was continued till 8 hr followed by returning to the basal level by 24 hr. The supernatant of LPS-treated HSILPF was less effective in causing a fall in the TER than HSILPF itself. The fall in TER was accompanied by loosening of tight junctions as depicted by increased penetration of horse radish peroxidase (HRP) across the epithelial cells from the apical to the basal side. Increased incorporation of 3[H]thymidine (tritiated thymidine) in epithelial cells was observed at 48 hr in the presence of LPS-treated HSILPF. The decrease in TER during the early time period in epithelial cells was abrogated to 70% by incubating the LPS-treated HSILPF and the conditioned medium of LPS-treated HSILPF with anti-TNFalpha antibody, and not with antibody to other cytokines like IL1alpha, IL1beta, IL6 and IL8. Overall, these results suggest that TNFalpha produced by HSILPF in response to LPS as a soluble form cause a decrease in the TER and loosening of tight junctions, and such early changes in the epithelial barrier may contribute to local inflammation in the gut.  相似文献   

17.
18.
As with other epithelia, the question arises of whether the endothelial cell junctions participate in cell polarization, restrict the localization of lipid molecules, and lead to differences in their lateral motion between the apical and basolateral plasma membranes. We found that in bovine aortic endothelium in culture, the localization of the lipophilic probe 5N-(hexadecanoyl)-aminofluorescein (HEDAF) was markedly affected by the presence of cell junctions. At confluence, the probe was observed to be restricted to the exoplasmic leaflet of the apical plasmalemma. It was detected in the basal membrane only after disruption of the cell junctions, whereas the cells remained firmly bound to the underlying extracellular matrix. Fluorescence recovery after photobleaching (FRAP) experiments indicated that the endothelial confluent cell monolayer forms a mosaic of closed diffusion areas in which the probe molecules are free to diffuse. For the first time, and using a new mathematical approach, it was possible to estimate the diameter of these diffusion areas. Values in the range 14-33 microns were found which correlate well with the actual measured diameters of 14 to 26 microns for the apical pole of individual cells. Moreover, cell junctions were found to affect the dynamics of the probe. When the cell junctions were disrupted, the lateral diffusion coefficient D of HEDAF was found to be the same in both apical and basal membranes. It regained its initial higher value in the apical poles when cell contacts were restored. This strongly suggests that in vascular endothelium, cell junctions affect overall plasma membrane organization in a reversible manner.  相似文献   

19.
During cellularization, the Drosophila embryo undergoes a large-scale cytokinetic event that packages thousands of syncytial nuclei into individual cells, resulting in the de novo formation of an epithelial monolayer in the cortex of the embryo. The formation of adherens junctions is one of the many aspects of epithelial polarity that is established during cellularization: at the onset of cellularization, the Drosophila beta-catenin homologue Armadillo (Arm) accumulates at the leading edge of the cleavage furrow, and later to the apicolateral region where the zonula adherens precursors are formed. In this paper, we show that the basal accumulation of Arm colocalizes with DE-cadherin and Dalpha-catenin, and corresponds to a region of tight membrane association, which we refer to as the basal junction. Although the two junctions are similar in components and function, they differ in their response to the novel cellularization protein Nullo. Nullo is present in the basal junction and is required for its formation at the onset of cellularization. In contrast, Nullo is degraded before apical junction formation, and prolonged expression of Nullo blocks the apical clustering of junctional components, leading to morphological defects in the developing embryo. These observations reveal differences in the formation of the apical and basal junctions, and offer insight into the role of Nullo in basal junction formation.  相似文献   

20.
The rodent olfactory epithelium (OE) is a good model system for studying the principles of stem and progenitor cell biology, because of its capacity for continuous neurogenesis throughout life and relatively well-characterized neuronal lineage. The development of mouse OE is divided into two stages, early and established neurogenesis. In established neurogenesis, which starts at embryonic day (E) 12.5, sustentacular cells and olfactory receptor neurons (ORNs) are produced from apical and basal progenitors, respectively. We previously reported that Six1(-/-) shows a lack of mature ORNs throughout development and disorganization of OE after E12.5. However, the molecular bases for these defects have not been addressed. Here, we show that Six1 is expressed in both apical and basal progenitors. In Six1(-/-) mice, apical proliferating cells were absent and no morphologically identifiable sustentacular cells were observed. Consistently, the expression of Notch2 and Jagged1 in the apical layer was absent in Six1(-/-) mice. On the other hand, basal proliferating cells were observed in Six1(-/-) animals, but the expression of Ngn1, NeuroD, Notch1, and Jagged2 in the basal layer was absent. The expression of Mash1, the determination gene for ORNs, and Hes genes was enhanced in Six1(-/-) mice. The present findings suggest that Six1 regulates production of functional apical and basal progenitors during OE development, through the regulation of various genes, such as neuronal basic helix-loop-helix (bHLH), neuronal repressor bHLH, and genes involved in the Notch signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号