首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antimicrobial peptides, small cysteine-rich molecules, play vital roles in host defense mechanisms against pathogen infection. Recently, tilapia hepcidin (TH)1–5, was characterized, and its antimicrobial functions against several pathogens were reported. Herein, we investigated the antiviral functions of TH1-5 against infectious pancreatic necrosis virus (IPNV) in Chinook salmon embryo (CHSE)-214 cells. The presence of TH1-5 enhanced the survival of CHSE-214 cells infected with IPNV. Additionally, the number of plaques formed by the cytopathic effect of IPNV in CHSE-214 cells decreased when IPNV was preincubated with TH1-5. This observation demonstrates the antiviral function of TH1-5. Real-time PCR studies showed the modulation of interleukin, annexin, and other viral-responsive gene expressions by TH1-5. When TH1-5 and IPNV were used to co-treat CHSE-214 cells, then cells were re-challenged with IPNV at 24 h, the cells did not survive the IPNV infection. This shows that in the absence of TH1-5, viral re-challenge killed CHSE-214 cells. In conclusion TH1-5 protected CHSE-214 cells against IPNV by direct antimicrobial and immunomodulatory functions.  相似文献   

2.
Eleven European National Reference Laboratories participated in an inter-laboratory comparison of the susceptibility of 5 selected cell lines to 3 fish pathogenic viruses. The test included viral hemorrhagic septicaemia virus (VHSV); infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), and the cell lines derived from bluegill fry (BF-2), chinook salmon embryo (CHSE-214), epithelioma papulosum cyprini (EPC), fathead minnow (FHM) and rainbow trout gonad (RTG-2). The results showed that for isolation of VHSV, BF-2 and RTG-2 cells performed equally well and had higher sensitivity compared to the other cell lines. For IHNV, EPC and FHM cells gave the best results, and for IPNV it was BF-2 and CHSE-214 cells. FHM cells showed the largest variability among laboratories, whereas EPC was the cell line showing the smallest variability.  相似文献   

3.
Type I interferons (IFN alpha and beta) convert vertebrate cells into an antiviral state by inducing expression of proteins that inhibit virus replication. In humans and mice, Mx proteins constitute one family of interferon-induced antiviral proteins. Mx genes have recently been cloned from Atlantic salmon and rainbow trout. Moreover, double-stranded RNA (dsRNA) and type I IFN-like activity have been shown to induce Mx protein in salmonid cells. Chinook salmon embryo cells (CHSE-214 cells) have been suggested to have a defect in the IFN-system because the dsRNA polyinosinic polycytidylic acid (poly I:C) failed to induce an antiviral state in the cells. We have studied this phenomenon more closely in the present work. CHSE-214 cells were either transfected with poly I:C or incubated with poly I:C without transfection reagent. The cells were then studied for Mx protein expression and protection against infectious pancreatic necrosis virus (IPNV) infection. The results showed that cells transfected with poly I:C were protected from IPNV infection, whilst cells incubated with poly I:C were not protected. Cells transfected with the double-stranded DNA poly dI:dC were also not protected against IPNV. Mx protein was expressed in CHSE-214 cells upon transfection with poly I:C, but not after incubation with poly I:C alone. Stimulation of CHSE-214 cells with supernatants from cells transfected with poly I:C, induced protection against IPNV, indicating production of type I IFN-like activity. These results suggest that CHSE-214 cells in fact are able to produce type I IFN, but may have defects in the mechanisms mediating uptake of poly I:C or may degrade unprotected poly I:C.  相似文献   

4.
5.
6.
A Bcl-2 related family member, Bad, promotes cell death, and its function is regulated by phosphorylation. In this study, we show how the IPNV elicits the induction of Bad gene expression and promotes host apoptotic death. Anti-IPNV-E1S polyclonal and anti-VP3 monoclonal antibodies are used to neutralize the virus that blocks the prime death signal via the virus receptor. In the viability assay, each antibody could also enhance cell viability during IPNV infection. We tested tyrosine kinase inhibitors on IPNV-infected cells in order to assess their effect on blocking the death signal. With 100 microg/ml genistein treatment, Bad-like gene expression was blocked, either by rescuing the IPNV-infected CHSE-214 cells or by blocking internucleosomal DNA cleavage; but the tyrphostin group did not block Bad expression. For CHSE-214 cells, treatment with the protein synthesis-inhibitor, cycloheximide (1microg/ml), blocked new protein synthesis via activated tyrosine kinase during IPNV infection. We found that Bad protein expression could be blocked, and apoptotic death prevented. Together, these results demonstrate that the IPNV exerts up-regulation of a pro-apoptotic death gene (Bad), the expression of which serves to trigger apoptotic cell death. Our data also suggests that the IPNV induces apoptotic death via a viral receptor which triggers death effector Bad gene expression, possibly through a tyrosine kinase-dependent pathway.  相似文献   

7.
8.
Aquatic birnavirus induces necrotic cell death by an ill-understood process. Presently, we demonstrate that infectious pancreatic necrosis virus (IPNV) induces post-apoptotic necrotic cell death through loss of mitochondrial membrane potential (MMP) followed by caspase-3 activation in CHSE-214 cells. Progressive phosphatidylserine externalization was observed at 6 h post-infection (p.i.). This was followed by the development of bulb-like vesicles (bleb formation) at 8 h p.i. Progressive loss of MMP was also observed in IPNV-infected CHSE-214 cells beginning at 6 h p.i. At 8 h and 12 h p.i., IPNV-infected cells demonstrated a dramatic increase in MMP loss, rapid entry into necrotic cell death, and activation of caspase-9 and -3. Additionally, treatment with an inhibitor of MMP loss, bongkrekic acid, an adenine nucleotide translocase inhibitor, blocked IPNV-induced PS exposure and MMP loss, as well as reduced the activation of caspase-3. Taken together, our results suggest that IPNV induces apoptotic cell death via loss of MMP, thereby triggering secondary necrosis and caspases-3 activation. Furthermore, this death-signaling pathway is disrupted by bongkrekic acid in fish cells, indicating that this drug may serve to modulate IPNV-induced pathogenesis.  相似文献   

9.
Surveys of marine birnavirus (MABV) were undertaken in cultured olive flounder Paralichthys olivaceus from the south and west coastal areas and Jeju in Korea during the period January 1999 to April 2007. MABV was detected in all seasons from the fry, juveniles and adult fish from the areas examined. Evident cytopathic effects of the virus including rounding and cell lysis were observed in chinook salmon embryo (CHSE-214) and rainbow trout gonad (RTG-2) cells, but not in fathead minnow (FHM) and epithelial papilloma of carp (EPC) cells. Nucleotide sequences of the VP2/NS junction region of the Korean isolates showed 97.8% ~ 100% similarity, and they belonged to the same genogroup. Cross neutralization tests with serotype-specific rabbit antisera against MABV strains exhibited a close antigenic relationships between strains, and were distinct from infectious pancreatic necrosis virus (IPNV) strains. Coinfection of MABV with bacteria (Streptococcus iniae, Vibrio spp.) and viruses (nervous necrosis virus, lymphocystis disease virus, viral hemorrhagic septicemia virus) was observed.  相似文献   

10.
Several isolates of aquatic birnaviruses were recovered from different species of wild fish caught in the Flemish Cap, a Newfoundland fishery close to the Atlantic coast of Canada. The nucleotide sequence of a region of the NS gene was identical among the isolates and was most similar to the Dry Mills and West Buxton reference strains of infectious pancreatic necrosis virus (IPNV). Phylogenetic analysis of the sequence of a region of the VP2 gene demonstrated that the isolates were most closely aligned with the American strains of IPNV serotype A1. Electron microscopy of virus structures clarified and concentrated from cultures of infected chinook salmon embryo (CHSE-214) cells revealed a majority of typical IPNV-like icosahedral particles, as well as a low proportion of type I tubules having a diameter of approximately 55 nm and a variable length of up to 2 microm. The tubules could be propagated in cell cultures, but always in the presence of low proportions of icosahedral particles. Cloning of selected isolates by serial dilution yielded preparations with a high proportion of the tubular structures with a density in CsCl gradients of approximately 1.30 g cm(-3). Polyacrylamide gel electrophoresis revealed the material in the band was composed of the IPNV pVP2 and VP2 proteins.  相似文献   

11.
Using an electrical measurement known as electric cell-substrate impedance sensing (ECIS), we have recorded the dynamics of viral infections in cell culture. With this technique, cells are cultured on small gold electrodes where the measured impedance mirrors changes in attachment and morphology of cultured cells. As the cells attach and spread on the electrode, the measured impedance increases until the electrode is completely covered. Viral infection inducing cytopathic effect results in dramatic impedance changes, which are mainly due to cell death. In the current study, two different fish cell lines have been used: chinook salmonid embryonic (CHSE-214) cells infected with infectious pancreatic necrosis virus (IPNV) and epithelioma papulosum cyprini (EPC) carp cells infected with infectious hematopoeitic necrosis virus (IHNV). The impedance changes caused by cell response to virus are easily measured and converted to resistance and capacitance. An approximate linear correlation between log of viral titer and time of cell death was determined.  相似文献   

12.
Heterologous gene expression by Semliki Forest virus (SFV) expression vectors was investigated in fish cell culture. Experiments performed using an infectious strain of SFV, replication-defective SFV particles, and recombinant SFV RNA constructs encoding the Escherchia coli LacZ or firefly luciferase reporter genes indicated that levels of SFV-mediated expression in fish cells were dependent on cell type and temperature. Maximal expression levels were observed in the two salmonid-derived cell lines CHSE-214 and F95/9 at 25°C and 20°C. As the temperature was lowered to 15°C or below, levels of reporter gene expression were reduced up to 1000-fold, indicating that the SFV replication complex functioned inefficiently at low temperatures. The ability of SFV expression systems to function in fish cells was further investigated by analyzing the expression of the protective VP2 antigen of infectious pancreatic necrosis virus (IPNV) from the various constructs, including a novel DNA-based SFV plasmid. The VP2 protein produced in CHSE-214 and F95/9 cells transfected or infected with the recombinant SFV-IPNV VP2 constructs appeared to be synthesized in an antigenically correct form, as evidenced by the ability to react with several conformation-dependent IPNV-specific monoclonal antibodies. Whether the temperature-restricted replication and expression displayed by SFV-based constructs in fish cell culture also occurs in vivo remains to be determined. Received January 29; accepted June 29, 1999.  相似文献   

13.
Mx protein is one of several antiviral proteins that are induced by the type I interferons (IFN), IFNalpha and beta, in mammals. In this work induction of a 76 kDa Mx protein by double-stranded RNA (dsRNA) or type I IFN-like activity in Atlantic salmon macrophages, Atlantic salmon fibroblast cells (AS cells) and in Chinook salmon embryo cells (CHSE-214) is reported. Type I IFN-like activity was produced by the stimulation of Atlantic salmon macrophages with the synthetic dsRNA polyinosinic polycytidylic acid (poly I:C). A correlation appeared to exist between Mx protein expression and protection against infectious pancreatic necrosis virus (IPNV) induced by IFN in CHSE-214 cells. Several observations in the present work suggest that, as in mammals, the induction of Mx protein by dsRNA in fish cells primarily occurs via induction of type I IFN. First, type I IFN-like activity but not poly I:C, induced Mx protein expression in CHSE-214 cells. These cells apparently lack the ability to produce IFN in response to poly I:C. Second, the putative IFN induced maximal Mx protein expression 48 h earlier than poly I:C in AS cells. Third, the peak expression of Mx protein in macrophages induced by poly I:C occurred after 48 h whereas peak in IFN-like activity was observed by 24 h after addition of poly I:C. The present work supports the notion of using Mx protein as a molecular marker for the production of putative type I IFN in fish.  相似文献   

14.
Hong JR  Lin TL  Yang JY  Hsu YL  Wu JL 《Journal of virology》1999,73(6):5056-5063
Morphologically, apoptotic cells are characterized by highly condensed membrane blebbing and formation of apoptotic bodies. Recently, we reported that apoptosis precedes necrosis in a fish cell line infected with infectious pancreatic necrosis virus (IPNV). In the present study, we tested the possibility that nontypical apoptosis is a component of IPNV-induced fish cell death. A variant type of green fluorescent protein (EGFP) was expressed in a fish cell line such that EGFP served as a protein marker for visualizing dynamic apoptotic cell morphological changes and for tracing membrane integrity changes during IPNV infection. Direct morphological changes were visualized by fluorescence microscopy by EGFP in living cells infected with IPNV. The nontypical apoptotic morphological change stage occurred during the pre-late stage (6 to 7 h postinfection). Nontypical apoptotic features, including highly condensed membrane blebbing, occurred during the middle apoptotic stage. At the pre-late apoptotic stage, membrane vesicles quickly formed, blebbed, and were finally pinched off from the cell membrane. At the same time, at this pre-late apoptotic stage, apoptotic cells formed unique small holes in their membranes that ranged from 0.39 to 0.78 micrometer according to examination by scanning electron microscopy and immunoelectron microscopy. Quantitation of the intra- and extracellular release of EGFP by CHSE-214-EGFP cells after IPNV infection was done by Western blotting and fluorometry. Membrane integrity was quickly lost during the late apoptotic stage (after 8 h postinfection), and morphological change and membrane integrity loss could be prevented and blocked by treatment with apoptosis inhibitors such as cycloheximide, genistein, and EDTA before IPNV infection. Together, these findings show the apoptotic features at the onset of pathology in host cells (early and middle apoptotic stages), followed secondarily by nontypical apoptosis (pre-late apoptotic stage) and then by postapoptotic necrosis (late apoptotic stage), of a fish cell line. Our results demonstrate that nontypical apoptosis is a component of IPNV-induced fish cell death.  相似文献   

15.
Ten of 11 cell lines, recently established from the snout (MS-SN), periorbital soft tissue (MS-EY), liver (MS-LV), kidney (MS-KD), lung (MS-LG), spleen (MS-SP), heart (MS-HT), thyroid (MS-TY), brain (MS-BR) and urinary bladder (MS-UB) of a juvenile Hawaiian monk seal Monachus schauinslandi, were evaluated in vitro for their susceptibility to 5 mammalian viruses: herpes simplex virus type 1 (HSV-1), vesicular stomatitis virus (VSV), reovirus type 3 (Reo-3), poliovirus type 1 (Polio-1) and vaccinia virus (Vac); 5 fish viruses: channel catfish herpesvirus (CCV), infectious hematopoietic necrosis virus (IHNV), infectious pancreatic necrosis virus (IPNV), fish rhabdovirus carpio (RC) and viral hemorrhagic septicemia virus (VHSV); and 2 marine mammal morbilliviruses: phocine distemper virus (PDV) and dolphin distemper virus (DMV). Four well-established continuous cell-lines of nonhuman primate (Vero) and fish (EPC, CHSE-214 and BB) origin served as controls to standardize the virus infectivity assays. Virus yields were quantified as 50% tissue culture infectious dose (TCID50) ml(-1) on Day 7 post-inoculation. Results of the viral challenge assays revealed that the monk seal cell lines shared a similar pattern of susceptibility to the mammalian viruses. Despite their different tissue origins, all monk seal cells were sensitive to HSV-1, Vac, VSV and Reo-3, but were refractory to Polio-1. A characteristic viral-induced cytopathic effect was noted with VSV and Reo-3, and distinct plaques were observed for HSV-1 and Vac. Monk seal cell lines were also susceptible to PDV and DMV, 2 morbilliviruses isolated from seals and dolphins, respectively. By contrast, these cell lines were generally resistant to VHSV, IHNV and IPNV, with varying susceptibility to RC and CCV. The wide range of viral susceptibility of these monk seal cell lines suggests their potential value in studying viruses of monk seals and other marine mammals.  相似文献   

16.
17.
During routine sampling and testing, as part of a systematic surveillance program (the Tasmanian Salmonid Health Surveillance Program), an aquatic birnavirus was isolated from 'pin-head' (fish exhibiting deficient acclimatisation on transfer to saltwater) Atlantic salmon Salmo salar, approximately 18 mo old, farmed in net-pens located in Macquarie Harbour on the west coast of Tasmania, Australia. The isolate grows readily in a range of fish cell lines including CHSE-214, RTG-2 and BF-2 and is neutralised by a pan-specific rabbit antiserum raised against infectious pancreatic necrosis virus (IPNV) Ab strain and by a commercial pan-specific IPNV-neutralising monoclonal antibody. Presence of the virus was not associated with gross clinical signs. Histopathological examination revealed a range of lesions particularly in pancreatic tissue. The virus was localised in pancreas sections by immunoperoxidase staining using the polyclonal antiserum and by electron microscopy. Examination by electron microscopy demonstrated that the virus isolated in cell culture (1) belongs to the family Birnaviridae, genus Aquabirnaviridae; (2) was ultrastructurally and antigenically similar to virus identified in the index fish; (3) is related to IPNV. Western blot analysis using the polyclonal rabbit antiserum confirmed the cross-reactions between various aquatic birnavirus isolates. In addition, PCR analysis of isolated viral nucleic acid from the index case indicated that the virus is more closely related to IPNV fr21 and N1 isolates than to other birnavirus isolates available for comparison. Sampling of other fish species within Macquarie Harbour has demonstrated that the virus is present in several other species of fish including farmed rainbow trout Oncorhynchus mykiss, wild flounder Rhombosolea tapirina, cod Pseudophycis sp., spiked dogfish Squalus megalops and ling Genypterus blacodes.  相似文献   

18.
Oshima S  Imajoh M  Hirayama T 《Uirusu》2005,55(1):133-144
Marine birnavirus (MABV) is a member of the genus Aquabirnavirus of the family Birnaviridae. MABV is an unenveloped icosahedral virus about 60 nm in diameter with two genomes of double-stranded RNA. MABV adsorbed not only onto the cell surfaces of susceptible (CHSE-214 and RSBK-2) cells but also onto resistant (FHM and EPC) cells. Furthermore, the virus entered into the cytoplasm through the endocytotic pathway in CHSE-214, RSBK-2 and FHM cells but did not penetrate EPC cells. The virus was found to bind to an around 250 kDa protein on CHSE-214, RSBK-2, FHM and EPC cells. The syntheses of viral proteins pVP2, NS and VP3 and further proteolytic processing after viral infection were examined by using Western blot analysis. pVP2, NS and VP3 were detected in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 4 h after infection. At this time, VP3 underwent further proteolytic processing in the cytosolic fractions of CHSE-214 and RSBK-2 cells. The expression of pVP2, NS and VP3 increased and pVP2 and NS also underwent further proteolytic processing similar to VP3 in the cytosolic fractions of CHSE-214, RSBK-2 and FHM cells at 8 h after infection. The further proteolytic processing of VP3 was detected in the nuclear fractions of CHSE-214, RSBK-2, but VP3 was detected as a single band in the nuclear fraction of FHM cells. pVP2 and NS were detected as thin bands only in the nuclear fractions of CHSE-214 cells. The results of Western blot analysis demonstrated that pVP2, NS and VP3 are localized in the nuclear fraction when they were independently expressed in CHSE-214, RSBK-2, FHM and EPC cells. The expression pattern in the cytosolic fraction was identical among the four cell lines when pVP2 and NS were independently expressed. However, pVP2 and NS were not detected in the nuclear fraction of CHSE-214 cells. Further proteolytic processing of VP3 was detected in both cytosolic and nuclear fractions of RSBK-2 ,FHM and EPC cells (Low level in EPC cell), but not in CHSE-214 cells when VP3 was independently expressed. Then, the processes of preVP2 to form morphological assemblages in the presence of VP3 or the cleavage of VP3 into two proteins in CHSE-214 cells were studied. When preVP2- and VP3 were co-expressed, virion like particles (64 nm, diameter) were observed close to the nuclear membrane by electron microscopy. The co-expression of preVP2 and the cleaved VP3 proteins led to an efficient assembly of tubules (22 nm, diameter). Further important finds will be obtained by this infection system using 4 fish cell lines in the next couple of years.  相似文献   

19.
A birnavirus was recently isolated from cultured ayu Plecoglossus altivelis on Shikoku island, Japan. The diseased fish displayed vertebral or vertical curvature and mild haemorrhage around the brain. Cytopathic effects (CPE) of the virus, including cell roundness, filamentous change and cell lysis, were observed in CHSE-214, RTG-2 and RSBK-2 cells. The virus isolated from ayu, designated the AY-98 strain, was found to be antigenically related to the marine birnavirus (MABV) Y-6 strain that originated from yellowtail Seriola quinqueradiata. AY-98 had a bi-segmented RNA genome and the same nucleotide sequence in the 310 bp VP2/NS junction as MABV Y-6. At the same time that the ayu epizootics occurred, another birnavirus (AM-98) was isolated from amago salmon Oncorhynchus rhodurus which were cultured 66 km away from the ayu farm. AM-98 showed a similar CPE and had the same host cell ranges as AY-98. However, AM-98 was serologically similar to the VR-299 strain of infectious pancreatic necrosis virus (IPNV) and their nucleotide sequences in the VP2/NS junction region showed 98% homology without changes at the amino acid level. In this study, the ayu strain AY-98 was grouped into MABV, whereas the amago salmon strain AM-98 was grouped into IPNV. This indicates that the 2 birnaviruses originated from different sources in spite of the fact that the places where they were isolated are close to one another. The results in this paper show a new aspect of the traditional consensus that the same serogroup of birnavirus distribute in close geographic areas.  相似文献   

20.
We studied the characteristics of rainbow trout serum (RTS) inhibitory activity against infectious pancreatic necrosis virus (IPNV). Serum inhibition was related to the serum source and host cell in which the virus had been propagated. IPNV was more efficiently inhibited by RTS in salmonid cell lines than in non-salmonid cell lines, with inhibition highest in rainbow trout gonad (RTG)-2 cells. The RTS sensitivity of the virus was modified by the cell line through which the virus passed, with multiple passages through Chinook salmon embryo (CHSE)-214 cells producing a virus that was less sensitive to RTS. The RTS inhibition level was dependent on cell density: at a cell density of < or = 2 x 10(5) cells ml(-1), inhibition was insignificant (tissue culture infective dose 50% = 10(-1.1) TCID50 ml(-1) reduction); however, above a density of 3 x 10(5) cells ml(-1), the inhibition level was very high (> or = 10(-6.3) TCID50 ml(-1) reduction). The salmonid sera tested showed high inhibition, except for brook trout serum (BTS), while non-salmonid sera did not inhibit IPNV, replication on RTG-2 cells. Pretreatment of cultured cells with RTS prior to exposure did not affect inhibition of IPNV and thus did not mask a viral receptor. The RTS inhibition level was dependent on the time of serum addition, with inhibition being maintained for at least 16 h postinfection. Pretreatment of IPNV revealed that the virus is directly inhibited by RTS, and more strongly so when RTS is present during viral replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号