首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

2.
The study of the important role of peroxyl radicals in biological systems is limited by their difficult detection with direct electron spin resonance (ESR). Many ESR spectra were assigned to 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/peroxyl radical adducts based only on the close similarity of their ESR spectra to that of DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the radical adduct from DMPO/superoxide radical adduct. Later, the spin-trapping literature reported that DMPO/peroxyl radical adducts have virtually the same hyperfine coupling constants as synthesized alkoxyl radical adducts, raising the issue of the correct assignment of peroxyl radical adducts. However, using 17O-isotope labelling, the methylperoxyl and methoxyl radical adducts should be distinguishable. We have reinvestigated the spin trapping of the methylperoxyl radical. The methylperoxyl radical was generated in aerobic solution with 17O-molecular oxygen either in a Fenton system with dimethylsulfoxide or in a chloroperoxidase system with tert-butyl hydroperoxide. Two different spin traps, DMPO and 2,2,4-trimethyl-2H-imidazole-1-oxide (TMIO), were used to trap methylperoxyl radical. 17O-labelled methanol was used to synthesize methoxyl radical adducts by nucleophylic addition. It was shown that the 17O hyperfine coupling constants of radical adducts formed in methylperoxyl radical-generating systems are identical to that of the methoxyl radical adduct. Therefore, methylperoxyl radical-producing systems form detectable methoxyl radical adduct, but not detectable methylperoxyl radical adducts at room temperature. One of the possible mechanisms is the decomposition of peroxyl radical adduct with the formation of secondary alkoxyl radical adduct. These results allow us to reinterpret previously published data reporting detection of peroxyl radical adducts. We suggest that detection of 17O-alkoxyl radical adduct from 17O-labelled molecular oxygen can be used as indirect evidence for peroxyl radical generation.  相似文献   

3.
The breakdown of cumene hydroperoxide and peroxidized fatty acids by iron is shown, by use of the spin trap 5,5-dimethyl-l-pyrroline-N-oxide, to be sensitive to (a) the oxidation state of the metal and (b) the nature of the chelating ligands. The initial step in the Fe2+-catalysed breakdown is the production of an alkoxyl radical by one-electron reduction, and this type of radical has been successfully trapped from each substrate. Subsequent reactions of this alkoxyl species produce both carbon-centred and peroxyl radicals, depending on the concentrations of the reagents present. The use of the same spin trap in microsomal systems undergoing either NADPH-supported or Fe2+-induced peroxidation led to the detection of low concentrations of radical adducts, among which are signals that are believed to be due to lipid alkoxyl radicals. Reaction of polyunsaturated fatty acid hydroperoxides with both Fe2+ and lipoxygenase under anaerobic conditions gives rise to signals not only from the alkoxy-radical adduct, but also from a further species which is tentatively identified as being due to an acyl [RC(O).]-radical adduct; chemical studies lend support to this assignment.  相似文献   

4.
We have demonstrated with electron paramagnetic resonance (EPR) that organic hydroperoxides are decomposed to free radicals by both human polymorphonuclear leukocytes (PMNs) and purified myeloperoxidase. When tert-butyl hydroperoxide was incubated with either PMNs or purified myeloperoxidase, peroxyl, alkoxyl, and alkyl radicals were trapped by the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). In the case of ethyl hydroperoxide, DMPO radical adducts of peroxyl and alkyl (identified as alpha-hydroxyethyl when trapped by tert-nitrosobutane) radicals were detected. Radical adduct formation was inhibited when azide was added to the incubation mixture. Myeloperoxidase-deficient PMNs produced DMPO radical adduct intensities at only about 20-30% of that of normal PMNs. Our studies suggest that myeloperoxidase in PMNs is primarily responsible for the decomposition of organic hydroperoxides to free radicals. The finding of the free radical formation derived from organic hydroperoxides by PMNs may be related to the cytotoxicity of this class of compounds.  相似文献   

5.
Lipid peroxyl radicals resulting from the peroxidation of polyunsaturated fatty acids by soybean lipoxygenase were directly detected by the method of rapid mixing, continuous-flow electron spin resonance spectroscopy. When air-saturated borate buffer (pH 9.0) containing linoleic acid or arachidonate acid was mixed with lipoxygenase, fatty acid-derived peroxyl free radicals were readily detected; these radicals have a characteristic g-value of 2.014. An organic free radical (g = 2.004) was also detected; this may be the carbon-centered fatty acid free radical that is the precursor of the peroxyl free radical. The ESR spectrum of this species was not resolved, so the identification of this free radical was not possible. Fatty acids without at least two double bonds (e.g. stearic acid and oleic acid) did not give the corresponding peroxyl free radicals, suggesting that the formation of bisallylic carbon-centered radicals precedes peroxyl radical formation. The 3.8-G doublet feature of the fatty acid peroxyl spectrum was proven (by selective deuteration) to be a hyperfine coupling due to a gamma-hydrogen that originated as a vinylic hydrogen of arachidonate. Arachidonate peroxyl radical formation was shown to be dependent on the substrate, active lipoxygenase, and molecular oxygen. Antioxidants are known to protect polyunsaturated fatty acids from peroxidation by scavenging peroxyl radicals and thus breaking the free radical chain reaction. Therefore, the peroxyl signal intensity from micellar arachidonate solutions was monitored as a function of the antioxidant concentration. The reaction of the peroxyl free radical with Trolox C was shown to be 10 times slower than that with vitamin E. The vitamin E and Trolox C phenoxyl radicals that resulted from scavenging the peroxyl radical were also detected.  相似文献   

6.
Studies of the oxygenation of linoleic acid by soybean lipoxygenase utilizing electron spin resonance spectroscopy and oxygen uptake have been undertaken. The spin trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN) was included in the lipoxygenase system to capture short-lived free radicals. Correlation of radical adduct formation rates with oxygen uptake studies indicated that the major portion of radical adduct formation occurred when the system was nearly anaerobic. Incubations containing [17O]oxygen with nuclear spin of 5/2 did not have additional ESR lines as would be expected if an oxygen-centered 4-POBN-lipid peroxyl radical adduct were formed indicating that the trapped radical must be reassigned as a carbon-centered species. To establish the presence of [17O2]oxygen in our incubations, a portion of the gas from the lipoxygenase/linoleate experiments was used to prepare the 4-POBN-superoxide radical adduct utilizing a superoxide producing microsomal/paraquat/NADPH system.  相似文献   

7.
The hydroxyl and superoxide anion spin adducts of DMPO and 4-MePyBN, respectively, were obtained during photoirradiation of adriamycin and daunomycin solutions with visible light. Ethanol and dimethyl sulfoxide did not scavenge hydroxyl radicals in the photoirradiated drug solutions. Furthermore, the hydroxyl-DMPO spin adduct is not formed in the photolysis of air-free drug solutions, indicating that hydroxyl radicals are not directly produced in the photochemical reactions. Instead, the observed hydroxyl-DMPO is formed from the decay of the superoxide anion-DMPO spin adduct. The mechanism for generating the superoxide anion radical appears to be a direct electron transfer from the photoexcited adriamycin and daunomycin to dissolved oxygen.  相似文献   

8.
Spin trapping using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to detect and distinguish between the carbon-centred, alkoxyl, and peroxyl radicals produced during the photolytic decomposition of hydroperoxides. Photolysis of tert-butyl and cumene hydroperoxides, and peroxidized fatty acids, in toluene, with low levels of u.v. light, is shown to lead to the initial production of alkoxyl radicals by homolysis of the oxygen-oxygen bond. Subsequent reaction of these radicals with excess hydroperoxide leads, by hydrogen abstraction, to the production of peroxyl radicals that can be detected as their corresponding adducts with the spin trap. Subsequent breakdown of these adducts produces alkoxyl radicals and a further species that is believed to be the oxidized spin-trap radical 5,5-dimethyl-1-pyrrolidone-2-oxyl. No evidence was obtained at low hydroperoxide concentrations, with either the cumene or lipid alkoxyl radicals, for the occurrence of beta-scission reactions; the production of low levels of carbon-centred radicals is believed to be due to the alternative reactions of hydrogen abstraction, ring closure, and/or 1,2 hydrogen shifts. Analogous experiments with 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO) led only to the trapping of alkoxyl radicals with no evidence for peroxyl radical adducts, this is presumably due to a decreased rate of radical addition because of increased steric hindrance.  相似文献   

9.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.  相似文献   

10.
Enzyme-bound pentadienyl and peroxyl radicals in purple lipoxygenase   总被引:1,自引:0,他引:1  
M J Nelson  S P Seitz  R A Cowling 《Biochemistry》1990,29(29):6897-6903
Samples of purple lipoxygenase prepared by addition of either 13-hydroperoxy-9,11-octadecadienoic acid or linoleic acid and oxygen to ferric lipoxygenase contain pentadienyl and/or peroxyl radicals. The radicals are identified by the g values and hyperfine splitting parameters of natural abundance and isotopically enriched samples. The line shapes of their EPR spectra suggest the radicals are conformationally constrained when compared to spectra of the same radicals generated in frozen linoleic acid. Further, the EPR spectra are unusually difficult to saturate. The radicals are stable in buffered aqueous solution at 4 degrees C for several minutes. All of this implies that these species are bound to the enzyme, possibly in proximity to the iron. Only peroxyl radical is seen when the purple enzyme is generated with either hydroperoxide or linoleic acid in O2-saturated solutions. Addition of natural abundance hydroperoxide under 17O-enriched O2 leads to the 17O-enriched peroxyl radical, while the opposite labeling results in the natural abundance peroxyl radical, demonstrating the exchange of oxygen. Both radicals are detected in samples of purple lipoxygenase prepared with either linoleic acid or hydroperoxide under air. Addition of the hydroperoxide in the absence of oxygen favors the pentadienyl radical. We propose that addition of either linoleic acid or hydroperoxide to ferric lipoxygenase leads to multiple mechanistically connected enzyme complexes, including those with (hydro)peroxide, peroxide, peroxyl radical, pentadienyl radical, and linoleic acid bound. This hypothesis is essentially identical with the proposed radical mechanism of oxygenation of polyunsaturated fatty acids by lipoxygenase.  相似文献   

11.
Metal-catalysed radical oxidation of diacyl-glycerophosphatidylcholines (GPC) with ω-6 acyl polyunsaturated fatty acids (PAPC, palmitoyl-arachidonoyl-glycerophosphatidylcholine and PLPC, palmitoyl-lineloyl-glycerophosphatidylcholine) was studied. Free radical oxidation products were trapped by spin trapping with 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and identified by electrospray mass spectrometry (ES-MS). The spin adducts of oxidised GPC containing one and two oxygen atoms and one and two DMPO molecules were observed as doubly charged ions. Structural characterisation by tandem mass spectrometry (MS/MS) of these ions revealed product ions corresponding to loss of the acyl chains (sn-1-palmitoyl and sn-2-oxidised spin adduct of lineloyl or arachidonoyl), loss of the spin trap (DMPO) and product ions attributed to oxidised sn-2 fatty acid spin adduct (lineloyl and arachidonoyl). Product ions formed by homolytic cleavages near the spin trap and also from 1,4 hydrogen elimination cleavages involving the hydroxy group in the sn-2 fatty acid spin adduct allowed to infer the nature of the radical. Altogether, the presence of GPC hydroxy-alkyl/DMPO and hydroxy-alkoxyl/DMPO spin adducts was proposed.  相似文献   

12.
The respiratory burst and production of oxygen radicals by lymphocytes stimulated with phorbol myristate acetate (PMA) was studied and compared with that of polymorphonuclear leukocytes (PMN) by electron paramagnetic resonance (EPR) and spin trapping technique. Superoxide anion and hydroxyl radicals spin adducts of DMPO were detected in the stimulated PMN system, but only hydroxyl radical spin adducts of DMPO were detected in the stimulated lymphocyte system. It was proved by superoxide dismutase (SOD) and catalase that the hydroxyl radicals produced in the stimulated lymphocyte system came from superoxide anions, just like the hydroxyl radicals produced in the stimulated PMN.  相似文献   

13.
The spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) forms a superoxide adduct with a half-life of almost 15 min. DEPMPO is very hydrophilic and its use for the detection of radicals in the lipid phase (lipid-derived radicals and superoxide generated in the lipid phase) is therefore limited due to its very low concentration in the lipid phase. For the detection of lipid-derived radicals, three derivatives of DEPMPO with increasing degree of lipid solubility have been investigated: 5-(di-n-propoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DPPMPO), 5-(di-n-butoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DBPMPO), and 5-(bis-(2-ethylhexyloxy)phosphoryl)-5-methyl-1-pyrroline N-oxide (DEHPMPO). As compared with the spin trap DMPO, the half-lives of the respective superoxide adducts were clearly higher in aqueous solutions of the spin traps, which facilitates qualitative ESR measurements. The stability of the superoxide spin adducts formed with the various lipophilic spin traps in aqueous buffer were similar to those observed with DEPMPO (half-life: 7-11 min.). In model experiments using Fe(3+)-catalyzed nucleophilic addition of methanol or tert-butanol to the respective spin trap the respective alkoxyl radical adducts were formed in aqueous solution as transient species in the presence of high concentrations of the alcohol. Upon dilution with water the alkoxyl group was substituted by water, giving the respective hydroxyl adduct of the spin trap. Care must therefore be taken when Fenton-type reactions are used for the generation of radicals such as the use of Fe(2+) complexes with phosphate or DTPA or inactivation of iron by addition of "Desferal" (Novarti's Pharma GmbH, Vienna, Austria) after a short incubation time. Addition of Fe(2+) under anaerobic conditions to an aqueous suspension of linoleic acid hydroperoxide and the spin trap resulted in the detection of three different species: a carbon-centered radical adduct, an acyl radical adduct, and the hydroxyl adduct. In the presence of oxygen a different species was observed with DEPMPO, DPPMPO, and DBPMPO, which was only slightly suppressed upon the addition of SOD, possibly the respective spin adduct of either the alkylperoxyl radical or, in analogy to DMPO, a secondary alkoxyl radical.  相似文献   

14.
Free radicals in iron-containing systems   总被引:5,自引:0,他引:5  
All oxidative damage in biological systems arises ultimately from molecular oxygen. Molecular oxygen can scavenge carbon-centered free radicals to form organic peroxyl radicals and hence organic hydroperoxides. Molecular oxygen can also be reduced in two one-electron steps to hydrogen peroxide in which case superoxide anion is an intermediate; or it can be reduced enzymatically so that no superoxide is released. Organic hydroperoxides or hydrogen peroxide can diffuse through membranes whereas hydroxyl radicals or superoxide anion cannot. Chain reactions, initiated by chelated iron and peroxides, can cause tremendous damage. Chain carriers are chelated ferrous ion; hydroxyl radical .OH, or alkoxyl radical .OR, and superoxide anion O2-. or organic peroxyl radical RO2.. Of these free radicals .OH and RO2. appear to be most harmful. All of the biological molecules containing iron are potential donors of iron as a chain initiator and propagator. An attacking role for superoxide dismutase is proposed in the phagocytic process in which it may serve as an intermediate enzyme between NADPH oxidase and myeloperoxidase. The sequence of reactants is O2----O2-.----H2O2----HOCl.  相似文献   

15.
We report in vivo evidence for fatty acid-derived free radical metabolite formation in bile of rats dosed with spin traps and oxidized polyunsaturated fatty acids (PUFA). When rats were dosed with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and oxidized PUFA, the DMPO thiyl radical adduct was formed due to a reaction between oxidized PUFA and/or its metabolites with biliary glutathione. In vitro experiments were performed to determine the conditions necessary for the elimination of radical adduct formation by ex vivo reactions. Fatty acid-derived radical adducts of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) were detected in vivo in bile samples collected into a mixture of iodoacetamide, desferrioxamine, and glutathione peroxidase. Upon the administration of oxidized 13C-algal fatty acids and 4-POBN, the EPR spectrum of the radical adducts present in the bile exhibited hyperfine couplings due to 13C. Our data demonstrate that the carbon-centered radical adducts observed in in vivo experiments are unequivocally derived from oxidized PUFA. This in vivo evidence for PUFA-derived free radical formation supports the proposal that processes involving free radicals may be the molecular basis for the previously described cytotoxicity of dietary oxidized PUFA.  相似文献   

16.
ESR spin trapping using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) has been used to directly detect alkoxyl radicals (with hyperfine coupling constants aN 1.488, aH 1.600 mT and aN 1.488, aH 1.504 mT for the tBuO. and PhC(CH3)2O. adducts, respectively) and peroxyl radicals (aN 1.448, aH 1.088, aH 0.130 mT and aN 1.456, aH 1.064, aH 0.128 mT for the tBuOO. and PhC(CH3)2OO. adducts, respectively) produced from t-butyl or cumene hydroperoxides by a variety of heme-containing substances (purified cytochrome P-450, metmyoglobin, oxyhemoglobin, methemoglobin, cytochrome c, catalase, horseradish peroxidase) and the model compound hematin. The observed species exhibit a complicated dependence on reagent concentrations and time, with maximum concentrations of the peroxyl radical adducts being observed immediately after mixing of the hydroperoxide with low concentrations of the heme-compound. Experiments with inhibitors (CN-, N3-, CO, metyrapone and imidazole) suggest that the major mechanism of peroxyl radical production involves high-valence-state iron complexes in a reaction analogous to the classical peroxidase pathway. The production of alkoxyl radicals is shown to arise mainly from the breakdown of peroxyl radical spin adducts, with direct production from the hydroperoxide being a relatively minor process.  相似文献   

17.
Lipid radicals: properties and detection by spin trapping   总被引:1,自引:0,他引:1  
Unsaturated lipids are rapidly oxidized to toxic products such as lipid hydroperoxides, especially when transition metals such as iron or copper are present. In a Fenton-type reaction Fe2+ converts lipid hydroperoxides to the very short-lived lipid alkoxyl radicals. The reaction was started upon the addition of Fe2+ to an aqueous linoleic acid hydroperoxide (LOOH) emulsion and the spin trap in the absence of oxygen. Even when high concentrations of spin traps were added to the incubation mixture, only secondary radical adducts were detected, probably due to the rapid re-arrangement of the primary alkoxyl radicals. With the commercially available nitroso spin trap MNP we observed a slightly immobilized ESR spectrum with only one hydrogen splitting, indicating the trapping of a methinyl fragment of a lipid radical. With DMPO or 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) adducts were detected with carbon-centered lipid radical, with acyl radical, and with the hydroxyl radical. We also synthesized lipophilic derivatives of the spin trap DEPMPO in order to detect lipid radical species generated in the lipid phase. With all spin traps studied a lipid-derived carbon-centered radical was obtained in the anaerobic incubation system Fe2+/LOOH indicating the trapping of a lipid radical, possibly generated as a secondary reaction product of the primary lipid alkoxyl radical formed. Under aerobic conditions an SOD-insensitive oxygen-centered radical adduct was formed with DEPMPO and its lipophilic derivatives. The observed ESR parameters were similar to those of alkoxyl radical adducts, which were independently synthesized in model experiments using Fe3+-catalyzed nucleophilic addition of methanol or t-butanol to the respective spin trap.  相似文献   

18.
Evidence for the production of singlet molecular oxygen (1O2) during the chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide has been obtained through the use of optical spectroscopy, oxygen electrode experiments, and electron spin resonance (ESR). ESR spin-trapping experiments with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrate the production of the ethyl peroxyl free radical during the chloroperoxidase/ethyl hydroperoxide reaction. Oxygen and acetaldehyde concentrations suggest that the production of ethyl peroxyl radicals constitutes less than 2% of the decomposition of ethyl hydroperoxide at the concentrations of reactants used. The phosphorescence of 1O2 at 1268 nm was observed during the chloroperoxidase-catalyzed decomposition of ethyl hydroperoxide in deuterium oxide buffer. Chloroperoxidase also catalyzes the decomposition of tert-butyl hydroperoxide to its corresponding peroxyl radical. Alkoxyl and alkyl-DMPO spin adducts were also detected. A much lower yield of 1O2 phosphorescence was observed during the chloroperoxidase-catalyzed decomposition of tert-butyl hydroperoxide. This phosphorescence probably arises through secondary production of alkyl peroxyl radicals. These results suggest that the initial enzyme-dependent production of ethyl peroxyl radicals is followed by enzyme-independent reaction of two peroxyl radicals through the tetroxide intermediate, as originally proposed by Russell (Russell, G. A. (1957) J. Am. Chem. Soc. 79, 3871-3877), to form acetaldehyde, ethyl alcohol, and molecular oxygen.  相似文献   

19.
Short-lived free radicals formed in the reaction of 11 substrates and radiolytically produced hydroxyl radicals were trapped successfully with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) in dilute aqueous solution. The in situ radiolysis steady-state ESR spectra of the spin adducts were analyzed to determine accurate ESR parameters for these spin adducts in a uniform environment. Parent alkyl radicals include methyl, ethyl, 1-propyl and 2-propyl (1-methylethyl). Hydroxyalkyl parent radicals were hydroxymethyl, hydroxyethyl, 2-hydroxy-2-propyl (1-methyl-1-hydroxyethyl), 1-hydroxypropyl and 2-hydroxy-2-methylpropyl. Carboxyl radical (carbon dioxide anion, formate radical) and sulfite anion radical were the sigma radicals studied. The DMPO spin adduct of 1-propyl was identified for the first time. For most spin adducts, g factors were also determined for the first time. In DMPO spin adducts of hydroxyalkyl radicals, nitrogen and C(2)-proton hyperfine coupling constants are smaller than those of alkyl radical adducts; the hydroxyalkyl spin adducts possess larger g values than their unsubstituted counterparts. These changes are ascribed to the spread of pi conjugation to include the hydroxyl group. Strong evidence of spin addend-aminoxyl group interaction can be seen in the asymmetrical line shapes in the hydroxyethyl and the hydroxypropyl spin adducts.  相似文献   

20.
The objective of this study was to determine the effect of (bi)sulfite (hydrated sulfur dioxide) on human neutrophils and the ability of these immune cells to produce reactive free radicals due to (bi)sulfite oxidation. Myeloperoxidase (MPO) is an abundant heme protein in neutrophils that catalyzes the formation of cytotoxic oxidants implicated in asthma and inflammatory disorders. In this study sulfite (?SO3?) and sulfate (SO4??) anion radicals are characterized with the ESR spin-trapping technique using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the reaction of (bi)sulfite oxidation by human MPO and human neutrophils via sulfite radical chain reaction chemistry. After treatment with (bi)sulfite, phorbol 12-myristate 13-acetate-stimulated neutrophils produced DMPO–sulfite anion radical, –superoxide, and –hydroxyl radical adducts. The last adduct probably resulted, in part, from the conversion of DMPO–sulfate to DMPO–hydroxyl radical adduct via a nucleophilic substitution reaction of the radical adduct. This anion radical (SO4??) is highly reactive and, presumably, can oxidize target proteins to protein radicals, thereby initiating protein oxidation. Therefore, we propose that the potential toxicity of (bi)sulfite during pulmonary inflammation or lung-associated diseases such as asthma may be related to free radical formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号