首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Insulinotropic gut-derived hormones (incretins) play a significant role in the regulation of glucose homeostasis in healthy subjects and are responsible for 50-70% of insulin response to a meal. The main mediators of the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). However, in patients with type 2 diabetes the effect of incretins action is to a large extent impaired, which seems to explain disturbed secretional activity of beta cells in pancreatic islets. Detailed analysis of incretin defect proved that GIP secretion remains within physiological limits, whereas GLP-1 secretion is significantly decreased. Nevertheless, GLP-1 insulinotropic effect is preserved and GIP effect is significantly impaired. In consequence, substitutional GLP-1 administration aiming at the reduction of its deficiency, seems to be logical therapeutic management, because despite a physiologically retained quantity response from GIP, resistance to this peptide is frequently found. Therefore, particularly promising are the results of clinical studies with the use of GLP-1 analogues , GLP-1 receptors activation, as well as the inhibitors of dipeptidyl peptidase-IV (DPP IV), the enzyme responsible for incretin proteolysis, which restores the proper function of the intestinal-pancreatic axis in subjects with type 2 diabetes and creates new possibilities of a glycaemia reducing therapy and improvement in quality of life in this group of patients.  相似文献   

2.
The available evidence suggests that about two-thirds of the insulin response to an oral glucose load is due to the potentiating effect of gut-derived incretin hormones. The strongest candidates for the incretin effect are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1). In patients with type 2 diabetes, however, the incretin effect is lost or greatly impaired. It is hypothesized that this loss explains an important part of the impaired insulin secretion in patients. Further analysis of the incretin effects in patients has revealed that the secretion of GIP is near normal, whereas the secretion of GLP-1 is decreased. On the other hand, the insulintropic effect of GLP-1 is preserved, whereas the effect of GIP is greatly reduced, mainly because of a complete loss of the normal GIP-induced potentiation of second-phase insulin secretion. These two features, therefore, explain the incretin defect of type 2 diabetes. Strong support for the hypothesis that the defect plays an important role in the insulin deficiency of patients is provided by the finding that administration of excess GLP-1 to patients may completely restore the glucose-induced insulin secretion as well as the beta-cells' sensitivity to glucose. Because of this, analogs of GLP-1 or GLP-1 receptor activations are currently being developed for diabetes treatment, so far with very promising results.  相似文献   

3.
Glucagon-like peptide 1 (GLP-1) is a product of proglucagon that is secreted by specialized intestinal endocrine cells after meals. GLP-1 is insulinotropic and plays a role in the incretin effect, the augmented insulin response observed when glucose is absorbed through the gut. GLP-1 also appears to regulate a number of processes that reduce fluctuations in blood glucose, such as gastric emptying, glucagon secretion, food intake, and possibly glucose production and glucose uptake. These effects, in addition to the stimulation of insulin secretion, suggest a broad role for GLP-1 as a mediator of postprandial glucose homeostasis. Consistent with this role, the most prominent effect of experimental blockade of GLP-1 signaling is an increase in blood glucose. Recent data also suggest that GLP-1 is involved in the regulation of beta-cell mass. Whereas other insulinotropic gastrointestinal hormones are relatively ineffective in stimulating insulin secretion in persons with type 2 diabetes, GLP-1 retains this action and is very effective in lowering blood glucose levels in these patients. There are currently a number of products in development that utilize the GLP-1-signaling system as a mechanism for the treatment of diabetes. These compounds, GLP-1 receptor agonists and agents that retard the metabolism of native GLP-1, have shown promising results in clinical trials. The application of GLP-1 to clinical use fulfills a long-standing interest in adapting endogenous insulinotropic hormones to the treatment of diabetes.  相似文献   

4.
Gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine upon ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β cells. GIP and GLP-1 exert their effects by binding to their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which belong to the G-protein coupled receptor family. Receptor binding activates and increases the level of intracellular cAMP in pancreatic β cells, thereby stimulating insulin secretion glucose-dependently. In addition to their insulinotropic effects, GIP and GLP-1 have been shown to preserve pancreatic β cell mass by inhibiting apoptosis of β cells and enhancing their proliferation. Due to such characteristics, incretin hormones have been gaining mush attention as attractive targets for treatment of type 2 diabetes, and indeed incretin-based therapeutics have been rapidly disseminated worldwide. However, despites of plethora of rigorous studies, molecular mechanisms underlying how GIPR and GLP-1R activation leads to enhancement of glucose-dependent insulin secretion are still largely unknown. Here, we summarize the similarities and differences of these two incretin hormones in secretion and metabolism, their insulinotropic actions and their effects on pancreatic β cell preservation. We then try to discuss potential of GLP-1 and GIP in treatment of type 2 diabetes.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone secreted from enteroendocrine L cells in response to ingested nutrients. The first recognized and most important action of GLP-1 is the potentiation of glucose-stimulated insulin secretion in beta-cells, mediated by activation of its seven transmembrane domain G-protein-coupled receptor. In addition to its insulinotropic actions, GLP-1 exerts islet-trophic effects by stimulating replication and differentiation and by decreasing apoptosis of beta-cells. The GLP-1 receptor is expressed in a variety of other tissues important for carbohydrate metabolism, including pancreatic alpha-cells, hypothalamus and brainstem, and proximal intestinal tract. GLP-1 also appears to exert important actions in liver, muscle and fat. Thus, GLP-1 suppresses glucagon secretion, promotes satiety, delays gastric emptying and stimulates peripheral glucose uptake. The impaired GLP-1 secretion observed in type 2 diabetes suggests that GLP-1 plays a role in the pathogenesis of this disorder. Thus, because of its multiple actions, GLP-1 is an attractive therapeutic target for the treatment of type 2 diabetes, and major interest has resulted in the development of a variety of GLP-1 receptor agonists for this purpose. Ongoing clinical trials have shown promising results and the first analogs of GLP-1 are expected to be available in the near future.  相似文献   

6.
Incretins are hormones released by nutrients from the GI tract. They amplify glucose-induced insulin release. By raising circulating incretin levels, oral glucose provokes a higher insulin response than that resulting from intravenous glucose. The two most important incretin hormones are glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). In patients with type 2 diabetes, the incretin effect is decreased, mainly due to loss of the GIP-regulated second phase of insulin secretion, and because of a decreased secretion of GLP-1. In addition to its insulinotropic effect, GLP-1 inhibits glucagon release, prolongs gastric emptying, and leads to decreases in body-weight, all of which explain the marked antidiabetogenic effect of this incretin hormone.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) is an incretin hormone with antidiabetic action through its ability to stimulate insulin secretion, increase beta cell neogenesis, inhibit beta cell apoptosis, inhibit glucagon secretion, delay gastric emptying and induce satiety. It has therefore been explored as a novel treatment of type 2 diabetes. A problem is, however, that GLP-1 is rapidly inactivated by the dipeptidyl peptidase-4 (DPP-4) enzyme, which results in a short circulating half-life of the active form of GLP-1 (< 2 min). Two strategies have been employed to overcome this obstacle as a treatment of diabetes. One is to use GLP-1 receptor agonists that have a prolonged half-life due to reduced degradation by DPP-4. These GLP-1 mimetics include exenatide and liraglutide. Another strategy is to inhibit the enzyme DPP-4, which prolongs the half-life of endogenously released active GLP-1. Both these strategies have been successful in animal studies and in clinical studies of up to one year's treatment. This review will summarize the background and the current (mid 2004) clinical experience with these two strategies.  相似文献   

8.
The biology of incretin hormones   总被引:1,自引:0,他引:1  
Gut peptides, exemplified by glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are secreted in a nutrient-dependent manner and stimulate glucose-dependent insulin secretion. Both GIP and GLP-1 also promote β cell proliferation and inhibit apoptosis, leading to expansion of β cell mass. GLP-1, but not GIP, controls glycemia via additional actions on glucose sensors, inhibition of gastric emptying, food intake and glucagon secretion. Furthermore, GLP-1, unlike GIP, potently stimulates insulin secretion and reduces blood glucose in human subjects with type 2 diabetes. This article summarizes current concepts of incretin action and highlights the potential therapeutic utility of GLP-1 receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors for the treatment of type 2 diabetes.  相似文献   

9.
Glucagon-like peptide 1 and its derivatives in the treatment of diabetes   总被引:8,自引:0,他引:8  
Glucagon-like peptide 1 (GLP-1) was discovered as an insulinotropic gut hormone, suggesting a physiological role as an incretin hormone, i.e., being responsible, in part, for the higher insulin secretory response after oral as compared to intravenous glucose administration. This difference, the incretin effect, is partially lost in patients with Type 2 diabetes. The actions of GLP-1 include (a) a stimulation of insulin secretion in a glucose-dependent manner, (b) a suppression of glucagon, (c) a reduction in appetite and food intake, (d) a deceleration of gastric emptying, (e) a stimulation of beta-cell neogenesis, growth and differentiation in animal and tissue culture experiments, and (f) an in vitro inhibition of beta-cell apoptosis induced by different toxins. Intravenous GLP-1 can normalize and subcutaneous GLP-1 can significantly lower plasma glucose in the majority of patients with Type 2 diabetes. GLP-1 itself, however, is inactivated rapidly in vivo and thus does not appear to be useful as a therapeutic agent in the long-term treatment of Type 2 diabetes. Other agents acting on GLP-1 receptors have been found (like exendin-4) or developed as GLP-1 derivatives (like liraglutide or GLP-1/CJC-1131). Clinical trials with exenatide (two injections per day) and liraglutide (one injection per day) have shown reductions in glucose concentrations and HbA1c by more than 1%, associated with moderate weight loss (2-3 kg), but also some nausea and, rarely, vomiting. It is hoped that this new class of drugs interacting with the GLP-1 or other incretin receptors, the so-called "incretin mimetics", will broaden our armamentarium of antidiabetic medications in the nearest future.  相似文献   

10.
Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes.   总被引:1,自引:0,他引:1  
Glucagon-like peptide 1 (GLP-1) was discovered as an incretin (insulinotropic gut) hormone. Biological actions of GLP-1 in healthy and type 2 diabetic subjects include (a) stimulation of insulin secretion in a glucose-dependent manner, (b) suppression of glucagon, (c) reduction in appetite and food intake, (d) deceleration of gastric emptying. In animal experiments, in addition, (e) stimulation of beta-cell neogenesis, growth and differentiation in animal and tissue culture experiments, and (f) in vitro inhibition of beta-cell apoptosis induced by different agents have been observed. Since the incretin effect--the higher insulin secretory response to oral as compared to intravenous glucose loads - is reduced in patients with Type 2 diabetes, GLP-1 has been used to pharmacologically replace incretin. Intravenous GLP-1 can normalise, and subcutaneous GLP-1 can significantly lower plasma glucose in the majority of patients with Type 2 diabetes. The magnitude of this effect does not greatly depend on patient characteristics such as age, sex, obesity, or baseline insulin and glucagon, with minor influences of previous antidiabetic therapy and actual metabolic control. GLP-1 itself, however, is inactivated rapidly in vivo by the protease DPP IV and can only be used for short-term metabolic control, such as in intensive care units (potentially useful in patients with acute myocardial infarction, coronary surgery, cerebrovascular events, septicaemia, during the perioperative period and while on parenteral nutrition). For more long-term metabolic control, incretin mimetics (agonists at the GLP-1 receptor) with more favourable pharmacokinetic profiles should be used.  相似文献   

11.
Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut-derived incretins secreted in response to nutrient ingestion. Both incretins potentiate glucose-dependent insulin secretion and enhance beta-cell mass through regulation of beta-cell proliferation, neogenesis and apoptosis. In contrast, GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. Furthermore, human subjects with Type 2 diabetes exhibit relative resistance to the actions of GIP, but not GLP-1R agonists. The physiological importance of both incretins has been investigated through generation and analysis of incretin receptor knockout mice. Elimination of incretin receptor action in GIPR-/- or GLP-1R-/- mice produces only modest impairment in glucose homeostasis. Similarly, double incretin receptor knockout (DIRKO) mice exhibit normal body weight and normal levels of plasma glucagon and hypoglycemic responses to exogenous insulin. However, glucose-stimulated insulin secretion is significantly decreased following oral but not intraperitoneal glucose challenge in DIRKO mice and the glucose lowering actions of dipeptidyl peptidase-IV (DPP-IV) inhibitors are extinguished in DIRKO mice. Hence, incretin receptor signaling exerts physiologically relevant actions critical for glucose homeostasis, and represents a pharmacologically attractive target for development of agents for the treatment of Type 2 diabetes.  相似文献   

12.
AIMS/HYPOTHESIS: Since insulin secretion in response to exogenous gastric inhibitory polypeptide (GIP) is diminished not only in patients with type 2 diabetes, but also in their normal glucose-tolerant first-degree relatives, it was the aim to investigate the integrity of the entero-insular axis in such subjects. METHODS: Sixteen first-degree relatives of patients with type 2 diabetes (4 male, 12 female, age 50+/-12 years, BMI 26.1+/-3.8 kg/m(2)) and 10 matched healthy controls (negative family history, 6 male, 4 female, 45+/-13 years, 26.1+/-4.2 kg/m(2)) were examined with an oral glucose load (75 g) and an "isoglycaemic" intravenous glucose infusion. Blood was drawn over 240 min for plasma glucose (glucose oxidase), insulin, C-peptide, GIP and glucagon-like peptide 1 (GLP-1; specific immunoassays). RESULTS: The pattern of glucose concentrations could precisely be copied by the intravenous glucose infusion (p=0.99). Insulin secretion was stimulated significantly more by oral as compared to intravenous glucose in both groups (p<0.0001). The percent contribution of the incretin effect was similar in both groups (C-peptide: 61.9+/-5.4 vs. 64.4+/-5.8%; p=0.77; insulin: 74.2+/-3.3 vs. 75.8+/-4.9; p=0.97; in first-degree relatives and controls, respectively). The individual responses of GIP and GLP-1 secretion were significantly correlated with each other (p=0.0003). The individual secretion of both GIP and GLP-1 was identified as a strong predictor of the integrated incremental insulin secretory responses as well as of the incretin effect. CONCLUSION/INTERPRETATION: Despite a lower insulin secretory response to exogenous GIP, incretin effects are similar in first-degree relatives of patients with type 2 diabetes and control subjects. This may be the result of a B cell secretory defect that affects stimulation by oral and intravenous glucose to a similar degree. Nevertheless, endogenous secretion of GIP and GLP-1 is a major determinant of insulin secretion after oral glucose.  相似文献   

13.
Gastric inhibitory polypeptide: the neglected incretin revisited   总被引:6,自引:0,他引:6  
After the ingestion of fat- and glucose-rich meals, gut hormones are secreted into the circulation in order to stimulate insulin secretion. This so-called "incretin effect" is primarily conferred by Glucagon-like peptide 1 (GLP-1) and Gastric Inhibitory Polypeptide (GIP). In contrast to GLP-1, GIP has lost most of its insulinotropic effect in type 2 diabetic patients. In addition to its main physiological role in the regulation of endocrine pancreatic secretion, GIP exerts various peripheral effects on adipose tissue and lipid metabolism, thereby leading to increased lipid deposition in the postprandial state. In some animal models, an influence on gastrointestinal functions has been described. However, such effects do not seem to play an important role in humans. During the last years, the major line of research has focussed on GLP-1, due to its promising potential for the treatment of type 2 diabetes mellitus. However, the physiological importance of GIP in the regulation of insulin secretion has been shown to even exceed that of GLP-1. Furthermore, work from various groups has provided evidence that GIP contributes to the pathogenesis of type 2 diabetes to a considerable degree. Recent data with modified GIP analogues further suggested a possibility of therapeutic use in the treatment of type 2 diabetes. Thus, it seems worthwhile to refocus on this important and-sometimes-neglected incretin hormone. The present work aims to review the physiological functions of GIP, to characterize its role in the pathogenesis of type 2 diabetes, and to discuss possible clinical applications and future perspectives in the light of new findings.  相似文献   

14.
The incidence of type 2 diabetes mellitus (T2DM) is rapidly increasing worldwide with significant consequences on individual quality of life as well as economic burden on states' healthcare costs. While origins of the pathogenesis of T2DM are poorly understood, an early defect in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is considered a hallmark of T2DM 1.Upon a glucose stimulus, insulin is secreted in a biphasic manner with an early first-phase burst of insulin, which is followed by a second, more sustained phase of insulin output 2. First phase insulin secretion is diminished early in T2DM as well is in subjects who are at risk of developing T2DM 3 4 5 6.An effective treatment of T2DM with incretin hormone glucagon-like peptide-1 (GLP-1) or its long acting peptide analogue exendin-4 (E4), restores first-phase and augments second-phase glucose stimulated insulin secretion. This effect of incretin action occurs within minutes of GLP-1/E4 infusion in T2DM humans. An additional important consideration is that incretin hormones augment GSIS only above a certain glucose threshold, which is slightly above the normal glucose range. This ensures that incretin hormones stimulate GSIS only when glucose levels are high, while they are ineffective when insulin levels are below a certain threshold 7 8.Activation of the GLP-1 receptor, which is highly expressed on pancreatic β-cells, stimulates 2 -distinct intracellular signaling pathways: a) the cAMP-protein kinase A branch and b) the cAMP-EPAC2 (EPAC=exchange protein activated by cAMP) branch. While the EPAC2 branch is considered to mediate GLP-1 effects on first-phase GSIS, the PKA branch is necessary for the former branch to be active 9 10. However, how these 2 branches interplay and converge and how their effects on insulin secretion and insulin vesicle exocytosis are coordinated is poorly understood.Thus, at the outset of our studies we have a poorly understood intracellular interplay of cAMP-dependent signaling pathways, which - when stimulated - restore glucose-dependent first phase and augment second phase insulin secretion in the ailing β-cells of T2DM.  相似文献   

15.
Diabetes, a disease in which the body does not produce or use insulin properly, is a serious global health problem. Gut polypeptides secreted in response to food intake, such as glucagon-like peptide-1 (GLP-1), are potent incretin hormones that enhance the glucose-dependent secretion of insulin from pancreatic beta cells. Free fatty acids (FFAs) provide an important energy source and also act as signaling molecules in various cellular processes, including the secretion of gut incretin peptides. Here we show that a G-protein-coupled receptor, GPR120, which is abundantly expressed in intestine, functions as a receptor for unsaturated long-chain FFAs. Furthermore, we show that the stimulation of GPR120 by FFAs promotes the secretion of GLP-1 in vitro and in vivo, and increases circulating insulin. Because GLP-1 is the most potent insulinotropic incretin, our results indicate that GPR120-mediated GLP-1 secretion induced by dietary FFAs is important in the treatment of diabetes.  相似文献   

16.
Incretin secretion and effect on insulin secretion are not fully understood in patients with type 2 diabetes. We investigated incretin and insulin secretion after meal intake in obese and non-obese Japanese patients with type 2 diabetes compared to non-diabetic subjects. Nine patients with type 2 diabetes and 5 non-diabetic subjects were recruited for this study. Five diabetic patients were obese (BMI ? 25) and 4 patients were non-obese (BMI < 25). In response to a mixed meal test, the levels of immunoreactive insulin during 15-90 min and C-peptide during 0-180 min in non-obese patients were significantly lower than those in obese patients. Total GLP-1 and active GIP levels showed no significant difference between obese and non-obese patients throughout the meal tolerance test. In addition, there were no significant differences between diabetic patients and non-diabetic subjects. In conclusion, incretin secretion does not differ between Japanese obese and non-obese patients with type 2 diabetes and non-diabetic subjects.  相似文献   

17.
Incretins, enhancers of insulin secretion, are essential for glucose tolerance, and a reduction in their function might contribute to poor beta-cell function in patients with type-2 diabetes mellitus. However, at supraphysiological doses, the incretin glucagon-like peptide-1 (GLP-1) protects pancreatic beta cells, and inhibits glucagon secretion, gastric emptying and food intake, leading to weight loss. GLP-1 mimetics, which are stable-peptide-based activators of the GLP-1 receptor, and incretin enhancers, which inhibit the incretin-degrading enzyme dipeptidyl peptidase-4, have emerged as therapies for type-2 diabetes and have recently reached the market. The pathophysiological basis the clinical use of these therapeutics is reviewed here.  相似文献   

18.
Glucagon-like peptide-1 (GLP-1)-based therapy of type 2 diabetes is executed either by GLP-1 receptor agonists, which stimulate the GLP-1 receptors, or by dipeptidyl peptidase-4 (DPP-4) inhibitors, which prevent the inactivation of endogenous GLP-1 thereby increasing the concentration of endogenous active GLP-1. GLP-1 activates pancreatic receptors resulting in improved glycemia through glucose-dependent stimulation of insulin secretion and inhibition of glucagon secretion. There is also a potential beta cell preservation effect, as judged from rodent studies. GLP-1 receptors are additionally expressed in extrapancreatic tissue, having potential for the treatment to reduce body weight and to potentially have beneficial cardio- and endothelioprotective effects. Clinical trials in subjects with type 2 diabetes have shown that in periods of 12 weeks or more, these treatments reduce HbA1c by ≈ 0.8–1.1% from baseline levels of 7.7–8.5%, and they are efficient both as monotherapy and in combination therapy with metformin, sulfonylureas, thiazolidinediones or insulin. Furthermore, GLP-1 receptor agonists reduce body weight, whereas DPP-4 inhibitors are body weight neutral. The treatment is safe with very low risk for adverse events, including hypoglycaemia. GLP-1 based therapy is thus a novel and now well established therapy of type 2 diabetes, with a particular value in combination with metformin in patients who are inadequately controlled by metformin alone.  相似文献   

19.
Glucagon-like peptide-1 (GLP-1) is a potent incretin hormone currently under investigation for use as a novel therapeutic agent in the treatment of type 2 diabetes. One of several therapeutically important biological actions of GLP-1 in type 2 diabetic subjects is ability to induce strong suppression of glucagon secretion. The glucagonostatic action of GLP-1 results from its interaction with a specific G-protein coupled receptor resulting in the activation of adenylate cyclase and an increase in cAMP generation. In the pancreatic alpha-cell, cAMP, via activation of protein kinase A, interacts with a plethora of signal transduction processes including ion-channel activity and exocytosis of the glucagon-containing granules. In this short review, we will focus on recent advances in our understanding on the cellular mechanisms proposed to underlie the glucagonotropic action of GLP-1 and attempt to incorporate this knowledge into a working model for the control of glucagon secretion. Studies on the effects of GLP-1 on glucagon secretion are relevant to the pathogenesis of type 2 diabetes due to the likely contribution of hyperglucagonemia to impaired glucose tolerance in type 2 diabetes.  相似文献   

20.
To investigate a possible role of an enteroinsular axis involvement in the pathogenesis of type 2 diabetes, plasma glucagon-like peptide 1 (GLP-1) 7-36 amide response to nutrient ingestion was evaluated in type 2 diabetics affected by different degrees of beta-cell dysfunction. METHODS: 14 patients on oral hypoglycaemic treatment (group A: HbA1C = 8.1 +/- 1.8 %) and 11 age-matched diabetic patients on diet only (group B: HbA1C = 6.4 +/- 0.9) participated in the study. 10 healthy volunteers were studied as controls. In the postabsorptive state, a mixed meal (700 kCal) was administered to all subjects, and blood samples were regularly collected up to 180' for plasma glucose, insulin, glucagon, and GLP-1 determination. RESULTS: In the control group, the test meal induced a significant increase in plasma GLP-1 at 30' and 60' (p < 0.01); the peptide concentrations then returning toward basal levels. beta-cell function estimation by HOMA score confirmed a more advanced involvement in group A than in group B (p < 0.01). In contrast, the insulin resistance degree showed a similar result in the two groups (HOMA-R). In group A, first-phase postprandial insulin secretion (0 - 60') resulted, as expected, in being significantly reduced compared to healthy subjects (p < 0.001). In the same patients the mean fasting GLP-1 value was similar to controls, but the meal failed to increase plasma peptide levels, which even tended to decrease during the test (p < 0.01). In group B, food-mediated early insulin secretion was higher than in group A (p < 0.001), although significantly reduced when compared to controls (p < 0.01). Like group A, no GLP-1 response to food ingestion occurred in group B patients in spite of maintained basal peptide secretion. Whereas the test-meal did not significantly modify plasma glucagon levels in the control group, glucagon concentrations increased at 30' and 60' in both diabetic groups (p < 0.01). CONCLUSIONS: 1) The functional integrity of GLP-1 cells results as being seriously impaired even in the condition of mild diabetes; 2) the early peptide failure could contribute to the development of beta-cell deterioration which characterizes overt type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号