首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The exploration of evolutionary biology and biological adaptation can inform society's adaptation to climate change, particularly the mechanisms that bring about adaptability, such as phenotypic plasticity, epigenetics, and horizontal gene transfer. Learning from unplanned autonomous biological adaptation may be considered undesirable and incompatible with human endeavor. However, it is argued that there is no need for agency, and planned adaptation is not necessarily preferable over autonomous adaptation. What matters is the efficacy of adaptive mechanisms and their capacity to increase societal resilience to current and future impacts. In addition, there is great scope for industrial ecology (IE) to contribute approaches to climate change adaptation that generate system models and baseline data to inform decision making. The problem of “uncertainty” was chosen as an example of a challenge that is shared by biological systems, IE, and climate change adaptation to show how biological adaptation might contribute solutions. Finally, the Coastal Climate Adaptation Decision Support tool was used to demonstrate how IE and biological adaptation approaches may be mainstreamed in climate change adaptation planning and practice. In conclusion, there is close conceptual alignment between evolutionary biology and IE. The integration of biological adaptation thinking can enrich IE, add new perspectives to climate change adaptation science, and support IE's engagement with climate change adaptation. There should be no major obstacles regarding the collaboration of industrial ecologists with the climate change adaptation community, but mainstreaming of biological adaptation solutions depends greatly on successful knowledge transfer and the engagement of open‐minded and informed adaptation stakeholders.  相似文献   

2.
Rapid environmental changes are putting numerous species at risk of extinction. For migration-limited species, persistence depends on either phenotypic plasticity or evolutionary adaptation (evolutionary rescue). Current theory on evolutionary rescue typically assumes linear environmental change. Yet accelerating environmental change may pose a bigger threat. Here, we present a model of a species encountering an environment with accelerating or decelerating change, to which it can adapt through evolution or phenotypic plasticity (within-generational or transgenerational). We show that unless either form of plasticity is sufficiently strong or adaptive genetic variation is sufficiently plentiful, accelerating or decelerating environmental change increases extinction risk compared to linear environmental change for the same mean rate of environmental change.  相似文献   

3.
4.
We discuss the concept of Enaction as originally proposed by Varela. We attempt to exemplify through two specific topics, sensory ecology and behavior, as well as physiological and behavioral ecology, on which the enactive approach is based. We argue that sensory physiology allows us to explore the biological and cognitive meaning of animal 'private' sensory channels, beyond the scope of our own sensory capacity. Furthermore, after analyzing the interplay between factors that may impose limits upon an animal's use of time and energy, we call for a program of research in integrative and comparative biology that simultaneously considers evolutionary ecology (including physiological and behavioral ecology) and neurobiology (including cognitive mechanisms as well structural design). We believe that this approach represents a shift in scientific attitude among biologists concerning the place of biological and ecological topics in studies of integrative and comparative biology and biological diversity and vice versa.  相似文献   

5.
Our perspective highlights potentially important links between disparate fields—biological oceanography, climate change research, and experimental evolutionary biology. We focus on one important functional group—photoautotrophic microbes (phytoplankton), which are responsible for ~50% of global primary productivity. Global climate change currently results in the simultaneous change of several conditions such as warming, acidification, and nutrient supply. It thus has the potential to dramatically change phytoplankton physiology, community composition, and may result in adaptive evolution. Although their large population sizes, standing genetic variation, and rapid turnover time should promote swift evolutionary change, oceanographers have focussed on describing patterns of present day physiological differentiation rather than measure potential adaptation in evolution experiments, the only direct way to address whether and at which rate phytoplankton species will adapt to environmental change. Important open questions are (1) is adaptation limited by existing genetic variation or fundamental constraints? (2) Will complex ecological settings such as gradual versus abrupt environmental change influence adaptation processes? (3) How will increasing environmental variability affect the evolution of phenotypic plasticity patterns? Because marine phytoplankton species display rapid acclimation capacity (phenotypic buffering), a systematic study of reaction norms renders them particularly interesting to the evolutionary biology research community.  相似文献   

6.
As a form of adaptive plasticity that allows organisms to shift their phenotype toward the optimum, learning is inherently a source of developmental bias. Learning may be of particular significance to the evolutionary biology community because it allows animals to generate adaptively biased novel behavior tuned to the environment and, through social learning, to propagate behavioral traits to other individuals, also in an adaptively biased manner. We describe several types of developmental bias manifest in learning, including an adaptive bias, historical bias, origination bias, and transmission bias, stressing that these can influence evolutionary dynamics through generating nonrandom phenotypic variation and/or nonrandom environmental states. Theoretical models and empirical data have established that learning can impose direction on adaptive evolution, affect evolutionary rates (both speeding up and slowing down responses to selection under different conditions) and outcomes, influence the probability of populations reaching global optimum, and affect evolvability. Learning is characterized by highly specific, path‐dependent interactions with the (social and physical) environment, often resulting in new phenotypic outcomes. Consequently, learning regularly introduces novelty into phenotype space. These considerations imply that learning may commonly generate plasticity first evolution.  相似文献   

7.
Phenotypic plasticity represents an environmentally-based change in an organism’s observable properties. Since biological plasticity is a fundamental adaptive feature, it has been extensively assessed with respect to its quantitative features and genetic foundations, especially within an ecological evolutionary framework. Toxicological investigations on the dose-response continuum (i.e., very broad dose range) that include documented evidence of the hormetic dose response zone (i.e., responses to doses below the toxicological threshold) can be employed to provide a quantitative estimate of phenotypic plasticity. The low dose hormetic stimulation is an adaptive response that reflects an environmentally-induced altered phenotype and provides a quantitative estimate of biological plasticity. Analysis of nearly 8,000 dose responses within the hormesis database indicates that quantitative features of phenotypic plasticity are highly generalizable, being independent of biological model, endpoint measured and chemical/physical stress inducing agent. The magnitude of phenotype changes indicative of plasticity is modest with maximum responses typically being approximately 30–60% greater than control values. The present findings provide the first quantitative estimates of biological plasticity and its capacity for generalization. Summary This article provides the first quantitative estimate of biological plasticity that may be generalized across plant, microbial, animal systems, and across all levels of biological organization. The quantitative features of plasticity are described by the hormesis dose response model. These findings have important biological, biomedical and evolutionary implications.  相似文献   

8.
The impact of elevated carbon dioxide on plants is a growing concern in evolutionary ecology and global change biology. Characterizing patterns of phenotypic integration and multivariate plasticity to elevated carbon dioxide can provide insights into ecological and evolutionary dynamics in future human‐altered environments. Here, we examined univariate and multivariate responses to carbon enrichment in six functional traits among six European accessions of Arabidopsis thaliana. We detected phenotypic plasticity in both univariate and multivariate phenotypes, but did not find significant variation in plasticity (genotype by environment interactions) within or among accessions. Eigenvector, eigenvalue variance, and common principal components analyses showed that elevated carbon dioxide altered patterns of trait covariance, reduced the strength of phenotypic integration, and decreased population‐level differentiation in the multivariate phenotype. Our data suggest that future carbon dioxide conditions may influence evolutionary dynamics in natural populations of A. thaliana.  相似文献   

9.
Phenotypic integration refers to the study of complex patterns of covariation among functionally related traits in a given organism. It has been investigated throughout the 20th century, but has only recently risen to the forefront of evolutionary ecological research. In this essay, I identify the reasons for this late flourishing of studies on integration, and discuss some of the major areas of current endeavour: the interplay of adaptation and constraints, the genetic and molecular bases of integration, the role of phenotypic plasticity, macroevolutionary studies of integration, and statistical and conceptual issues in the study of the evolution of complex phenotypes. I then conclude with a brief discussion of what I see as the major future directions of research on phenotypic integration and how they relate to our more general quest for the understanding of phenotypic evolution within the neo‐Darwinian framework. I suggest that studying integration provides a particularly stimulating and truly interdisciplinary convergence of researchers from fields as disparate as molecular genetics, developmental biology, evolutionary ecology, palaeontology and even philosophy of science.  相似文献   

10.
Three decades ago, interactions between evolutionary biology and physiology gave rise to evolutionary physiology. This caused comparative physiologists to improve their research methods by incorporating evolutionary thinking. Simultaneously, evolutionary biologists began focusing more on physiological mechanisms that may help to explain constraints on and trade-offs during microevolutionary processes, as well as macroevolutionary patterns in physiological diversity. Here we argue that evolutionary physiology has yet to reach its full potential, and propose new avenues that may lead to unexpected advances. Viewing physiological adaptations in wild animals as potential solutions to human diseases offers enormous possibilities for biomedicine. New evidence of epigenetic modifications as mechanisms of phenotypic plasticity that regulate physiological traits may also arise in coming years, which may also represent an overlooked enhancer of adaptation via natural selection to explain physiological evolution. Synergistic interactions at these intersections and other areas will lead to a novel understanding of organismal biology.  相似文献   

11.
Behavior has been viewed as a pacemaker of evolutionary change because changes in behavior are thought to expose organisms to novel selection pressures and result in rapid evolution of morphological, life history and physiological traits. However, the idea that behavior primarily drives evolutionary change has been challenged by an alternative view of behavior as an inhibitor of evolution. According to this view, a high level of behavioral plasticity shields organisms from strong directional selection by allowing individuals to exploit new resources or move to a less stressful environment. Here, I suggest that absence of clear mechanisms underlying these hypotheses impedes empirical evaluation of behavior’s role in evolution in two ways. First, both hypotheses focus on behavioral shifts as a key step in the evolutionary process but ignore the developmental mechanisms underlying these shifts and this has fostered unwarranted assumptions about the specific types of behavioral shifts that are important for evolutionary change. Second, neither hypothesis provides a means of connecting within-individual changes in behavior to population-level processes that lead to evolutionary diversification or stasis. To resolve these issues, I incorporate developmental and evolutionary mechanisms into a conceptual framework that generates predictions about the types of behavior and types of behavioral shifts that should affect both micro and macroevolutionary processes.  相似文献   

12.
根茎克隆植物生态学研究进展   总被引:17,自引:8,他引:9  
汤俊兵  肖燕  安树青 《生态学报》2010,30(11):3028-3036
根茎在植物的无性繁殖、克隆分株间信息交流和物质交换、预测资源斑块的质量等方面具有重要意义,并且根茎克隆植物的研究涉及生物入侵、全球变化等诸多生态学前沿领域。作为一种重要的克隆植物类型,根茎克隆植物在资源异质性生境中表现出特有的适应方式,这种方式可以通过形态可塑性、觅食行为、生理整合以及适合度来具体表征。着眼于根茎克隆植物,总结和分析了国内外近年来的研究案例,并对形态可塑性起源与多样性的限制假说和适应假说、觅食行为中的强度觅食和广度觅食策略、克隆分株间间隔子保持和断裂的利益权衡等热点内容进行了讨论。最后联系生态学学科前沿,提出了本领域在未来需要重视的研究方向。  相似文献   

13.
Phenotypic expression can be altered by direct perception of environmental cues (within‐generation phenotypic plasticity) and by the environmental cues experienced by previous generations (transgenerational plasticity). Few studies, however, have investigated how the characteristics of phenotypic traits affect their propensity to exhibit plasticity within and across generations. We tested whether plasticity differed within and across generations between morphological and behavioral anti‐predator traits of Physa acuta, a freshwater snail. We reared 18 maternal lineages of P. acuta snails over two generations using a full factorial design of exposure to predator or control cues and quantified adult F2 shell size, shape, crush resistance, and anti‐predator behavior – all traits which potentially affect their ability to avoid or survive predation attempts. We found that most morphological traits exhibited transgenerational plasticity, with parental exposure to predator cues resulting in larger and more crush‐resistant offspring, but shell shape demonstrated within‐generation plasticity. In contrast, we found that anti‐predator behavior expressed only within‐generation plasticity such that offspring reared in predator cues responded less to the threat of predation than control offspring. We discuss the consequences of this variation in plasticity for trait evolution and ecological dynamics. Overall, our study suggests that further empirical and theoretical investigation is needed in what types of traits are more likely to be affected by within‐generational and transgenerational plasticity.  相似文献   

14.
克隆植物的水分生理整合及其生态效应   总被引:11,自引:0,他引:11  
水分生理整合是克隆植物生理整合过程中非常重要的一部分,是克隆植物生长发育和生态适应过程中的重要机制之一。本文主要从理论上对克隆植物水分生理整合的存在性、方向性、整合的程度、范围及其与克隆植物的功能分工、表型可塑性和觅养行为、风险分摊等行为表现的关系进行了深入分析,并对迄今有关克隆植物水分整合的最新研究进展和研究方法进行了系统总结和评述。提出克隆植物的水分生理整合包括水平和垂直两个方向,而水力提降为垂直方向的水分生理整合提供了一个重要途径。认为在今后,应加强对克隆植物水分生理整合的精确定量化研究,同时,应运用生态学、生理学、生物化学及分子生物学等方法,综合深入地研究克隆植物水分整合的机理。  相似文献   

15.
Developmental plasticity and the evolution of parental effects   总被引:3,自引:0,他引:3  
One of the outstanding challenges for evolutionary biologists is to understand how developmental plasticity can influence the evolutionary process. Developmental plasticity frequently involves parental effects, which might enable adaptive and context-dependent transgenerational transmission of phenotypic strategies. However, parent-offspring conflict will frequently result in parental effects that are suboptimal for parents, offspring or both. The fitness consequences of parental effects at evolutionary equilibrium will depend on how conflicts can be resolved by modifications of developmental processes, suggesting that proximate studies of development can inform ultimate questions. Furthermore, recent studies of plants and animals show how studies of parental effects in an ecological context provide important insights into the origin and evolution of adaptation under variable environmental conditions.  相似文献   

16.
Reliable cues of increased predation risk can induce phenotypic changes in an organism’s offspring (i.e. transgenerational phenotypic plasticity). While induction of defensive morphologies in naïve offspring in response to maternal predation risk is widespread, little is known about transgenerational changes in offspring behavior. Here we provide evidence for transgenerational behavioral plasticity in the pea aphid, Acyrthosiphon pisum. When pre-reproductive individuals of two genotypes (“pink” and “green”) were exposed to the alarm pheromone (E)-β-Farnesene (EBF), a reliable cue of increased predation risk, next-generation offspring altered their feeding site choices relative to the location of the maternal aphids. Offspring of EBF-treated aphids occupied “safer” feeding sites: green offspring occupied “safer” feeding sites in the natal colony, while pink offspring dispersed to occupy sites on neighboring plant leaves.  相似文献   

17.
Phenotypic plasticity can influence evolutionary change in a lineage, ranging from facilitation of population persistence in a novel environment to directing the patterns of evolutionary change. As the specific nature of plasticity can impact evolutionary consequences, it is essential to consider how plasticity is manifested if we are to understand the contribution of plasticity to phenotypic evolution. Most morphological traits are developmentally plastic, irreversible, and generally considered to be costly, at least when the resultant phenotype is mis-matched to the environment. At the other extreme, behavioral phenotypes are typically activational (modifiable on very short time scales), and not immediately costly as they are produced by constitutive neural networks. Although patterns of morphological and behavioral plasticity are often compared, patterns of plasticity of life history phenotypes are rarely considered. Here we review patterns of plasticity in these trait categories within and among populations, comprising the adaptive radiation of the threespine stickleback fish Gasterosteus aculeatus. We immediately found it necessary to consider the possibility of iterated development, the concept that behavioral and life history trajectories can be repeatedly reset on activational (usually behavior) or developmental (usually life history) time frames, offering fine tuning of the response to environmental context. Morphology in stickleback is primarily reset only in that developmental trajectories can be altered as environments change over the course of development. As anticipated, the boundaries between the trait categories are not clear and are likely to be linked by shared, underlying physiological and genetic systems.  相似文献   

18.
A combination of system-level and cellular—molecular approaches is moving studies of oculomotor learning rapidly toward the goal of linking synaptic plasticity at specific sites in oculomotor circuits with changes in the signal-processing functions of those circuits, and, ultimately, with changes in eye movement behavior. Recent studies of saccadic adaptation illustrate how careful behavioral analysis can provide constraints on the neural loci of plasticity. Studies of vestibulo-ocular adaptation are beginning to examine the molecular pathways contributing to this form of cerebellum-dependent learning.  相似文献   

19.
《Epigenetics》2013,8(7):838-842
The majority of environmental factors can not modify DNA sequence, but can influence the epigenome. The mitotic stability of the epigenome and ability of environmental epigenetics to influence phenotypic variation and disease, suggests environmental epigenetics will have a critical role in disease etiology and biological areas such as evolutionary biology. The current review presents the molecular basis of how environment can promote stable epigenomes and modified phenotypes, and distinguishes the difference between epigenetic transgenerational inheritance through the germ line versus somatic cell mitotic stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号