首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
To elucidate the mechanism of bifurcated oxidation of quinol in the cytochrome bc1 complex, Rhodobacter sphaeroides mutants, H198N and H111N, lacking heme bL and heme bH, respectively, were constructed and characterized. Purified mutant complexes have the same subunit composition as that of the wild-type complex, but have only 9-11% of the electron transfer activity, which is sensitive to stigmatellin or myxothiazol. The Em values for hemes bL and bH in the H111N and H198N complexes are -95 and -35 mV, respectively. The pseudo first-order reduction rate constants for hemes bL and bH in H111N and H198N, by ubiquiniol, are 16.3 and 12.4 s(-1), respectively. These indicate that the Qp site in the H111N mutant complex is similar to that in the wild-type complex. Pre-steady state reduction rates of heme c1 by these two mutant complexes decrease to a similar extent of their activity, suggesting that the decrease in electron transfer activity is due to impairment of movement of the head domain of reduced iron-sulfur protein, caused by disruption of electron transfer from heme bL to heme bH. Both mutant complexes produce as much superoxide as does antimycin A-treated wild-type complex. Ascorbate eliminates all superoxide generating activity in the intact or antimycin inhibited wild-type or mutant complexes.  相似文献   

2.
The cytochrome bc1 complex recycles one of the two electrons from quinol (QH2) oxidation at center P by reducing quinone (Q) at center N to semiquinone (SQ), which is bound tightly. We have analyzed the properties of SQ bound at center N of the yeast bc1 complex. The EPR-detectable signal, which reports SQ bound in the vicinity of reduced bH heme, was abolished by the center N inhibitors antimycin, funiculosin, and ilicicolin H, but was unchanged by the center P inhibitors myxothiazol and stigmatellin. After correcting for the EPR-silent SQ bound close to oxidized bH, we calculated a midpoint redox potential (Em) of approximately 90 mV for all bound SQ. Considering the Em values for bH and free Q, this result indicates that center N preferentially stabilizes SQ.bH(3+) complexes. This favors recycling of the electron coming from center P and also implies a >2.5-fold higher affinity for QH2 than for Q at center N, which would potentially inhibit bH oxidation by Q. Using pre-steady-state kinetics, we show that Q does not inhibit the initial rate of bH reduction by QH2 through center N, but does decrease the extent of reduction, indicating that Q binds only when bH is reduced, whereas QH2 binds when bH is oxidized. Kinetic modeling of these results suggests that formation of SQ at one center N in the dimer allows stabilization of SQ in the other monomer by Q reduction after intradimer electron transfer. This model allows maximum SQ.bH(3+) formation without inhibition of Q binding by QH2.  相似文献   

3.
The redox components of the cytochrome bc1 complex from the acidophilic chemolithotrophic organism Thiobacillus ferrooxidans were investigated by potentiometric and spectroscopic techniques. Optical redox titrations demonstrated the presence of two b-type hemes with differing redox midpoint potentials at pH 7.4 (-169 and + 20 mV for bL and bH, respectively). At pH 3.5, by contrast, both hemes appeared to titrate at about +20 mV. Antimycin A, 2-heptyl-4-hydroxyquinoline N-oxide, and stigmatellin induced distinguishable shifts of the b hemes' alpha-bands, providing evidence for the binding of antimycin A and 2-heptyl-4-hydroxyquinoline N-oxide near heme bH (located on the cytosolic side of the membrane) and of stigmatellin near heme bL (located on the periplasmic side of the membrane). The inhibitors stigmatellin, 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, and 2, 5-dibromo-3-methyl-6-isopropyl-p-benzoquinone affected the EPR spectrum of the Rieske iron-sulfur center in a way that differs from what has been observed for cytochrome bc1 or b6f complexes. The results obtained demonstrate that the T. ferrooxidans complex, although showing most of the features characteristic for bc1 complexes, contains unique properties that are most probably related to the chemolithotrophicity and/or acidophilicity of its parent organism. A speculative model for reverse electron transfer through the T. ferrooxidans complex is proposed.  相似文献   

4.
We have investigated the mechanism responsible for half-of-the-sites activity in the dimeric cytochrome bc(1) complex from Paracoccus denitrificans by characterizing the kinetics of inhibitor binding to the ubiquinol oxidation site at center P. Both myxothiazol and stigmatellin induced a 2-3 nm shift of the visible absorbance spectrum of the b(L) heme. The shift generated by myxothiazol was symmetric, with monophasic kinetics that indicate equal binding of this inhibitor to both center P sites. In contrast, stigmatellin generated an asymmetric shift in the b(L) spectrum, with biphasic kinetics in which each phase contributed approximately half of the total magnitude of the spectral change. The faster binding phase corresponded to a more symmetrical shift of the b(L) spectrum relative to the slower binding phase, indicating that approximately half of the center P sites bound stigmatellin more slowly and in a different position relative to the b(L) heme, generating a different effect on its electronic environment. Significantly, the slow stigmatellin binding phase was lost as the inhibitor concentration was increased. This implies that a conformational change is transmitted from one center P site in the dimer to the other upon stigmatellin binding to one monomer, rendering the second site less accessible to the inhibitor. Because the position that stigmatellin occupies at center P is considered to be analogous to that of the quinol substrate at the moment of electron transfer, these results indicate that the productive enzyme-substrate configuration is prevented from occurring in both monomers simultaneously.  相似文献   

5.
Mutation of a serine that forms a hydrogen bond to the iron-sulfur cluster of the Rieske iron-sulfur protein to a cysteine results in a respiratory-deficient yeast strain due to formation of iron-sulfur protein lacking the iron-sulfur cluster. The Rieske apoprotein lacking the iron-sulfur cluster is inserted into both monomers of the dimeric cytochrome bc(1) complex and processed to mature size, but the protein lacking iron-sulfur cluster is more susceptible to proteolysis. In addition, the protein environment of center P in one half of the dimer is affected by failure to insert the iron-sulfur cluster as indicated by the fact that only one molecule of myxothiazol can be bound to the cytochrome bc(1) dimer. Although the bc(1) complex lacking the Rieske iron-sulfur cluster cannot oxidize ubiquinol through center P, rates of reduction of cytochrome b by menaquinol through center N are normal. However, less cytochrome b is reduced through center N, and only one molecule of antimycin can be bound at center N in the bc(1) dimer lacking iron-sulfur cluster. These results indicate that failure to insert the [2Fe-2S] cluster impairs assembly of the Rieske protein into the bc(1) complex and that this interferes with proper assembly of both center P and center N in one half of the dimeric enzyme.  相似文献   

6.
To determine the effect of the redox state of the Rieske protein on ligand binding to the quinol oxidation site of the bc(1) complex, we measured the binding rate constants (k(1)) for stigmatellin and myxothiazol, at different concentrations of decylbenzoquinone or decylbenzoquinol, in the bovine bc(1) complex with the Rieske protein in the oxidized or reduced state. Stigmatellin and myxothiazol bound tightly and competitively with respect to quinone or quinol, independently of the redox state of the Rieske protein. In the oxidized bc(1) complex, the k(1) values for stigmatellin ( approximately 2.6 x 10(6) m(-1)s(-1)) and myxothiazol ( approximately 8 x 10(5) m(-1)s(-1)), and the dissociation constant (K(d)) for quinone, were similar between pH 6.5 and 9, indicating that ligand binding is independent of the protonation state of histidine 161 of the Rieske protein (pK(a) approximately 7.6). Reduction of the Rieske protein increased the k(1) value for stigmatellin and decreased the K(d) value for quinone by 50%, without modifying the k(1) for myxothiazol. These results indicate that reduction of the Rieske protein and protonation of histidine 161 do not induce a strong stabilization of ligand binding to the quinol oxidation site, as assumed in models that propose the existence of a highly stabilized semiquinone as a reaction intermediate during quinol oxidation.  相似文献   

7.
The effects of pH and inhibitors on the spectra and redox properties of the haems b of the bc1 complex of beef heart submitochondrial particles were investigated. The major findings were: (1) both haems have a weakly redox-linked protonatable group with pKox and pKred of around 6 and 8; (2) at pH values above 7, haem bH becomes heterogeneous in its redox behaviour. This heterogeneity is removed by the Qi site inhibitors antimycin A, funiculosin and HQNO, but not by the Qo site inhibitors myxothiazol or stigmatellin; (3) of all inhibitors tested only funiculosin had a large effect on the Em/pH profile of either haem b. In all cases where definite effects were found, the haem most affected was that thought to be closest to the site of inhibitor binding; (4) spectral shifts of haem groups caused by inhibitor binding were usually, but not always, of the haem group closest to the binding site; (5) titrations with succinate/fumarate were in reasonable agreement with redox-mediated data provided that strict anaerobiosis was maintained. Apparent large shifts of haem midpoint potentials with antimycin A and myxothiazol could be produced in aerobic succinate/fumarate titrations in the presence of cyanide, as already reported in the literature, but these were artefactual; (6) the heterogeneous haem bH titration behaviour can be simulated with a model similar to that proposed by Salerno et al. (J. Biol. Chem. (1989) 264, 15398-15403) in which there is redox interaction between haem bH and ubiquinone species bound at the Qi site. Simulations closely fit both the haem bH data and known semiquinone data only if it is assumed that semiquinone bound to oxidised haem bH is EPR-silent.  相似文献   

8.
At the heart of the Q cycle hypothesis, the cytochrome bc1 complex (bc1) is required to separate the two electrons from a quinol molecule at the quinol oxidation site. Recent studies have brought to light an intricate mechanism for this bifurcated electron transfer. A survey of the protein data bank shows 30 entries for the structures of bc1 and the homologous b6 f complex. These structures provide considerable insights into the structural organization of mitochondrial, bacterial, and plant enzymes. Crystallographic binding studies of bc1 with either quinone reduction (QN) and/or quinol oxidation (QP) site inhibitors offer atomic details on how these compounds interact with residues at their respective sites. Most importantly, the different locations and apparent flexibility observed in crystals for the extrinsic domain of the iron-sulfur protein (ISP) subunit suggest a mechanism for electron bifurcation at the QP site. Analyses of various inhibitor-bound structures revealed two classes of QP site inhibitors: Pm inhibitors that promote ISP mobility and Pf inhibitors that favor the fixation of the ISP conformation. Those analyses also shed light on a possible process by which the ISP motion switch is controlled. The first phase reduction of ISP is shown to be comparable to the reduction of the bL heme by pre-steady state kinetic analysis, whereas the second phase reduction of ISP share similar kinetics with the reduction of the bH heme. The reduction of cyt c1 is measured much slower, indicating that the reduced ISP remains bound at the QP site until the reduced heme bL is oxidized by the heme bH and supporting the existence of a control mechanism for the ISP motion switch.  相似文献   

9.
We have investigated the oxidation of the reduced ubiquinol:cytochrome c reductase (bc1 complex) isolated from beef heart mitochondria. The oxidation of cytochrome c1 by both potassium ferricyanide and cytochrome c in the ascorbate-reduced bc1 complex is not a first-order process. This is taken as evidence that cytochrome c1 is in rapid equilibrium with the Rieske iron-sulphur center. Among the several inhibitors tested, only 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole and stigmatellin are seen to affect this redox equilibrium between the high-potential centers of the beef heart bc1 complex. The oxidation of cytochrome b by cytochrome c in both the succinate-reduced and the fully reduced bc1 complex is blocked by all the inhibitors tested. This inhibition occurs simultaneously with an acceleration in the oxidation of cytochrome c1, even after extraction of the endogenous ubiquinone which is present in the bc1 preparation. Almost complete extraction of ubiquinone from the bc1 complex has no effect upon the rapid phase of cytochrome b oxidation, nor does it alter the inhibition of cytochrome b oxidation by the various inhibitors. The oxidation of cytochrome b by exogenous ubiquinones is stimulated by myxothiazol and partially inhibited by antimycin. However, the addition of both these inhibitors together completely blocks the oxidation of cytochrome b by quinones. In contrast, the simultaneous addition of antimycin and myxothiazol has no such synergistic effect upon the oxidation of cytochrome b by cytochrome c. Our data show that intramolecular electron transfer from cytochrome(s) b to the Rieske iron-sulphur center can take place in the bc1 complex without involvement of endogenous ubiquinone-10. This electron pathway is sensitive to all the inhibitors of the enzyme.  相似文献   

10.
Gao X  Wen X  Esser L  Quinn B  Yu L  Yu CA  Xia D 《Biochemistry》2003,42(30):9067-9080
Cytochrome bc(1) is an integral membrane protein complex essential to cellular respiration and photosynthesis. The Q cycle reaction mechanism of bc(1) postulates a separated quinone reduction (Q(i)) and quinol oxidation (Q(o)) site. In a complete catalytic cycle, a quinone molecule at the Q(i) site receives two electrons from the b(H) heme and two protons from the negative side of the membrane; this process is specifically inhibited by antimycin A and NQNO. The structures of bovine mitochondrial bc(1) in the presence or absence of bound substrate ubiquinone and with either the bound antimycin A(1) or NQNO were determined and refined. A ubiquinone with its first two isoprenoid repeats and an antimycin A(1) were identified in the Q(i) pocket of the substrate and inhibitor bound structures, respectively; the NQNO, on the other hand, was identified in both Q(i) and Q(o) pockets in the inhibitor complex. The two inhibitors occupied different portions of the Q(i) pocket and competed with substrate for binding. In the Q(o) pocket, the NQNO behaves similarly to stigmatellin, inducing an iron-sulfur protein conformational arrest. Extensive binding interactions and conformational adjustments of residues lining the Q(i) pocket provide a structural basis for the high affinity binding of antimycin A and for phenotypes of inhibitor resistance. A two-water-mediated ubiquinone protonation mechanism is proposed involving three Q(i) site residues His(201), Lys(227), and Asp(228).  相似文献   

11.
The dissociation constants for the binding of Rhodobacter capsulatus cytochrome c2 and its K93P mutant to the cytochrome bc1 complex embedded in a phospholipid bilayer were measured by plasmon waveguide resonance spectroscopy in the presence and absence of the inhibitor stigmatellin. The reduced form of cytochrome c2 strongly binds to reduced cytochrome bc1 (Kd = 0.02 microM) but binds much more weakly to the oxidized form (Kd = 3.1 microM). In contrast, oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a biphasic fashion with Kd values of 0.11 and 0.58 microM. Such a biphasic interaction is consistent with binding to two separate sites or conformations of oxidized cytochrome c2 and/or cytochrome bc1. However, in the presence of stigmatellin, we find that oxidized cytochrome c2 binds to oxidized cytochrome bc1 in a monophasic fashion with high affinity (Kd = 0.06 microM) and reduced cytochrome c2 binds less strongly (Kd = 0.11 microM) but approximately 30-fold more tightly than in the absence of stigmatellin. Structural studies with cytochrome bc1, with and without the inhibitor stigmatellin, have led to the proposal that the Rieske protein is mobile, moving between the cytochrome b and cytochrome c1 components during turnover. In one conformation, the Rieske protein binds near the heme of cytochrome c1, while the cytochrome c2 binding site is also near the cytochrome c1 heme but on the opposite side from the Rieske site, where cytochrome c2 cannot directly interact with Rieske. However, the inhibitor, stigmatellin, freezes the Rieske protein iron-sulfur cluster in a conformation proximal to cytochrome b and distal to cytochrome c1. We conclude from this that the dual conformation of the Rieske protein is primarily responsible for biphasic binding of oxidized cytochrome c2 to cytochrome c1. This optimizes turnover by maximizing binding of the substrate, oxidized cytochrome c2, when the iron-sulfur cluster is proximal to cytochrome b and minimizing binding of the product, reduced cytochrome c2, when it is proximal to cytochrome c1.  相似文献   

12.
The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic properties of the Rieske iron-sulfur cluster. EPR spectra of the Rieske proteins lacking the disulfide bridge indicate the iron-sulfur cluster is assembled in the absence of the disulfide bridge, but there are significant shifts in all g values, indicating a change in the electronic structure of the [2Fe-2S] iron-sulfur center. In addition, the midpoint potential of the iron-sulfur cluster is lowered from 265 mV in the Rieske protein from wild-type yeast to 150 mV in the protein from the C164Y/C180L mutant and to 160 mV in the protein from the C164Y/C180V mutant. Ubiquinol-cytochrome c reductase activities of the bc(1) complexes with Rieske proteins lacking the disulfide bridge are less than 1% of the activity of the bc(1) complex from wild-type yeast, even though normal amounts of the iron-sulfur protein are present as judged by Western blot analysis. These activities are lower than the 105-115 mV decrease in the midpoint potential of the Rieske iron-sulfur cluster can account for. Pre-steady-state reduction of the bc(1) complexes with menadiol indicates that quinol is not oxidized through center P but is oxidized through center N. In addition, the levels of stigmatellin and UHDBT binding are markedly diminished, while antimycin binding is unaffected, in the bc(1) complexes with Rieske proteins lacking the disulfide bridge. Taken together, these results indicate that the ubiquinol oxidation site at center P is damaged in the bc(1) complexes with Rieske proteins lacking the disulfide bridge even though the iron-sulfur cluster is assembled into the Rieske protein.  相似文献   

13.
The effect of antimycin, myxothiazol, 2-heptyl-4-hydroxyquinoline-N-oxide, stigmatellin and cyanide on respiration, ATP synthesis, cytochrome c reductase, and membrane potential in mitochondria isolated from dark-grown Euglena cells was determined. With L-lactate as substrate, ATP synthesis was partially inhibited by antimycin, but the other four inhibitors completely abolished the process. Cyanide also inhibited the antimycin-resistant ATP synthesis. Membrane potential was collapsed (<60 mV) by cyanide and stigmatellin. However, in the presence of antimycin, a H(+)60 mV) that sufficed to drive ATP synthesis remained. Cytochrome c reductase, with L-lactate as donor, was diminished by antimycin and myxothiazol. Cytochrome bc(1) complex activity was fully inhibited by antimycin, but it was resistant to myxothiazol. Stigmatellin inhibited both L-lactate-dependent cytochrome c reductase and cytochrome bc(1) complex activities. Respiration was partially inhibited by the five inhibitors. The cyanide-resistant respiration was strongly inhibited by diphenylamine, n-propyl-gallate, salicylhydroxamic acid and disulfiram. Based on these results, a model of the respiratory chain of Euglena mitochondria is proposed, in which a quinol-cytochrome c oxidoreductase resistant to antimycin, and a quinol oxidase resistant to antimycin and cyanide are included.  相似文献   

14.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes were demonstrated to be present in the membranes of the alkaliphilic and halophilic purple sulfur bacteria Ectothiorhodospira halophila, Ectothiorhodospira mobilis, and Ectothiorhodospira shaposhnikovii by protoheme extraction, immunoblotting, and electron paramagnetic resonance spectroscopy. The gy values of the Rieske [2Fe-2S] clusters observed in membranes of E. mobilis and E. halophila were 1.895 and 1.910, respectively. In E. mobilis membranes, the cytochrome bc1 complex was present in a stoichiometry of approximately 0.2 per reaction center. This complex was isolated and characterized. It contained four prosthetic groups: low-potential cytochrome b (cytochrome bL; Em = -142 mV), high-potential cytochrome b (cytochrome bH; Em = 116 mV), cytochrome c1 (Em = 341 mV), and a Rieske iron-sulfur cluster. The absorbance spectrum of cytochrome bL displayed an asymmetric alpha-band with a maximum at 564 nm and a shoulder at 559 nm. The alpha bands of cytochrome bH and cytochrome c1 peaked at 559.5 and 553 nm, respectively. These prosthetic groups were associated with three different polypeptides: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, with apparent molecular masses of 43, 30, and 21 kDa, respectively. No evidence for the presence of a fourth subunit was obtained. Maximal ubiquinol-cytochrome c oxidoreductase activity of the purified complex was observed at pH 8; the turnover rate was 57 mol of cytochrome c reduced.(mol of cytochrome c1)-1.s-1. The complex showed a strikingly low sensitivity towards typical inhibitors of cytochrome bc1 complexes.  相似文献   

15.
The bifurcated reaction at the Q(o)-site of the bc(1) complex provides the mechanistic basis of the proton pumping activity through which the complex conserves redox energy in the proton gradient. Structural information about the binding of quinone at the site is lacking, because the site is vacant in crystals of the native complexes. We now report the first structural characterization of the interaction of the native quinone occupant with the Rieske iron-sulfur protein in the bc(1) complex of Rhodobacter sphaeroides, using high resolution EPR. We have compared the binding configuration in the presence of quinone with the known structures for the complex with stigmatellin and myxothiazol. We have shown by using EPR and orientation-selective electron spin echo envelope modulation (ESEEM) measurements of the iron-sulfur protein that when quinone is present in the site, the isotropic hyperfine constant of one of the N(delta) atoms of a liganding histidine of the [2Fe-2S] cluster is similar to that observed when stigmatellin is present and different from the configuration in the presence of myxothiazol. The spectra also show complementary differences in nitrogen quadrupole splittings in some orientations. We suggest that the EPR characteristics, the ESEEM spectra, and the hyperfine couplings reflect a similar interaction between the iron-sulfur protein and the quinone or stigmatellin and that the N(delta) involved is that of a histidine (equivalent to His-161 in the chicken mitochondrial complex) that forms both a ligand to the cluster and a hydrogen bond with a carbonyl oxygen atom of the Q(o)-site occupant.  相似文献   

16.
We have obtained evidence for electron transfer between cytochrome b subunits of the yeast bc(1) complex dimer by analyzing pre-steady state reduction of cytochrome b in the presence of center P inhibitors. The kinetics and extent of cytochrome b reduced by quinol in the presence of variable concentrations of antimycin decreased non-linearly and could only be fitted to a model in which electrons entering through one center N can equilibrate between the two cytochrome b subunits of the bc(1) complex dimer. The b(H) heme absorbance in a bc(1) complex inhibited at center P and preincubated with substoichiometric concentrations of antimycin showed a red shift upon the addition of substrate, which indicates that electrons from the uninhibited center N in one monomer are able to reach the b(H) heme at the antimycin-blocked site in the other. The extent of cytochrome b reduction by variable concentrations of menaquinol could only be fitted to a kinetic model that assumes electron equilibration between center N sites in the dimer. Kinetic simulations showed that non-rate-limiting electron equilibration between the two b(H) hemes in the dimer through the two b(L) hemes is possible upon reduction through one center N despite the thermodynamically unfavorable b(H) to b(L) electron transfer step. We propose that electron transfer between cytochrome b subunits minimizes the formation of semiquinone-ferrocytochrome b(H) complexes at center N and favors ubiquinol oxidation at center P by increasing the amount of oxidized cytochrome b.  相似文献   

17.
Interruption of electron flow at the quinone-reducing center (Q(i)) of complex III of the mitochondrial respiratory chain results in superoxide production. Unstable semiquinone bound in quinol-oxidizing center (Q(o)) of complex III is thought to be the sole source of electrons for oxygen reduction; however, the unambiguous evidence is lacking. We investigated the effects of complex III inhibitors antimycin, myxothiazol, and stigmatellin on generation of H(2)O(2) in rat heart and brain mitochondria. In the absence of antimycin A, myxothiazol stimulated H(2)O(2) production by mitochondria oxidizing malate, succinate, or alpha-glycerophosphate. Stigmatellin inhibited H(2)O(2) production induced by myxothiazol. Myxothiazol-induced H(2)O(2) production was dependent on the succinate/fumarate ratio but in a manner different from H(2)O(2) generation induced by antimycin A. We conclude that myxothiazol-induced H(2)O(2) originates from a site located in the complex III Q(o) center but different from the site of H(2)O(2) production inducible by antimycin A.  相似文献   

18.
The cytochrome bc1 complex from bovine heart mitochondria is a multi-functional enzyme complex. In addition to electron and proton transfer activity, the complex also processes an activatable peptidase activity and a superoxide generating activity. The crystal structure of the complex exists as a closely interacting functional dimer. There are 13 transmembrane helices in each monomer, eight of which belong to cytochrome b, and five of which belong to cytochrome c1, Rieske iron-sulfur protein (ISP), subunits 7, 10 and 11, one each. The distances of 21 A between bL heme and bH heme and of 27 A between bL heme and the iron-sulfur cluster (FeS), accommodate well the observed fast electron transfers between the involved redox centers. However, the distance of 31 A between heme c1 and FeS, makes it difficult to explain the high electron transfer rate between them. 3D structural analyses of the bc1 complexes co-crystallized with the Qu site inhibitors suggest that the extramembrane domain of the ISP may undergo substantial movement during the catalytic cycle of the complex. This suggestion is further supported by the decreased in the cytochrome bc1 complex activity and the increased in activation energy for mutants with increased rigidity in the neck region of ISP.  相似文献   

19.
F Daldal  M K Tokito  E Davidson    M Faham 《The EMBO journal》1989,8(13):3951-3961
Several spontaneous mutants of the photosynthetic bacterium Rhodobacter capsulatus resistant to myxothiazol, stigmatellin and mucidin--inhibitors of the ubiquinol: cytochrome c oxidoreductase (cyt bc1 complex)--were isolated. They were grouped into eight different classes based on their genetic location, growth properties and inhibitor cross-resistance. The petABC (fbcFBC) cluster that encodes the structural genes for the Rieske FeS protein, cyt b and cyt c1 subunits of the cyt bc1 complex was cloned out of the representative isolates and the molecular basis of inhibitor-resistance was determined by DNA sequencing. These data indicated that while one group of mutations was located outside the petABC(fbcFBC) cluster, the remainder were single base pair changes in codons corresponding to phylogenetically conserved amino acid residues of cyt b. Of these substitutions, F144S conferred resistance to myxothiazol, T163A and V333A to stigmatellin, L106P and G152S to myxothiazol + mucidin and M140I and F144L to myxothiazol + stigmatellin. In addition, a mutation (aer126) which specifically impairs the quinol oxidase (Qz) activity of the cyt bc1 complex of a non-photosynthetic mutant (R126) was identified to be a glycine to an aspartic acid replacement at position 158 of cyt b. Six of these mutations were found between amino acid residues 140 and 163, in a region linking the putative third and fourth transmembrane helices of cyt b. The non-random clustering of several inhibitor-resistance mutations around the non-functional aer126 mutation suggests that this region may be involved in the formation of the Qz inhibitor binding/quinol oxidation domain(s) of the cyt bc1 complex. Of the two remaining mutations, the V333A replacement conferred resistance to stigmatellin exclusively and was located in another region toward the C terminus of cyt b. The L106P substitution, on the other hand, was situated in the transmembrane helix II that carries two conserved histidine residues (positions 97 and 111 in R. capsulatus) considered to be the axial ligands for the heme groups of cyt b. The structural and functional roles of the amino acid residues involved in the acquisition of Qz inhibitor resistance are discussed in terms of the primary structure of cyt b and in relation to the natural inhibitor-resistance of various phylogenetically related cyt bc/bf complexes.  相似文献   

20.
The interaction of the inhibitor 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB) with the Rieske protein of the chloroplast b6f complex has been studied by EPR. All three redox states of DBMIB were found to interact with the iron-sulphur cluster. The presence of the oxidised form of DBMIB altered the equilibrium distribution of the Rieske protein's conformational substates, strongly favouring the proximal position close to heme bL. In addition to this conformational effect, DBMIB shifted the pK-value of the redox-linked proton involved in the iron-sulphur cluster's redox transition by about 1.5 pH units towards more acidic values. The implications of these results with respect to the interaction of the native quinone substrate and the Rieske cluster in cytochrome bc complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号