首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen M  McClure JW 《Phytochemistry》2000,53(3):365-370
We earlier reported that when phenylalanine ammonia-lyase (PAL) activity in radish seedlings was inhibited by the competitive inhibitor 2-aminoindan-2-phosphonic acid (AIP), soluble sinapoyl esters carried over from the seed were converted to wall-bound esters in young cotyledons. We now report that these soluble sinapoyl esters may also be converted into lignin in the cotyledons. When radish seedlings were grown in the presence of 100 microM AIP, lignin formation (determined as lignothioglycolic acid) was inhibited ca. 74% in the cotyledons and ca. 80% in hypocotyls plus roots. The syringyl to guaiacyl (S/G) ratio in the lignin of AIP-grown plants, as determined by alkaline cupric oxidation and from Fourier-transform infrared (FT-IR) spectra, was higher in cotyledons, but lower in hypocotyls plus roots, as compared to plants grown on distilled water. These results support the view that soluble sinapoyl esters preformed in seeds may contribute to the syringyl moiety of lignin in cotyledons during early seedling development and that there is no appreciable transport of soluble sinapoyl esters from cotyledons to the hypocotyls and roots.  相似文献   

2.
3.
Sinapic acid is a major phenylpropanoid in Brassicaceae providing intermediates in two distinct metabolic pathways leading to sinapoyl esters and lignin synthesis. Glucosyltransferases play key roles in the formation of these intermediates, either through the production of the high energy compound 1-O-sinapoylglucose leading to sinapoylmalate and sinapoylcholine or through the production of sinapyl alcohol-4-O-glucoside, potentially leading to the syringyl units found in lignins. While the importance of these glucosyltransferases has been recognized for more than 20 years, their corresponding genes have not been identified. Combining sequence information in the Arabidopsis genomic data base with biochemical data from screening the activity of recombinant proteins in vitro, we have now identified five gene sequences encoding enzymes that can glucosylate sinapic acid, sinapyl alcohol, and their related phenylpropanoids. The data provide a foundation for future understanding and manipulation of sinapate metabolism and lignin biology in Arabidopsis.  相似文献   

4.
Weng JK  Akiyama T  Ralph J  Chapple C 《The Plant cell》2011,23(7):2708-2724
Syringyl lignin, an important component of the secondary cell wall, has traditionally been considered to be a hallmark of angiosperms because ferns and gymnosperms in general lack lignin of this type. Interestingly, syringyl lignin was also detected in Selaginella, a genus that represents an extant lineage of the most basal of the vascular plants, the lycophytes. In angiosperms, syringyl lignin biosynthesis requires the activity of ferulate 5-hydroxylase (F5H), a cytochrome P450-dependent monooxygenase, and caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT). Together, these two enzymes divert metabolic flux from the biosynthesis of guaiacyl lignin, a lignin type common to all vascular plants, toward syringyl lignin. Selaginella has independently evolved an alternative lignin biosynthetic pathway in which syringyl subunits are directly derived from the precursors of p-hydroxyphenyl lignin, through the action of a dual specificity phenylpropanoid meta-hydroxylase, Sm F5H. Here, we report the characterization of an O-methyltransferase from Selaginella moellendorffii, COMT, the coding sequence of which is clustered together with F5H at the adjacent genomic locus. COMT is a bifunctional phenylpropanoid O-methyltransferase that can methylate phenylpropanoid meta-hydroxyls at both the 3- and 5-position and function in concert with F5H in syringyl lignin biosynthesis in S. moellendorffii. Phylogenetic analysis reveals that Sm COMT, like F5H, evolved independently from its angiosperm counterparts.  相似文献   

5.
The Arabidopsis ref2 mutant was identified in a screen for plants having altered fluorescence under UV light. Characterization of the ref2 mutants showed that they contained reduced levels of a number of phenylpropanoid pathway-derived products: sinapoylmalate in leaves, sinapoylcholine in seeds, and syringyl lignin in stems. Surprisingly, positional cloning of the REF2 locus revealed that it encodes CYP83A1, a cytochrome P450 sharing a high degree of similarity to CYP83B1, an enzyme involved in glucosinolate biosynthesis. Upon further investigation, ref2 mutants were found to have reduced levels of all aliphatic glucosinolates and increased levels of indole-derived glucosinolates in their leaves. These results show that CYP83A1 is involved in the biosynthesis of both short-chain and long-chain aliphatic glucosinolates and suggest a novel metabolic link between glucosinolate biosynthesis, a secondary biosynthetic pathway found only in plants in the order Capparales, and phenylpropanoid metabolism, a pathway found in all plants and considered essential to the survival of terrestrial plant species.  相似文献   

6.
7.
We analyzed lignin content and composition in transgenic tobacco (Nicotiana tabacum) lines altered in the expression of the early phenylpropanoid biosynthetic enzymes L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase (C4H). The reduction of C4H activity by antisense expression or sense suppression resulted in reduced levels of Klason lignin, accompanied by a decreased syringyl/guaiacyl monomer ratio as determined by pyrolysis gas chromatography/mass spectrometry Similar reduction of lignin levels by down -regulation of L-phenylalanine ammonia-lyase, the enzyme preceding C4H in the central phenylpropanoid pathway, did not result in a decreased syringyl/guaiacyl ratio. Rather, analysis of lignin methoxyl content and pyrolysis suggested an increased syringyl/guaiacyl ratio. One possible explanation of these results is that monolignol biosynthesis from L-phenylalanine might occur by more than one route, even at the early stages of the core phenylpropanoid pathway, prior to the formation of specific monolignol precursors.  相似文献   

8.
Accumulation of coumarins in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
The biosynthesis of coumarins in plants is not well understood, although these metabolic pathways are often found in the plant kingdom. We report here the occurrence of coumarins in Arabidopsis thaliana ecotype Columbia. Considerably high levels of scopoletin and its beta-d-glucopyranoside, scopolin, were found in the wild-type roots. The scopolin level in the roots was approximately 1200nmol/gFW, which was approximately 180-fold of that in the aerial parts. Calli accumulated scopolin at a level of 70nmol/gFW. Scopoletin and scopolin formation were induced in shoots after treatment with either 2,4-dichlorophenoxyacetic acid (at 100microM) or a bud-cell suspension of Fusarium oxysporum. In order to gain insight into the biosynthetic pathway of coumarins in A. thaliana, we analyzed coumarins in the mutants obtained from the SALK Institute collection that carried a T-DNA insertion within the gene encoding the cytochrome P450, CYP98A3, which catalyzes 3'-hydroxylation of p-coumarate units in the phenylpropanoid pathway. The content of scopoletin and scopolin in the mutant roots greatly decreased to approximately 3% of that in the wild-type roots. This observation suggests that scopoletin and scopolin biosynthesis in A. thaliana are strongly dependent on the 3'-hydroxylation of p-coumarate units catalyzed by CYP98A3. We also found that the level of skimmin, a beta-d-glucopyranoside of umbelliferone, was slightly increased in the mutant roots.  相似文献   

9.
Lignin, a complex phenylpropanoid compound, is polymerized from the monolignols p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These three monolignols differ only by the 3- and 5-methoxyl groups. Therefore, enzymatic reactions controlling the methylations of the 3- and 5-hydroxyls of monolignol precursors are critical to determine the lignin composition. Recent biochemical and transgenic studies have indicated that the methylation pathways in monolignol biosynthesis are much more complicated than we have previously envisioned. It has been demonstrated that caffeoyl CoA O-methyltransferase plays an essential role in the synthesis of guaiacyl lignin units as well as in the supply of substrates for the synthesis of syringyl lignin units. Caffeic acid O-methyltransferase has been found to essentially control the biosynthesis of syringyl lignin units. These new findings have greatly enriched our knowledge on the methylation pathways in monolignol biosynthesis.  相似文献   

10.
D Lee  K Meyer  C Chapple    C J Douglas 《The Plant cell》1997,9(11):1985-1998
The phenylpropanoid enzyme 4-coumarate:coenzyme A ligase (4CL) is considered necessary to activate the hydroxycinnamic acids for the biosynthesis of the coniferyl and sinapyl alcohols subsequently polymerized into lignin. To clarify the role played by 4CL in the biosynthesis of the guaiacyl (G) and syringyl (S) units characteristic of angiosperm lignin, we generated 4CL antisense Arabidopsis lines having as low as 8% residual 4CL activity. The plants had decreases in thioglycolic acid-extractable lignin correlating with decreases in 4CL activity. Nitrobenzene oxidation of cell walls from bolting stems revealed a significant decrease in G units in 4CL-suppressed plants; however, levels of S lignin units were unchanged in even the most severely 4CL-suppressed plants. These effects led to a large decrease in the G/S ratio in these plants. Our results suggest that an uncharacterized metabolic route to sinapyl alcohol, which is independent of 4CL, may exist in Arabidopsis. They also demonstrate that repression of 4CL activity may provide an avenue to manipulate angiosperm lignin subunit composition in a predictable manner.  相似文献   

11.
The end products of the phenylpropanoid pathway play important roles in plant structure and development, as well as in plant defense mechanisms against biotic and abiotic stresses. From a human perspective, phenylpropanoid pathway-derived metabolites influence both human health and the potential utility of plants in agricultural contexts. The last known enzyme of the phenylpropanoid pathway that has not been characterized is p-coumarate 3-hydroxylase (C3H). By screening for plants that fail to accumulate soluble fluorescent phenylpropanoid secondary metabolites, we have identified a number of Arabidopsis mutants that display a reduced epidermal fluorescence (ref) phenotype. We have now shown that the ref8 mutant is defective in the gene encoding C3H. Phenotypic characterization of the ref8 mutant has revealed that the lack of C3H activity in the mutant leads to diverse changes in phenylpropanoid metabolism. The ref8 mutant accumulates p-coumarate esters in place of the sinapoylmalate found in wild-type plants. The mutant also deposits a lignin formed primarily from p-coumaryl alcohol, a monomer that is at best a minor component in the lignin of other plants. Finally, the mutant displays developmental defects and is subject to fungal attack, suggesting that phenylpropanoid pathway products downstream of REF8 may be required for normal plant development and disease resistance.  相似文献   

12.
The hypothesis that auxin (IAA) and gibberellic acid (GA3) control the formation of lignin is confirmed for the primary phloem fibers and for the secondary xylem in the stem of Coleus blumel Benth. Indoleacetic acid alone, or a combination of high IAA/low GA3 (w/w), induced short phloem fibers with thick secondary walls, that contained lignin rich in syringyl units (high ratio of syringyl/guaiacyl). On the other hand, a combination of high GA3/low IAA (w/w), which promoted the differentiation of long phloem fibers with thin walls, decreased the relative content of the syringyl units (low syringyl/guaiacyl ratio). In the secondary xylem, these hormonal treatments yielded only slight changes in the noncondensed monomeric guaiacyl units, confirming the relative stability of the guaiacyl lignification pattern in this tissue. In the xylem, indoleacetic acid alone, or a combination of high IAA/low GA3 induced lignin poor in syringyl units (low syringyl/guaiacyl ratio). A combination of high GA3/low IAA promoted a relatively slight increase in syringyl yield, indicating greater responsiveness of the syringyl lignification pattern to growth regulators. The possible functional and technological significance of our results is discussed.  相似文献   

13.
Mutants of Arabidopsis deficient in a major leaf phenylpropanoid ester, 2-O-sinapoyl-L-malate, were identified by thin-layer chromatographic screening of methanolic leaf extracts from several thousand mutagenized plants. Mutations at a locus designated SIN1 also eliminate accumulation of the sinapic acid esters characteristic of seed tissues. Because of increased transparency to UV light, the sin1 mutants exhibit a characteristic red fluorescence under UV light, whereas wild-type plants have a blue-green appearance due to the fluorescence of sinapoyl malate in the upper epidermis. As determined by in vivo radiotracer feeding experiments, precursor supplementation studies, and enzymatic assays, the defect in the sin1 mutants appears to block the conversion of ferulate to 5-hydroxyferulate in the general phenylpropanoid pathway. As a result, the lignin of the mutant lacks the sinapic acid-derived components typical of wild-type lignin.  相似文献   

14.
Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores and pathogens. Here, we report that the Arabidopsis thaliana reduced epidermal fluorescence5 (ref5-1) mutant, identified in a screen for plants with defects in soluble phenylpropanoid accumulation, has a missense mutation in CYP83B1 and displays defects in glucosinolate biosynthesis and in phenylpropanoid accumulation. CYP79B2 and CYP79B3 are responsible for the production of the CYP83B1 substrate indole-3-acetaldoxime (IAOx), and we found that the phenylpropanoid content of cyp79b2 cyp79b3 and ref5-1 cyp79b2 cyp79b3 plants is increased compared with the wild type. These data suggest that levels of IAOx or a subsequent metabolite negatively influence phenylpropanoid accumulation in ref5 and more importantly that this crosstalk is relevant in the wild type. Additional biochemical and genetic evidence indicates that this inhibition impacts the early steps of the phenylpropanoid biosynthetic pathway and restoration of phenylpropanoid accumulation in a ref5-1 med5a/b triple mutant suggests that the function of the Mediator complex is required for the crosstalk.  相似文献   

15.
16.
Previous studies have indicated that the Arabidopsis thalianairregular xylem 4 (irx4) mutant is severely lignin-deficient, forming abnormal lignin from aberrant monomers. Studies of lignin structure in dwarfed cinnamoyl CoA reductase (CCR)-downregulated tobacco were also previously reported to incorporate feruloyl tyramine derivatives. The lignin in the Arabidopsis irx4 mutant was re-investigated at 6 weeks and at maturation (9 weeks). Application of (1)H, (13)C, 2D Heteronuclear Multiple Quantum Coherence and 2D Heteronuclear Multiple Bond Coherence spectroscopic analyses to the lignin-enriched isolates from both Arabidopsis wild-type (Ler) and the CCR-irx4 mutant at both developmental stages revealed that only typical guaiacyl/syringyl lignins were formed. For the irx4 mutant, the syringyl content at 6 weeks growth was lower, in accordance with a delayed but coherent program of lignification. At maturation, however, the syringyl/guaiacyl ratio of the irx4 mutant approached that of wild-type. There was no evidence for feruloyl tyramines, or homologues thereof, accumulating as a chemical signature in lignins resulting from CCR mutation. Nor were there any noticeable increases in other phenolic components, such as hydroxycinnamic acids. These findings were further confirmed by application of thioacidolysis, alkaline nitrobenzene oxidation and acetyl bromide analyses. Moreover, in the case of CCR downregulation in tobacco, there were no NMR spectroscopic correlations that demonstrated feruloyl tyramines being incorporated into the lignin biopolymers. This study thus found no evidence that abnormal lignin formation occurs when CCR activity is modulated.  相似文献   

17.
How carbon flux differentially occurs in vascular plants following photosynthesis for protein formation, phenylpropanoid metabolism (i.e. lignins), and other metabolic processes is not well understood. Our previous discovery/deduction that a six-membered arogenate dehydratase (ADT1-6) gene family encodes the final step in Phe biosynthesis in Arabidopsis thaliana raised the fascinating question whether individual ADT isoenzymes (or combinations thereof) differentially modulated carbon flux to lignins, proteins, etc. If so, unlike all other lignin pathway manipulations that target cell wall/cytosolic processes, this would be the first example of a plastid (chloroplast)-associated metabolic process influencing cell wall formation. Homozygous T-DNA insertion lines were thus obtained for five of the six ADTs and used to generate double, triple, and quadruple knockouts (KOs) in different combinations. The various mutants so obtained gave phenotypes with profound but distinct reductions in lignin amounts, encompassing a range spanning from near wild type levels to reductions of up to ~68%. In the various KOs, there were also marked changes in guaiacyl:syringyl ratios ranging from ~3:1 to 1:1, respectively; these changes were attributed to differential carbon flux into vascular bundles versus that into fiber cells. Laser microscope dissection/pyrolysis GC/MS, histochemical staining/lignin analyses, and pADT::GUS localization indicated that ADT5 preferentially affects carbon flux into the vascular bundles, whereas the adt3456 knock-out additionally greatly reduced carbon flux into fiber cells. This plastid-localized metabolic step can thus profoundly differentially affect carbon flux into lignins in distinct anatomical regions and provides incisive new insight into different factors affecting guaiacyl:syringyl ratios and lignin primary structure.  相似文献   

18.
Cytochromes P450 in phenolic metabolism   总被引:2,自引:0,他引:2  
Three independent cytochrome P450 enzyme families catalyze the three rate-limiting hydroxylation steps in the phenylpropanoid pathway leading to the biosynthesis of lignin and numerous other phenolic compounds in plants. Their characterization at the molecular and enzymatic level has revealed an unexpected complexity of phenolic metabolism as the major route involves shikimate/quinate esters and alcohol/aldehyde intermediates. Engineering expression of CYP73s (encoding cinnamate 4-hydroxylase), CYP98s (encoding 4-coumaroylshikimate 3′-hydroxylase) or CYP84s (encoding coniferaldehyde 5-hydroxylase) leads to modified lignin and seed phenolic composition. In particular CYP73s and CYP98s also play essential roles in plant growth and development, while CYP84 constitutes a check-point for the synthesis of syringyl lignin and sinapate esters. Although recent data shed new light on the main path for lignin synthesis, they also raised new questions. Mutants and engineered plants revealed the existence of (an) alternative pathway(s), which most likely involve(s) different precursors and oxygenases. On the other hand, phylogenetic analysis of plant genomes show the existence of P450 gene duplications in each family, which may have led to the acquisition of novel or additional physiological functions in planta. In addition to the main lignin pathway, P450s contribute to the biosynthesis of many bioactive phenolic derivatives, with potential applications in medicine and plant defense, including lignans, phenylethanoids, benzoic acids, xanthones or quinoid compounds. A very small proportion of these P450s have been characterized so far, and rarely at a molecular level. The possible involvement of P450s in salicylic acid is discussed.  相似文献   

19.
The Arabidopsis thaliana irregular xylem4 (irx4) cinnamoyl-CoA reductase 1 (CCR1) mutant was reassessed for its purported exclusive rate-limiting or key effects on lignification. Analyses of gross growth characteristics and stem cross-section anatomy, from seedling emergence to senescence, revealed that stunted irx4 mutant lines were developmentally delayed, which in turn indirectly but predictably led to modest reductions (ca. 10-15%) in overall lignin amounts. Such developmental changes are not generally observed in suppression of other monolignol pathway forming enzymes (e.g., 4-coumarate CoA ligase) even when accompanied by significant reductions in lignin amounts. With the greatly arrested development of the irx4 mutant, formation of the lignin-derived syringyl moieties was also predictably delayed (by about 1-2 weeks), although at maturation the final guaiacyl:syringyl ratios were essentially identical to wild-type. No evidence was obtained for so-called abnormal lignin precursors being incorporated into the lignin, as shown by solid-state 13C NMR spectroscopic analysis in contrast to a claim to the contrary [Jones, L., Ennos, A.R., Turner, S.R., 2001. Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J. 26, 205-216]. A previous claim of an "abnormal" lignin present in stunted CCR downregulated tobacco was also not substantiated, with only trace differences being noted in the presumed cell-wall constituent levels. More importantly, a linear correlation between total lignin amounts and lignin-derived fragmentation products was observed at all stages of Arabidopsis growth/development in both wild-type and irx4 mutant lines, regardless of lignin content, i.e., in harmony with an exquisitely controlled and predictable macromolecular assembly process. Recombinant CCR1 displayed fairly broad substrate versatility for all phenylpropanoid CoA substrates, with both feruloyl and 5-hydroxyferuloyl CoA being the best substrates. Taken together, these data indicate that other CCR isoforms are apparently capable of generating monolignol-derived lignified elements in irx4 when CCR1 is impaired, i.e., indicative of a functionally redundant CCR metabolic network operative in Arabidopsis. Other dwarfed phenotypes have also been observed following downregulation/disruption of unrelated metabolic processes but which also involve CoA ester metabolism, i.e., with hydroxymethylglutaryl CoA reductases in Arabidopsis and a bacterial enoyl CoA hydratase/lyase overexpressed in tobacco. Although the reasons for dwarfing in each case are unknown, a common mechanism for the various pleiotropic effects is proposed through perturbation of CoASH pool levels. Finally, this study demonstrates the need for progressive analyses over the lifespan of an organism, rather than at a single time point which cannot reveal the progressive developmental changes occurring.  相似文献   

20.
Lanot A  Hodge D  Lim EK  Vaistij FE  Bowles DJ 《Planta》2008,228(4):609-616
The phenylpropanoid pathway is used in biosynthesis of a wide range of soluble secondary metabolites including hydroxycinnamic acid esters, flavonoids and the precursors of lignin and lignans. In Arabidopsis thaliana a small cluster of three closely related genes, UGT72E1-E3, encode glycosyltransferases (GTs) that glucosylate phenylpropanoids in vitro. This study explores the effect of constitutively over-expressing two of these GTs (UGT72E1 and E3) in planta using the CaMV-35S promoter to determine whether phenylpropanoid homeostasis can be altered in a similar manner to that achieved by over-expression of UGT72E2 as previously reported. The data show that impact of over-expressing UGT72E3 in leaves is highly similar to that of UGT72E2 in that the production of massive levels of coniferyl and sinapyl alcohol 4-O-glucosides and a substantial loss in sinapoyl malate. In contrast, the over-expression of UGT72E1 in leaves led only to minimal changes in coniferyl alcohol 4-O-glucoside and no effect was observed on sinapoyl malate levels. In roots, over-expression of both UGTs led to some increase in the accumulation of the two glucosides. The cell specificity expression of the whole UGT72E gene cluster was investigated and interestingly only UGT72E3 was found to be wound and touch responsive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号