首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Environmental flows were released to the Macquarie Marshes (~210,000 ha) in north-west NSW of Australia between October and December 2005, inundating an estimated 24,600 ha of floodplain area. According to the flood pulse concept, the marsh floodplains would have stored large amounts of nutrients and carbon during dry antecedent conditions, which would be released into the overlaying flood water. Field studies were conducted in mid-December 2005 at two sites, one on open floodplain woodland with a sparse canopy of River Red Gum and ground cover dominated by saltbushes and the other on open floodplain with black roly-poly. At each site, nutrients, dissolved organic carbon (DOC), planktonic bacteria and phytoplankton were monitored daily for a 6-day period from the overlaying water of a floodplain inundated by the environmental water release. Those in mesocosms deployed in situ, containing marsh floodplain sediments that had been inundated artificially, were also monitored. The mesocosm results from both the sites showed that release of nitrogen was rapid, attaining mean concentrations of total nitrogen of 3.7–14.8 mg l−1, followed by more gradual increases in total phosphorus (mean concentrations 0.6–0.8 mg l−1) and DOC (26.1–50.2 mg l−1) within the 6-day experiment; planktonic microbial communities developed concomitantly with the increasing concentrations of nutrients and DOC, attaining mean densities of (6.0–6.9) × 106 cells ml−1 of planktonic bacteria and (80.7–81.4) × 103 cells ml−1 of phytoplankton; and for each site the overall measured condition of the mesocosm tended to approach that of the Marshes, over the course of the 6-day experiment. The present study (both observational and experimental) demonstrates that the floodplain sediments in the Marshes, which have been exposed to dry antecedent conditions, release nutrients and carbon to the overlaying flood water following inundation. These resources are thought to have been stored during the dry antecedent phase in accord with the flood pulse concept. Based on the mesocosm experiment, the released nutrients and carbon are in turn most likely to be used by microbial components, such as bacteria and algae, which develop within days of inundation of the floodplain sediments. Thus, environmental flow release provides potential for floodplains to attain a series of ecological responses including initial release of inorganic nutrients and dissolved organic matter and increase in planktonic bacteria and phytoplankton.  相似文献   

2.
The relationship between ionic content, measured as electrical conductivity, and turbidity resulting from inorganic suspensoids was investigated experimentally on the Ponogolo river floodplain. Turbid floodwaters were mixed in various proportions with clear lake water of high conductivity and settling rates determined. For the conductivity range 215–1084 μS cm−1 there was an increase in the maximum settling rate from 3.3–20.6% h−1. These data were compared with observations made, in a turbid lake of low conductivity and a clear water lake of high conductivity, during and after a flood. The importance of lake morphology, flushing and conductivity as determinants of turbidity and light attenuation in the floodplain lakes is discussed. The relevance of these observations to the understanding of turbidity in other systems is considered.  相似文献   

3.
Rapid Nitrate Loss and Denitrification in a Temperate River Floodplain   总被引:3,自引:0,他引:3  
Nitrogen (N) pollution is a problem in many large temperate zone rivers, and N retention in river channels is often small in these systems. To determine the potential for floodplains to act as N sinks during overbank flooding, we combined monitoring, denitrification assays, and experimental nitrate (NO3 -N) additions to determine how the amount and form of N changed during flooding and the processes responsible for these changes in the Wisconsin River floodplain (USA). Spring flooding increased N concentrations in the floodplain to levels equal to the river. As discharge declined and connectivity between the river and floodplain was disrupted, total dissolved N decreased over 75% from 1.41 mg l−1, equivalent to source water in the Wisconsin River on 14 April 2001, to 0.34 mg l−1 on 22 April 2001. Simultaneously NO3 -N was attenuated almost 100% from 1.09 to <0.002 mg l−1. Unamended sediment denitrification rates were moderate (0–483 μg m−2 h−1) and seasonally variable, and activity was limited by the availability of NO 3 -N on all dates. Two experimental NO3 -N pulse additions to floodplain water bodies confirmed rapid NO3 -N depletion. Over 80% of the observed NO 3 -N decline was caused by hydrologic export for addition #1 but only 22% in addition #2. During the second addition, a significant fraction (>60%) of NO3 -N mass loss was not attributable to hydrologic losses or conversion to other forms of N, suggesting that denitrification was likely responsible for most of the NO3 -N disappearance. Floodplain capacity to decrease the dominant fraction of river borne N within days of inundation demonstrates that the Wisconsin River floodplain was an active N sink, that denitrification often drives N losses, and that enhancing connections between rivers and their floodplains may enhance overall retention and reduce N exports from large basins.  相似文献   

4.
The denitrification performance of a lab-scale anoxic rotating biological contactor (RBC) using landfill leachate with high nitrate concentration was evaluated. Under a carbon to nitrogen ratio (C/N) of 2, the reactor achieved N-NO3 removal efficiencies above 95% for concentrations up to 100 mg N-NO3  l−1. The highest observed denitrification rate was 55 mg N-NO3  l−1 h−1 (15 g N-NO3  m−2 d−1) at a nitrate concentration of 560 mg N-NO3  l−1. Although the reactor has revealed a very good performance in terms of denitrification, effluent chemical oxygen demand (COD) concentrations were still high for direct discharge. The results obtained in a subsequent experiment at constant nitrate concentration (220 mg N-NO3  l−1) and lower C/N ratios (1.2 and 1.5) evidenced that the organic matter present in the leachate was non-biodegradable. A phosphorus concentration of 10 mg P-PO4 3− l−1 promoted autotrophic denitrification, revealing the importance of phosphorus concentration on biological denitrification processes.  相似文献   

5.
Changes in oxygen consumption rate and Na+/K+-ATPase activity during early development were studied in the sea urchin Paracentrotus lividus Lam. The oxygen consumption rate increased from 0.12 μmol O2 mg protein−1 h−1 in unfertilized eggs to 0.38 μmol O2 mg protein−1 h−1 25 min after fertilization. Specific activity of the Na+/K+-ATPase was significantly stimulated after fertilization, ranging up to 1.07 μmol Pi h−1 mg protein−1 in the late blastula stage and slightly lower values in the early and late pluteus stages.  相似文献   

6.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

7.
The production of compound K and aglycon protopanaxadiol (APPD) from ginsenoside Rd and ginseng root extract was performed using a recombinant β-glycosidase from Pyrococcus furiosus. The activity for Rd was optimal at pH 5.5 and 95°C with a half-life of 68 h at 95°C. β-Glycosidase converted Rb1, Rb2, Rc, and Rd to APPD via compound K. With increases in the enzyme activity, the productivities of compound K and APPD increased. The substrate concentration was optimal at 4.0 mM Rd or 10% (w/v) ginseng root extract; 4 mM of Rd was converted to 3.3 mM compound K with a yield of 82.5% (mol/mol) and a productivity of 2,010 mg l−1 h−1 at 1 h and was hydrolyzed completely to APPD with 364 mg l−1 h−1 after 5 h. Rb1, Rb2, Rc, and Rd at 3.9 mM in 10% ginseng root extract were converted to 3.1 mM compound K with 79.5% and 1,610 mg l−1 h−1 at 1.2 h and were hydrolyzed completely to APPD with 300 mg l−1 h−1 after 6 h. The concentrations and productivities of compound K and APPD in the present study are the highest ever reported.  相似文献   

8.
Microbial community of acetate utilizing denitrifiers in aerobic granules   总被引:2,自引:0,他引:2  
Nitrite accumulates during biological denitrification processes when carbon sources are insufficient. Acetate, methanol, and ethanol were investigated as supplementary carbon sources in the nitrite denitrification process using biogranules. Without supplementary external electron donors (control), the biogranules degraded 200 mg l−1 nitrite at a rate of 0.27 mg NO2–N g−1 VSS h−1. Notably, 1,500 mg l−1 acetate and 700 mg l−1 methanol or ethanol enhanced denitrification rates for 200 mg l−1 nitrite at 2.07, 1.20, and 1.60 mg NO2–N g−1 VSS h−1, respectively; these rates were significantly higher than that of the control. The sodium dodecyl sulfate polyacrylamide gel electrophoresis of the nitrite reductase (NiR) enzyme identified three prominent bands with molecular weights of 37–41 kDa. A linear correlation existed between incremental denitrification rates and incremental activity of the NiR enzyme. The NiR enzyme activity was enhanced by the supplementary carbon sources, thereby increasing the nitrite denitrification rate. The capacity of supplementary carbon source on enhancing NiR enzyme activity follows: methanol > acetate > ethanol on molar basis or acetate > ethanol > methanol on an added weight basis.  相似文献   

9.
Petroleum-related activities in Arctic waters are rapidly increasing parallel to the ongoing thinning of the Arctic sea ice. As part of a series of studies on petroleum-induced stress in polar cod Boreogadus saida, we tested the effects of acute (~60 min) and chronic (4 weeks) exposure to the water soluble fraction (WSF) of petroleum on whole body metabolism inferred from measurements of oxygen consumption rates. The exposure of polar cod to WSF leads to a statistically significant depression in routine metabolism in the order Control (0.260 mg O2 g fish−1 h−1; N = 6) > Chronic (0.191 mg O2 g fish−1 h−1; N = 6) > Acute (0.110 mg O2 g fish−1 h−1; N = 2), decoupling of routine metabolism and body mass but possibly also to a partial metabolic compensation after 4 weeks of exposure. The results are reviewed in context with similar studies on Antarctic and non-polar fishes.  相似文献   

10.
A regional data set on water chemistry from 1995 was used to set critical values for the survival of brown trout in Norwegian lakes (n = 790) in relation to pH, inorganic Al and acid neutralizing capacity (ANC). ANC was estimated both traditionally (ANCtrad) and modified by treating one-third of the dissolved organic matter as part of the strong acid anions (ANCmod). The threshold value to avoid fish damage (ANClimit) was compared with that found in a similar study from 1986. Brown trout populations were categorized as unaffected, damaged or extinct on the basis of questionnaires. In 1995, threshold values to avoid fish damage on the basis of ANCtrad and ANCmod were 67 and 48 μeq l−1, respectively, compared with 20 and 8 μeq l−1, respectively, in 1986. The higher ANClimit found for the data from 1995 is probably caused by a lower pH and a higher inorganic Al concentration at a given ANC value in 1995 than in the 1980s. ANClimit was highly related to organic carbon concentrations in the study lakes, being estimated at 33, 73 and >100 μeq l−1 for three different TOC categories (<2 mg C l−1, 2–5 mg C l−1 and >5 mg C l−1). These differences in ANClimit are due to lower pH and higher concentrations of inorganic Al in humic lakes than in clear water lakes at the same level of ANC. It is suggested that the change in ANClimit for fish in acidified lakes is linked to increased concentrations of TOC in recent years.  相似文献   

11.
To investigate annual variation in soil respiration (R S) and its components [autotrophic (R A) and heterotrophic (R H)] in relation to seasonal changes in soil temperature (ST) and soil water content (SWC) in an Abies holophylla stand (stand A) and a Quercus-dominated stand (stand Q), we set up trenched plots and measured R S, ST and SWC for 2 years. The mean annual rate of R S was 436 mg CO2 m−2 h−1, ranging from 76 to 1,170 mg CO2 m−2 h−1, in stand A and 376 mg CO2 m−2 h−1, ranging from 82 to 1,133 mg CO2 m−2 h−1, in stand Q. A significant relationship between R S and its components and ST was observed over the 2 years in both stands, whereas a significant correlation between R A and SWC was detected only in stand Q. On average over the 2 years, R A accounted for approximately 34% (range 17–67%) and 31% (15–82%) of the variation in R S in stands A and Q, respectively. Our results suggested that vegetation type did not significantly affect the annual mean contributions of R A or R H, but did affect the pattern of seasonal change in the contribution of R A to R S.  相似文献   

12.
This article synthesizes several studies carried out at Fourleague Bay and connecting waterways of the western Terrebonne interdistributary basin of the Mississippi River delta plain, which is strongly impacted by the Atchafalaya River. Hydrologic and nutrient fluxes were measured over two tidal cycles in February, April, and September of 1982. Synoptic water quality sampling of nutrients, sediments, salinity, and chlorophyll a was carried out from April 1986 to August 1991 (17 events), during 1994 (12 events), and from 2000 to 2002 (8 events). Hydrology and nutrient dynamics of the region were controlled by winds associated with cold fronts and Atchafalaya River discharge during winter–spring, and tidal forces during summer–fall. Less than 5% of the water discharged from the Atchafalaya River entered Fourleague Bay, but nonetheless was the dominant source of nutrients, especially nitrate + nitrite (NO x ), and sediments. Nitrate + nitrite concentrations entering Fourleague Bay ranged from 33.3 to 118.0 μM, with highest levels occurring during peak river discharge. Fourleague Bay was a sink for DIN, with retention rates ranging from 184.4 to 704.2 μg-at m−2 h−1, but both a source and sink for DIP, with retention rates ranging from −2.7 to 14.9 μg-at m−2 h−1. Concentrations of DIN and DIP in the bay ranged from below detection limits to 49.0 and 29.1 μM, respectively, while chlorophyll a ranged from 6.1 to 49.4 μg/l. In the wetlands surrounding Fourleague Bay, chlorophyll a generally mirrored NO x and TSS, and generally peaked 2–15 km from riverine sources.  相似文献   

13.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

14.
Replicated, factorial mesocosm experiments were conducted across Europe to study the effects of nutrient enrichment and fish density on macrophytes and on periphyton chlorophyll a (chl-a) with regard to latitude. Periphyton chl-a densities and plant decline were significantly related to nutrient loading in all countries. Fish effects were significant in a few sites only, mostly because of their contribution to the nutrient pool. A saturation-response type curve in periphyton chl-a with nutrients was found, and northern lakes achieved higher densities than southern lakes. Nutrient concentration and phytoplankton chl-a necessary for a 50% plant reduction followed a latitudinal gradient. Total phosphorus values for 50% plant disappearance were similar from Sweden (0.27 mg L−1) to northern Spain (0.35 mg L−1), but with a sharp increase in southern Spain (0.9 mg L−1). Planktonic chl-a values for 50% plant reduction increased monotonically from Sweden (30 μg L−1) to València (150 μg L−1). Longer plant growing-season, higher light intensities and temperature, and strong water-level fluctuations characteristic of southern latitudes can lead to greater persistence of macrophyte biomass at higher turbidities and nutrient concentration than in northern lakes. Results support the evidence that latitudinal differences in the functioning of shallow lakes should be considered in lake management and conservation policies.  相似文献   

15.
Floodplain restoration has been advocated as a means to restore several ecological services associated with floodplains: water quality improvement, fish rearing habitat, wildlife habitat, flood control, and groundwater recharge. A history of agricultural encroachment on the lower Cosumnes River has resulted in extensive channelization and levee construction. In fall 1998, an experimental floodplain was established by breaching a levee in order to restore the connection between the main channel and its historic floodplain. In this study, we examined how effective this newly restored floodplain was at processing nitrate (NO 3 ) before reentering the main channel downstream. Two methods were used to examine nitrate loss. In December 2001, we determined denitrification potentials of the floodplain soils before seasonal flooding inundated the floodplain. Next, we conducted a series of field soil column (mesocosm) experiments from March to June 2002 to study NO 3 -N loss from the overlying water in both sandy and clayey soils and at three levels of NO 3 -N (ambient, +1 mg N l−1, +5 mg N l−1). In addition, we examined NO 3 -N loss from mesocosms with water only to determine if loss was related primarily to soil or water column processes. Denitrification potentials were highly variable ranging from 1.6 to 769 ng N2O–N cm−3 h−1. In addition, the denitrification potential was highly correlated with the amount of bioavailable carbon indicating that carbon was a limiting factor for denitrification. Nitrate-N loss rates from mesocosms ranged from 2.9 to 21.0 μg N l−1 h−1 over all treatments and all 3 months examined. Significant loss of NO 3 -N (60–93%) from the water only treatment only occurred in June when warmer temperatures and solar radiation most likely increased NO 3 -N uptake by phytoplankton. When scaled up, potential NO 3 -N loss from the restored floodplain represented 0.6–4.4% of the annual N load from the Lower Cosumnes River during a typical wet year and ~24% during a dry year. During dry water years, the effectiveness of the floodplain for reducing nitrate is limited by the amount of N supplied to the floodplain. Results from this study suggest that restored floodplains can be an effective NO 3 sink.  相似文献   

16.
Phenol is one of the major toxic pollutants in the wastes generated by a number of industries and needs to be eliminated before their discharge. Although microbial degradation is a preferred method of waste treatment for phenol removal, the general inability of the degrading strains to tolerate higher substrate concentrations has been a bottleneck. Immobilization of the microorganism in suitable matrices has been shown to circumvent this problem to some extent. In this study, cells of Pseudomonas sp. CP4, a laboratory isolate that degrades phenol, cresols, and other aromatics, were immobilized by entrapment in Ca-alginate and agar gel beads, separately and their performance in a fluidized bed bioreactor was compared. In batch runs, with an aeration rate of 1 vol−1 vol−1 min−1, at 30°C and pH 7.0 ± 0.2, agar-encapsulated cells degraded up to 3000 mg l−1 of phenol as compared to 1500 mg l−1 by Ca-alginate-entrapped cells whereas free cells could tolerate only 1000 mg l−1. In a continuous process with Ca-alginate entrapped cells a degradation rate of 200 mg phenol l−1 h−1 was obtained while agar-entrapped cells were far superior and could withstand and degrade up to 4000 mg phenol l−1 in the feed with a maximum degradation rate of 400 mg phenol l−1 h−1. The results indicate a clear possibility of development of an efficient treatment technology for phenol containing waste waters with the agar-entrapped bacterial strain, Pseudomonas sp. CP4.  相似文献   

17.
We examined the hydrologic controls on nitrogen biogeochemistry in the hyporheic zone of the Tanana River, a glacially-fed river, in interior Alaska. We measured hyporheic solute concentrations, gas partial pressures, water table height, and flow rates along subsurface flowpaths on two islands for three summers. Denitrification was quantified using an in situ 15NO3 push–pull technique. Hyporheic water level responded rapidly to change in river stage, with the sites flooding periodically in mid−July to early−August. Nitrate concentration was nearly 3-fold greater in river (ca. 100 μg NO3–N l−1) than hyporheic water (ca. 38 μg NO3–N l−1), but approximately 60–80% of river nitrate was removed during the first 50 m of hyporheic flowpath. Denitrification during high river stage ranged from 1.9 to 29.4 mg N kg sediment−1 day−1. Hotspots of methane partial pressure, averaging 50,000 ppmv, occurred in densely vegetated sites in conjunction with mean oxygen concentration below 0.5 mgOl−1. Hyporheic flow was an important mechanism of nitrogen supply to microbes and plant roots, transporting on average 0.41 gNO3–N m−2 day−1, 0.22 g NH4+–N m−2 day−1, and 3.6 g DON m−2 day−1 through surface sediment (top 2 m). Our results suggest that denitrification can be a major sink for river nitrate in boreal forest floodplain soils, particularly at the river-sediment interface. The stability of the river hydrograph and the resulting duration of soil saturation are key factors regulating the redox environment and anaerobic metabolism in the hyporheic zone.  相似文献   

18.
A spiral packed-bed bioreactor inoculated with microorganisms obtained from activated sludge was used to conduct a feasibility study for phenol removal. The reactor was operated continuously at various phenol loadings ranging from 53 to 201.4 g m−3 h−1, and at different hydraulic retention times (HRT) in the range of 20–180 min to estimate the performance of the device. The results indicated that phenol removal efficiency ranging from 82.9 to 100% can be reached when the reactor is operated at an HRT of 1 h and a phenol loading of less than 111.9 g m−3 h−1. At an influent phenol concentration of 201.4 g m−3, the removal efficiency increased from 18.6 to 76.9% with an increase in the HRT (20–120 min). For treatment of phenol in the reactor, the maximum biodegradation rate (V m) was 1.82 mg l−1 min−1; the half-saturation constant (K s), 34.95 mg l−1.  相似文献   

19.
The objective of this study was the application of the experimental design technique to optimize the conditions for the bioremediation of contaminated soil by means of composting. A low-cost material such as compost from the Organic Fraction of Municipal Solid Waste as amendment and pyrene as model pollutant were used. The effect of three factors was considered: pollutant concentration (0.1–2 g/kg), soil:compost mixing ratio (1:0.5–1:2 w/w) and compost stability measured as respiration index (0.78, 2.69 and 4.52 mg O2 g−1 Organic Matter h−1). Stable compost permitted to achieve an almost complete degradation of pyrene in a short time (10 days). Results indicated that compost stability is a key parameter to optimize PAHs biodegradation. A factor analysis indicated that the optimal conditions for bioremediation after 10, 20 and 30 days of process were (1.4, 0.78, 1:1.4), (1.4, 2.18. 1:1.3) and (1.3, 2.18, 1:1.3) for concentration (g/kg), compost stability (mg O2 g−1 Organic Matter h−1) and soil:compost mixing ratio, respectively.  相似文献   

20.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号