首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The vitamin D receptor (VDR) mediates the effects of 1,25(OH)(2)D(3), the active form of vitamin D. The human VDRB1 isoform differs from the originally described VDR by an N-terminal extension of 50 amino acids. Here we investigate cell-, promoter-, and ligand-specific transactivation by the VDRB1 isoform. Transactivation by these isoforms of the cytochrome P450 CYP24 promoter was compared in kidney (HEK293 and COS1), tumor-derived colon (Caco-2, LS174T, and HCT15), and mammary (HS578T and MCF7) cell lines. VDRB1 transactivation in response to 1,25(OH)(2)D(3) was greater in COS1 and HCT15 cells (145%), lower in HEK293 and Caco-2 cells (70-85%) and similar in other cell lines tested. By contrast, on the cytochrome P450 CYP3A4 promoter, 1,25(OH)(2)D(3)-induced VDRB1 transactivation was significantly lower than VDRA in Caco-2 (68%), but comparable to VDRA in HEK293 and COS1 cells. Ligand-dependence of VDRB1 differential transactivation was investigated using the secondary bile acid lithocholic acid (LCA). On the CYP24 promoter LCA-induced transactivation was similar for both isoforms in COS1, whereas in Caco-2 and HEK293 cells VDRB1 was less active. On the CYP3A4 promoter, LCA activation of VDRB1 was comparable to VDRA in all the cell lines tested. Mutational analysis indicated that both the 1,25(OH)(2)D(3) and LCA-regulated activities of both VDR isoforms required a functional ligand-dependent activation function (AF-2) domain. In gel shift assays VDR:DNA complex formation was stronger in the presence of 1,25(OH)(2)D(3) than with LCA. These results indicate that regulation of VDRB1 transactivation activity is dependent on cellular context, promoter, and the nature of the ligand.  相似文献   

2.
3.
Abstract: Nine isoforms of the rat NMDAR1 receptor subunit have been previously identified, of which several have an alternatively spliced N-terminal insert believed to be important in proton sensitivity of the receptor. The cloning of the human homologues of NMDAR1-3b (hNMDA1-1) and NMDAR1-4b (hNMDA1-2), both bearing the insert, is reported here. A monoclonal antibody generated against the N-terminal region of these isoforms showed reactivity with at least two distinct human brain proteins of ∼115 kDa. This antibody was further characterized by using a series of truncated fusion proteins and splice variants of NMDAR1 demonstrating its specific recognition of an epitope within the 21-amino acid N-terminal insert, encoded by exon 5. Western blot and immunocytochemical studies were performed to examine the expression of the exon 5-containing isoforms of the NMDAR1 subunit in both rat and human brain.  相似文献   

4.
5.
6.
7.
At least four isoforms of troponin T (TnT) exist in the human heart, and they are expressed in a developmentally regulated manner. To determine whether the different N-terminal isoforms are functionally distinct with respect to structure, Ca(2+) sensitivity, and inhibition of force development, the four known human cardiac troponin T isoforms, TnT1 (all exons present), TnT2 (missing exon 4), TnT3 (missing exon 5), and TnT4 (missing exons 4 and 5), were expressed, purified, and utilized in skinned fiber studies and in reconstituted actomyosin ATPase assays. TnT3, the adult isoform, had a slightly higher alpha-helical content than the other three isoforms. The variable region in the N terminus of cardiac TnT was found to contribute to the determination of the Ca(2+) sensitivity of force development in a charge-dependent manner; the greater the charge the higher the Ca(2+) sensitivity, and this was primarily because of exon 5. These studies also demonstrated that removal of either exon 4 or exon 5 from TnT increased the cooperativity of the pCa force relationship. Troponin complexes reconstituted with the four TnT isoforms all yielded the same maximal actin-tropomyosin-activated myosin ATPase activity. However, troponin complexes containing either TnT1 or TnT2 (both containing exon 5) had a reduced ability to inhibit this ATPase activity when compared with wild type troponin (which contains TnT3). Interestingly, fibers containing these isoforms also showed less relaxation suggesting that exon 5 of cardiac TnT affects the ability of Tn to inhibit force development and ATPase activity. These results suggest that the different N-terminal TnT isoforms would produce different functional properties in the heart that would directly affect myocardial contraction.  相似文献   

8.
Vitamin D nuclear receptor mediates the genomic actions of the active form of vitamin D, 1,25(OH)2D3. This hormone is involved in calcium and phosphate metabolism and cell differentiation. Compared to other nuclear receptors, VDR presents a large insertion region at the N-terminal part of the ligand binding domain between helices H1 and H3, encoded by an additional exon. This region is poorly conserved in VDR in different species and is not well ordered as observed by secondary structure prediction. We engineered a VDR ligand binding domain mutant by removing this insertion region. Here we report its biochemical and biophysical characterization. The mutant protein exhibits the same ligand binding, dimerization with retinoid X receptor and transactivation properties as the wild-type VDR, suggesting that the insertion region does not affect these main functions. Solution studies by small angle X-ray scattering shows that the conformation in solution of the VDR mutant is similar to that observed in the crystal and that the insertion region in the VDR wild-type is not well ordered.  相似文献   

9.
TIA-1 (T-cell Intracellular Antigen 1) and TIAR (TIA-1-related protein) are RNA-binding proteins involved in the regulation of alternative pre-mRNA splicing and other aspects of RNA metabolism. Various isoforms of these proteins exist in mammals. For example, TIA-1 presents two major isoforms (TIA-1a and TIA-1b) generated by alternative splicing of exon 5 that differ by eleven amino acids exclusive of the TIA-1a isoform. Here we show that the relative expression of TIA-1 and TIAR isoforms varies in different human tissues and cell lines, suggesting distinct functional properties and regulated isoform expression. We report that whereas TIA-1 isoforms show similar subcellular distribution and RNA binding, TIA-1b displays enhanced splicing stimulatory activity compared with TIA-1a, both in vitro and in vivo. Interestingly, TIAR depletion from HeLa and mouse embryonic fibroblasts results in an increased ratio of TIA-1b/a expression, suggesting that TIAR regulates the relative expression of TIA-1 isoforms. Taken together, the results reveal distinct functional properties of TIA-1 isoforms and the existence of a regulatory network that controls isoform expression.  相似文献   

10.
Ligand-independent actions of the vitamin D receptor (VDR) are required for normal post-morphogenic hair cycles; however, the molecular mechanisms by which the VDR exerts these actions are not clear. Previous studies demonstrated impaired regulation of the canonical Wnt signaling pathway in primary keratinocytes lacking the VDR. To identify the key effector of canonical Wnt signaling that interacts with the VDR, GST pulldown studies were performed. A novel interaction between the VDR and LEF1 (lymphoid enhancer-binding factor-1) that is independent of β-catenin was identified. This interaction is dependent upon sequences within the N-terminal region of the VDR, a domain required for VDR-DNA interactions and normal hair cycling in mice. Mutation of specific residues within the N-terminal region of the VDR not only abrogated interactions between the VDR and LEF1 but also impaired the ability of the VDR to enhance Wnt signaling in vdr(-/-) primary keratinocytes. Thus, this study demonstrates a novel interaction between the VDR and LEF1 that is mediated by the DNA-binding domain of the VDR and that is required for normal canonical Wnt signaling in keratinocytes.  相似文献   

11.
Dectin-1 is a specific receptor for beta-glucans and a major receptor for fungal particles on macrophages (Mphi). It is a type II membrane receptor that has a C-terminal, NK-like, C-type lectin-like domain separated from the cell membrane by a short stalk region and a cytoplasmic immunoreceptor tyrosine-based activation-like motif. We observed functional differences in dectin-1-dependent recognition of fungal particles by Mphi from different mouse strains. RT-PCR analysis revealed that mice have at least two splice forms of dectin-1, generated by differential usage of exon 3, encoding the full-length dectin-1A and a stalkless Mphi dectin-1B. Mphi from BALB/c mice and genetically related mice expressed both isoforms in similar amounts, whereas Mphi from C57BL/6 and related mice mainly expressed the smaller isoform. NIH-3T3 fibroblast and RAW264.7 macrophage cell lines stably expressing either isoform were able to bind and phagocytose zymosan at 37 degrees C. However, binding by the smaller dectin-1B isoform was significantly affected at lower temperatures. These properties were shared by the equivalent human isoforms. The relative ability of each of the isoforms to induce TNF-alpha production in RAW264.7 Mphi was also found to be different. These results are the first evidence that dectin-1 isoforms are functionally distinct and indicate that differential isoform usage may represent a mechanism of regulating cellular responses to beta-glucans.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
The RDM1 gene encodes a RNA recognition motif (RRM)-containing protein involved in the cellular response to the anti-cancer drug cisplatin in vertebrates. We previously reported a cDNA encoding the full-length human RDM1 protein. Here, we describe the identification of 11 human cDNAs encoding RDM1 protein isoforms. This repertoire is generated by alternative pre-mRNA splicing and differential usage of two translational start sites, resulting in proteins with long or short N-terminus and a great diversity in the exonic composition of their C-terminus. By using tagged proteins and fluorescent microscopy, we examined the subcellular distribution of full-length RDM1 (renamed RDM1alpha), and other RDM1 isoforms. We show that RDM1alpha undergoes subcellular redistribution and nucleolar accumulation in response to proteotoxic stress and mild heat shock. In unstressed cells, the long N-terminal isoforms displayed distinct subcellular distribution patterns, ranging from a predominantly cytoplasmic to almost exclusive nuclear localization, suggesting functional differences among the RDM1 proteins. However, all isoforms underwent stress-induced nucleolar accumulation. We identified nuclear and nucleolar localization determinants as well as domains conferring cytoplasmic retention to the RDM1 proteins. Finally, RDM1 null chicken DT40 cells displayed an increased sensitivity to heat shock, compared to wild-type (wt) cells, suggesting a function for RDM1 in the heat-shock response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号