首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-lactate transport mechanism across rat jejunal enterocyte was investigated using isolated membrane vesicles. In basolateral membrane vesicles l-lactate uptake is stimulated by an inwardly directed H+ gradient; the effect of the pH difference is drastically reduced by FCCP, pCMBS and phloretin, while furosemide is ineffective. The pH gradient effect is strongly temperature dependent. The initial rate of the proton gradient-induced lactate uptake is saturable with respect to external lactate with a K m of 39.2 ± 4.8 mm and a J max of 8.9 ± 0.7 nmoles mg protein−1 sec−1. A very small conductive pathway for l-lactate is present in basolateral membranes. In brush border membrane vesicles both Na+ and H+ gradients exert a small stimulatory effect on lactate uptake. We conclude that rat jejunal basolateral membrane contains a H+-lactate cotransporter, whereas in the apical membrane both H+-lactate and Na+-lactate cotransporters are present, even if they exhibit a low transport rate. Received: 22 October 1996/Revised: 11 March 1997  相似文献   

2.
Summary Intracellular pH (pHi) regulation was studied in crayfish neurons with pH-, and Na+-sensitive microelectrodes. It was confirmed to involve both a HCO 3 -dependent and a HCO 3 -independent mechanism. The latter was identified as the amiloride-sensitive Na+/H+ exchange described in vertebrate cells. Its dependence on extracellular pH (pHe) and Na+ concentration ([Na+]e) was studied in CO2-free external solutions at 20°C. The steady state pHi and the rate constant (k) of the exponential pHi recovery following an acid load were determined. At pHe=7.5 and [Na+]e=200 mM, the average steady state pHi was 7.09±0.12 (as compared to 7.30±0.10 in the presence of 5 mM bicarbonate). The dependence of the rate constant of recovery on [Na+]e could be described by Michaelis-Menten kinetics; at pHe=7.5 the apparentK m andK max were 39 mM and 1.4 mmol·l–1·min–1, respectively. Decreasing pHe reduced the rate of recovery, the variations ofk with pHe conforming to a simple titration curve with an apparent pK of 7.05±0.21. These kinetic properties of the Na+/H+ exchange in crayfish neurons are similar to those described in vertebrate cells.Preliminary results were presented at the First International Congress of Comparative Physiology and Biochemistry (Liège, Belgium, 1984)  相似文献   

3.
The functional significance of the apical vacuolar-type proton pump (V-ATPase) in Drosophila Malpighian tubules was studied by measuring the intracellular pH (pHi) and luminal pH (pHlu) with double-barrelled pH-microelectrodes in proximal segments of the larval anterior tubule immersed in nominally bicarbonate-free solutions (pHo 6.9). In proximal segments both pHi (7.43±0.20) and pHlu (7.10±0.24) were significantly lower than in distal segments (pHi 7.70±0.29, pHlu 8.09±0.15). Steady-state pHi of proximal segments was much less sensitive to changes in pHo than pH of the luminal fluid (pHlu/pHo was 0.49 while pHi/pHo was 0.18; pHo 6.50–7.20). Re-alkaliniziation from an NH4Cl-induced intracellular acid load (initial pHi recovery rate 0.55±0.34 pH·min-1) was nearly totally inhibited by 1 mmol·l-1 KCN (96% inhibition) and to a large degree (79%) by 1 mol·l-1 bafilomycin A1. In contrast, both vanadate (1 mmol·l-1) and amiloride (1 mmol·l-1) inhibited pHi recovery by 38% and 33%, respectively. Unlike amiloride, removal of Na+ from the bathing saline had no effect on pHi recovery, indicating that a Na+/H+ exchange is not significantly involved in pHi regulation. Instead pHi regulation apparently depended largely on the availability of ATP and on the activity of the bafilomycin-sensitive proton pump.Abbreviations DMSO dimethylsulphoxide - DNP 2,4-dinitrophenol - NMDG N-methyl-D-glucamine - pHi intracellular pH - pHlu pH of the luminal fluid - pHo pH of the superfusion medium - I intrinsic intracellular buffer capacity  相似文献   

4.
The ability to actively transport nutrients is maintained in intestinal tissues of hibernating ground squirrels compared with their active counterparts, and shows apparent upregulation in hibernators when transport rates are normalized to tissue mass. To identify the mechanisms responsible for the preservation of transport function during the extended fast of hibernation, we studiedd-glucose uptake into jejunal brush border membrane vesicles prepared from active and hibernating 13-lined ground squirrels. Hibernators were without food and showing regular bouts of torpor for at least 6 weeks before sacrifice. Electron micrographs indicated similar microvillus heights of jejunal enterocytes in the two activity states, whereas microvillus density was slightly greater in the hibernators. Glucose uptake into brush border membrane vesicles was inversely related to medium osmolarity, indicating negligible binding of substrate to brush border membrane vesicles surfaces, and intravesicular spaces were similar in hibernating and active squirrels. Glucose uptake showed strong Na+ dependency in both groups, with equivalent overshoot values in the presence of Na+. Kinetic analysis revealed a significant increase in the maximal velocity of transport (J max) in hibernators (55.9±5.6 nmol·min-1·mg-1) compared with active squirrels (36.7±5.1 nmol·min-1·mg-1,P<0.05), with no change inK m. Thus, the structure and absorptive capacity of the intestinal brush border persists in fasted hibernators, and the increase inJ max for glucose uptake during hibernation likely contributes to the enhanced Na+-dependent glucose absorption previously observed at the tissue level.Abbreviations BBM brush border membrane(s) - BBMV brush border membranes vesicles - SGLT1 Na+-glucose transporter - 3-OMG 3-orthomethylglucose - J max maximal velocity of transport - K m transporter affinity for substrate - T b body temperature  相似文献   

5.
Pathways of K+ movement across the erythrocyte membrane of frog Rana temporaria were studied using 86Rb as a tracer. The K+ influx was significantly blocked by 0.1 mmol·l-1 ouabain (by 30%) and 1 mmol·l-1 furosemide (by 56%) in the red cells incubated in saline at physiological K+ concentration (2.7 mmol·l-1). Ouabain and furosemide had an additive effect on K+ transport in frog red cells. The ouabain-sensitive and furosemide-sensitive components of K+ influx saturated as f(K+)e with apparent K m values for external K e + concentration of 0.96±0.11 and 4.6±0.5 mmol·l-1 and V max of 0.89±0.04 and 2.8±0.4 mmol·l cells-1·h-1, respectively. The residual ouabain-furosemide-resistant component was also a saturable function of K e + medium concentration. Total K+ influx was significantly reduced when frog erythrocytes were incubated in NO - 3 medium. Furosemide did not affect K+ transport in frog red cells in NO 3 - media. At the same K e + concentration the ouabain-furosemide-insensitive K+ influx in Cl- medium was significantly greater than that in NO - 3 medium. We found no inhibitory effect of 1 mmol·l-1 furosemide on Na+ influx in frog red cells in Cl- medium. K+ loss from the frog erythrocytes in a K+-free medium was significantly reduced (mean 58%) after replacement of Cl- with NO - 3 . Furosemide (0.5 mmol·l-1) did not produce any significant reduction in the K+ loss in both media. The Cl--dependent component of K+ loss from frog red cells was 5.7±1.2 mmol·l-1·h-1. These results indicate that about two-thirds of the total K+ influx in frog erythrocytes is mediated by a K–Cl cotransport which is only partially blocked by furosemide.Abbreviations DMSO dimethyl sulphoxide - K e + external concentration of K+ - K m apparent Michaelis constant for external - K+ K e + at V max/2 - RBC red blood cell(s) - V max maximal velocity of the unidirectional K+ influx - TRIS tris(hydroxymethyl)aminomethane  相似文献   

6.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

7.
Saliva was collected from the mandibular glands of anaesthetized common wombats (Vombatus ursinus) to ascertain maximal flow rates, salivary compostion and possible adaptations, particularly PO4 3- secretion, to assist digestion. After temporary catheterization of the main duct through its oral opening, salivary secretion was evoked at flow rates ranging from 0.02±0.002 (±SEM) ml·min-1 (0.7±0.07 l·min-1·kg body weight-1) to 0.4±0.05 ml·min-1(14±1.9 l·min-1·kg body weight-1) by ipsilateral intracarotid infusion of acetylcholine. The [Na+] (15±5.1 to 58±8.6 mmol·l-1) and [HCO3 -] (35±1.9 to 60±1.9 mmol·l-1) were positively correlated with salivary flow rate. The [K+] (58±5.2 to 30±2.4 mmol·l-1), [Ca2+] (10.4±1.67 to 4.1±0.44 mmol·l-1), [Mg2+] (0.94±0.137 to 0.17±0.032 mmol·l-1), [Cl-] (71±9.2 to 45±6.0 mmol·l-1), [urea] (9.3±0.79 to 5.1±0.54 mmol·l-1), H+ activity (29±1.6 to 17±1.6 nEq·l-1) and amylase activity (251±57.4 to 92±23.3 kat·l-1) were negatively correlated with flow. Both concentration and osmolality fell with increasing flow at the lower end of the flow range but osmolality always increased again by maximal flow whereas the relation between protein and flow was not consistent at the higher levels of flow and stimulation. Salivary [PO4 3+] was not correlated with flow and at 3–14% of the plasma concentration was extremely low. Thus, in contrast to its nearest relative, the koala (Phascolarctos cinereus), the wombat secretes little PO4 3+ presumably because it does not need high levels of PO4 3+ in its saliva to facilitate microbial digestion of plant fibre.Abbreviations bw body weight - ww wet weight  相似文献   

8.
Summary The developmental maturation of Na+–H+ antiporter was determined using a well-validated brush-border membrane vesicles (BBMV's) technique. Na+ uptake represented transport into an osmotically sensitive intravesicular space as evidenced by an osmolality study at equilibrium. An outwardly directed pH gradient (pH inside/pH outside=5.2/7.5) significantly stimulated Na+ uptake compared with no pH gradient conditions at all age groups; however, the magnitude of stimulation was significantly different between the age groups. Moreover, the imposition of greater pH gradient across the vesicles resulted in marked stimulation of Na+ uptake which increased with advancing age. Na+ uptake represented an electroneutral process.The amiloride sensitivity of the pH-stimulated Na+ uptake was investigated using [amiloride] 10–2–10–5 m. At 10–3 m amiloride concentration, Na+ uptake under pH gradient conditions was inhibited 80, 45, and 20% in BBMV's of adolescent, weanling and suckling rats, respectively. Kinetic studies revealed aK m for amiloride-sensitive Na+ uptake of 21.8±6.4, 24.9±10.9 and 11.8±4.17mm andV max of 8.76±1.21, 5.38±1.16 and 1.99±0.28 nmol/mg protein/5 sec in adolescent, weanling and suckling rats, respectively. The rate of pH dissipation, as determined by the fluorescence quenching of acridine orange, was similar across membrane preparation of all age groups studied. These findings suggest for the first time the presence of an ileal brush-border membrane Na+–H+ antiporter system in all ages studied. This system exhibits changes in regard to amiloride sensitivity and kinetic parameters.  相似文献   

9.
Summary Na+–H+ exchange activity in renal brush border membrane vesicles isolated from hyperthyroid rats was increased. When examined as a function of [Na+], treatment altered the initial rate of Na+ uptake by increasingV m (hyperthyroid, 18.9±1.1 nmol Na+ · mg–1 · 2 sec–1; normal, 8.9±0.3 nmol Na+ · mg–1 · 2 sec–1), and not the apparent affinityK Na + (hyperthyroid, 7.3±1.7mm; normal, 6.5±0.9mm). When examined as a function of [H+] and at a subsaturating [Na+] (1mm), hyperthyroidism resulted in the proportional increase in Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and hyperthyroid rats. When the data were analyzed by the Hill equation, it was found that hyperthyroidism did not change then (hyperthyroid, 1.2±0.06; normal, 1.2±0.07) or the [H+]0.5 (hyperthyroid, 0.39±0.08 m; normal, 0.44±0.07 m) but increased the apparentV m (hyperthyroid, 1.68±0.14 nmol Na+ · mg–1 · 2 sec–1; normal 0.96±0.10 nmol Na+ · mg–1 · 2 sec–1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and hyperthyroid animals was not influenced by membrane potential. H+ translocation or debinding was rate limiting for Na+–H+ exchange since Na+–Na+ exchange activity was greater than Na+–H+ exchange activity. Hyperthyroidism caused a proportional increase and hypothyroidism caused a proportional decrease in Na+–Na+ and Na+–H+ exchange. We conclude that hyperthyroidism leads to either an increase in the number of functional exchangers in the membrane or exactly proportional increases in the rate-limiting steps for Na+–Na+ and Na+–H+ exchange activity.  相似文献   

10.
Summary In rabbit ileum, Ca2+/calmodulin (CaM) appears to be involved in physiologically inhibiting the linked NaCl absorptive process, since inhibitors of Ca2+/CaM stimulate linked Na+ and Cl absorption. The role of Ca2+/CaM-dependent phosphorylation in regulation of the brush-border Na+/H+ antiporter, which is believed to be part of the neutral linked NaCl absorptive process, was studied using purified brush-border membrane vesicles, which contain both the Na+/H+ antiporter and Ca2+/CaM-dependent protein kinase(s) and its phosphoprotein substrates. Rabbit ileal villus cell brush-border membrane vesicles were prepared by Mg precipitation and depleted of ATP. Using a freezethaw technique, the ATP-depleted vesicles were loaded with Ca2+, CaM, ATP and an ATP-regenerating system consisting of creatine kinase and creatine phosphate. The combination of Ca2+/CaM and ATP inhibited Na+/H+ exchange by 45±13%. This effect was specific since Ca2+/CaM and ATP did not alter diffusive Na+ uptake, Na+-dependent glucose entry, or Na+ or glucose equilibrium volumes. The inhibition of the Na+/H+ exchanger by Ca2+/CaM/ATP was due to an effect on theV max and not on theK m for Na+. In the presence of CaM and ATP, Ca2+ caused a concentration-dependent inhibition of Na+ uptake, with an effect 50% of maximum occurring at 120nm. This Ca2+ concentration dependence was similar to the Ca2+ concentration dependence of Ca2+/CaM-dependent phosphorylation of specific proteins in the vesicles. The Ca2+/CaM/ATP-inhibition of Na+/H+ exchange was reversed by W13, a Ca2+/CaM antagonist, but not by a hydrophobic control, W12, or by H-7, a protein kinase C antagonist. we conclude that Ca2+, acting through CaM, regulates ileal brush-border Na+/H+ exchange, and that this may be involved in the regulation of neutral linked NaCl absorption.  相似文献   

11.
Within 1 min of transfer from coelomic fluid to fresh water, eggs of rainbow trout (Oncorhynchus mykiss) underwent a transient loss of Na+ and K+ coupled with an elevation of the chorionic envelope. Both mechanisms were blocked by adding a monovalent cation Li+ or K+ (140 mmol·l-1) to the fresh water, but the divalent ion Mg2+ (100 mmol MgCl2·l-1) or elevating the osmotic pressure to 300 mOsmol·l-1 with glycine had no inhibitory effect. The blocking of Na+ loss occurred at external monovalent cation (LiCl) concentrations above 70 mmol·l-1. A 20-s exposure of eggs to fresh water was sufficient to trigger Na+ loss and chorion elevation, even when the eggs were subsequently transferred to fresh water containing 140 mmol LiCl·l-1. Eggs placed in a medium containing 140 mmol LiCl·l-1 and 2 mmol Ca(NO3)2·l-1 showed chorion elevation and associated Na+ loss after addition of calcium ionophore (20 mol·l-1 A.23187). This activation by calcium ionophore was supressed in a Ca2+-free medium containing 5 mmol EGTA·l-1.  相似文献   

12.
Possible mechanisms of primary fluid formation by macropodine parotid glands were investigated in anaesthetized red kangaroos using ion transport inhibitors. Carotid plasma amiloride concentrations of 0.05–0.5 mmol·l-1 progressively reduced a stable acetylcholine-evoked half-maximal flow rate of 2.0±0.04 to 0.22±0.024 ml·min-1 (mean±SEM). Concurrently, saliva bicarbonate concentration and secretion fell (135±1.6 to 67±1.7 mmol·l-1 and 272±7.6 to 15±2.6 mol·min-1, respectively); [phosphate], [chloride] and [sodium] rose and [potassium] and osmolality were unaltered. High-rate cholinergic stimulation did not increase saliva flow beyond 11±1.0% of that for equivalent pre-amiloride stimulation. Equipotent levels of amiloride and methazolamide given concurrently were no more effective at blocking flow and bicarbonate secretion than when given separately. Furosemide (up to 2 mmol·l-1), bumetanide (up to 0.2 mmol·l-1) and ethacrynate (1 mmol·l-1) in carotid plasma had no effect on salivary flow or ion concentrations. During methazolamide blockade, furosemide did not curtail the concurrent increase in salivary [chloride]. Chlorothiazide at 0.25–1.0 mmol·l-1 caused progressive depression of saliva flow and [bicarbonate], and elevation of [chloride]. 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid at 0.1 mmol·l-1 was without effect, whereas at 0.5 mmol·l-1 it stimulated fluid secretion and increased saliva [protein], [sodium], [potassium], [bicarbonate] and osmolality. Concurrently, mean arterial blood pressure and pulse pressure fell and heart rate, haematocrit and carotid artery plasma flow rose. These responses were absent if saliva flow was kept constant by reduction in cholinergic stimulation during 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid administration. It is concluded that secretion of primary fluid by the kangaroo parotid is initiated mainly (>90%) by secretion of bicarbonate which is formed in the endpiece cells from CO2 delivered by the circulation. No evidence was found for initiation of fluid secretion by chloride transport involving basolateral Na+-K+-2Cl- symports, Na+-Cl- symports or Cl-/HCO 3 - antiports.Abbreviations CA carbonic anhydrase - CAI carbonic anhydrase inhibitors - MAP mean arterial blood pressure - PAH p-aminohippurate - SITS 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid  相似文献   

13.
Isolated posterior gills (no. 7) of shore crabsCarcinus maenas acclimated to brackish water of a salinity of 10 S were bathed and perfused with 50% sea water (200 mmol·l-1 Na+), and the internal perfusate collected during subsequent periods of 5 min. During a single passage through the gill the pH of the perfusion medium decreased from ca. 8.1 to ca. 7.7, a result implying that the gill possesses structures which recognize unphysiologically high pH values in the haemolymph and regulates them down to physiological values of ca. 7.7. The calculated apparent proton fluxes from the epithelial cells into the haemolymph space amounted to 17.9 mol·g fw-1·h-1, a value of only 3.8% of net Na+ fluxes observed under comparable conditions. When 0.1 mmol·l-1 KCN, an inhibitor of mitochondrial cytochrome oxidase, or 5 mmol·l-1 ouabain, a specific inhibitor of Na+/K+-ATPase were applied in the internal perfusate, down-regulation of pH was no longer observed and the gill was completely depolarized, i.e. transepithelial potential differences dropped from-7.8 to 0 mV (haemolymph space negative to bath). Regulation of pH was completely inhibited by antagonists of carbonic anhydrase (0.1 mmol·l-1 acetazolamide or 0.01 mmol·l-1 ethoxyzolamide) applied in the perfusate. Inhibitors of Na+/H+ exchange, 0.1 mmol·l-1 amiloride applied in the external bathing medium or in the internal perfusate, and symmetrical 0.01 mmol·l-1 5-(N-ethyl-N-isopropyl)amiloride, as well as inhibitors of Cl-/HCO3 - exchange and Na+/HCO3 - cotransport, 0.5 mmol·l-1 4,4-diisothiocyanatostilbene-2,2-disulphonate or 0.3 mmol·l-1 4-acetamido-4-isothiocyanatostilbene 2,2-disulphonate applied on both sides of the gill, and inhibitors of H+-ATPase, 0.05 mmol·l-1 N-ethylmaleimide and 0.1 mmol·l-1 N,N-dicyclohexylcarbodiimide —applied on both sides of the gill — did not alter the acidification of the perfusate observed in controls. Using artificial salines buffered to pH 8.1 with 0.75 mmol·l-1 tris (hydroxymethyl) aminomethane instead of 2 mmol·l-1 HCO3 -, apparent proton fluxes were reduced to 11% of controls, a result suggesting that pH regulation by crab gills needs the presence of HCO3 -. The findings obtained suggest that pH regulation by crab gills depends on the oxidative metabolism of the intact branchial epithelium and that carbonic anhydrase plays a central role in this process. Na+/H+ exchange, anion exchange or cotransport and active proton secretion seem not to be involved. While unimpaired active ion uptake is a prerequisite for pH regulation, ion transport itself is independent of it.Abbreviations acetazolamide (N-[sulphamoyl-1, 3, 4-thiadiazol-2-yl]-acetamide) - amiloride 3,5-diamino-6-chloropyrazinoyl-guanidine - CA carbonic anhydrase - DBI dextrane-bound inhibitor thiadiazolesulphonamide - DCCD N N dicyclohexylcarbodiimide - DIDS 4,4-diisothiocyanato-stilbene-2,2-disulphonate - EIPA 5-(N-ethyl-N-isopropyl) amiloride - ethoxyzolamide 6-ethoxy-2-benzothiazole-sulphonamide - fw fresh weight - J H + apparent proton flux - NEM N-ethylmaleimide - PD transepithelial potential difference - PEG-STZ polyethylene-glycol-thiadiazolesulphonamide - STTS 4-acetamido-4-isothiocyanatostibene 2,2-disulphonate - SW sea water - TRIS tris(hydroxymethyl)aminomethane  相似文献   

14.
In ruminants, the uptake of inorganic phosphate (Pi) across the intestinal mucosa epithelium by Na-dependent and Na-independent mechanisms is a main regulatory factor in P homeostasis. The aim of the study was to elucidate to which extent Na-independent mechanisms, including pH effects or composition of mucosal brush-border membranes, could be involved in positive stimulation of Pi absorptive processes seen under the P deficient condition. Therefore, luminal, surface and intracellular pH of the jejunal epithelial cells in control and P depleted goats were compared and biochemical analyses of membrane phospholipids in the apical membrane of the jejunal epithelium were performed. Dietary P depletion resulted in decreased plasma Pi levels. While pH in jejunal ingesta was not significantly changed, P depletion resulted in a significantly lower surface pH in the crypt region compared to control animals (7.62 ± 0.02 vs. 7.77 ± 0.04, n = 4, P < 0.01). Inhibition of apical Na+/H+-exchange resulted in an increase of the jejunal surface pH in P depleted animals by 0.07 ± 0.01 (n = 6, P < 0.01) and 0.05 ± 0.01 (n = 6, P < 0.01) for the villus and the crypt region, respectively. This increase were inversely correlated with the initial surface pH prior to inhibition. In contrast to surface pH, intracellular pH of the jejunal epithelium and the phospholipid composition of the apical jejunal membrane were not affected by P depletion. Although the data suggest the existence of a Na+/H+-exchange mechanism at the luminal surface of goat jejunum they do not support the hypothesis that adaptational processes of active Pi absorption from goat jejunum in response to low dietary P could be based on “non Pi transporter events”.  相似文献   

15.
About 92% of the taurine influx in flounder erythrocytes at physiological conditions in vitro (330 mosmol·l-1, 145 mmol·l-1 Na+, 0.30 mmol·l-1 taurine) is Na+-dependent. This influx is highly specific for taurine. The -amino compounds hypotaurine and -alanine were the only compounds which mimicked the inhibitory effect of taurine on influx of [14C]taurine, the former more than the latter. Counterexchange of taurine was also mediated by the taurine transporters. Reduction of osmolality per se did not affect the activity of these transporters. Non-linear regression analysis of the influx values revealed the presence of two different influx systems: a system with high affinity and low capacity and another with low affinity and high capacity. However, we cannot exclude the possibility that this influx of taurine was mediated by only one transporter which operated in different modes depending on the extracellular Na+ concentration. On the assumption that the Na+-dependent influx was mediated by two separate systems, the maximal velocity of the low capacity system was 2.55 nmol·g dry weight-1·min-1 at 145 mmol·ll-1 extracellular Na+. This capacity was about 50% lower than that of the high capacity system. The Michaelis constants were 0.013 and 1.34 mmol·l-1, respectively. Reduction of the extracellular Na+ concentration reduced maximal velocity and the affinity to taurine of both transport systems. At 10 mmol·l-1 Na+ or lower concentrations the high capacity system did not seem to operate. The activation method suggested that each taurine molecule transported by the high capacity system was accompanied by two Na+. The stoichiometry of the low capacity system was 1 taurine: 1 Na+. The Hill-coefficient for both transport systems was 1.00.Abbreviations cpm counts per minute - dw dry weight - GABA -amino-n-butyric acid - K m Michaelis constant - pK b basic dissociation constant - SD standard deviation - -ABA Dl--amino-n-butyric acid - V max maximal velocity - ww wet weight  相似文献   

16.
We investigated the contribution of the Na+/l-carnitine cotransporter in the transport of tetraethylammonium (TEA) by rat renal brush-border membrane vesicles. The transient uphill transport of l-carnitine was observed in the presence of a Na+ gradient. The uptake of l-carnitine was of high affinity (Km=21 μM) and pH dependent. Various compounds such as TEA, cephaloridine, and p-chloromercuribenzene sulfonate (PCMBS) had potent inhibitory effects for l-carnitine uptake. Therefore, we confirmed the Na+/l-carnitine cotransport activity in rat renal brush-border membranes. Levofloxacin and PCMBS showed different inhibitory effects for TEA and l-carnitine uptake. The presence of an outward H+ gradient induced a marked stimulation of TEA uptake, whereas it induced no stimulation of l-carnitine uptake. Furthermore, unlabeled TEA preloaded in the vesicles markedly enhanced [14C]TEA uptake, but unlabeled l-carnitine did not stimulate [14C]TEA uptake. These results suggest that transport of TEA across brush-border membranes is independent of the Na+/l-carnitine cotransport activity, and organic cation secretion across brush-border membranes is predominantly mediated by the H+/organic cation antiporter.  相似文献   

17.
Selenate and selenite uptakes by isolated intestinal brush border membrane vesicles (BBMV) from pig, sheep, and rat were investigated. Selenate uptake into jejunal and ileal, but not duodenal, BBMV from pig was stimulated by an inwardly directed transmembrane Na+ gradient (Na out + >Na in + ). Selenate transport into rat ileal and sheep jejunal BBMV was also enhanced in the presence of a Na+ gradient. Unlike selenate uptake, selenite uptake was not Na+ dependent, neither in pig small intestine nor in sheep jejunum and rat ileum. Uptake of selenate represented real uptake into the vesicular lumen, whereas selenite uptake was a result of an extensive binding of75Se to the membranes. Thiosulfate at a 250-fold concentration of selenate completely inhibited Na+-dependent selenate uptake into pig jejunal BBMV. Furthermore, Na+-dependent sulfate uptake was totally inhibited in the presence of a 250-fold selenate concentration. The results clearly show that selenate transport across the BBM of pig jejunum and ileum, sheep jejunum, and rat ileum is partially energized by a transmembrane Na+ gradient. Moreover, it is concluded from the results that there exists a common transport mechanism for sulfate and selenate in the BBM. The extensive binding of75Se from75Se-labeled selenite to the membranes could be from a spontaneous reaction of selenite with membrane-associated SH groups.  相似文献   

18.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

19.
When intact crayfish are in an ion-poor medium (KCl, 0.1 mmol·l-1+KHCO3, 0.1 mmol·l-1) there is a large potential difference (transepithelial potential difference),-20 to-40 mV (hemolymph negative), across the gills. Addition of Ca2+ to the medium is followed by a rapid change in transepithelial potential difference to near 0 mV. The transepithelial potential difference showed a non-linear dependence on [Ca2+]out with a limiting value of+2 to+10 mV at>1 mmol·l-1. The concentration generating a half-maximum transepithelial potential difference change (15–20 mV) was 0.1 to 0.2 mmol·l-1. Three other alkaline earth ions were also electrogenic; Ba2+ caused slightly larger transepithelial potential difference changes, Sr2+ and Mg2+ were a little less effective. It has been suggested that the transepithelial potential difference in ion-poor medium (in fish) is due to the diffusive efflux of NaCl across the gills, with a Cl-/Na+ permeability ratio of <1. Evidence is presented that this might be the case in crayfish. The electrogenic effect of Ca2+ might then be due to its effect on gill permeability to Na+ and Cl- such that the permeability ratio increased and approached unity as the transepithelial potential difference approached 0. However, this was shown to be unlikely. An alternative explanation for Ca2+ dependence of the transepithelial potential difference is that active inward Ca2+ transport is electrogenic.Abbreviations FW fresh water - I out ion efflux - IP ion-poor solution - P c Cl-permeability - P Na Na+ permeability - R electrical resistance - SW sea water - TEP transepithelial potential difference  相似文献   

20.
The renal response to infusion of three different saline solutions was studied in chicks of Leach's storm petrel (Oceanodroma leucorhoa). Each of the solutions (125 mmol·1-1 NaCl at 5.3 ml·h-1, 250 mmol·l-1 NaCl at 2.6 ml·h-1, and 550 mmol·l-1 NaCl at 1.2 ml·h-1) provided the same delivery of Nacl but in different volumes of water. Birds infused with 125 mmol·l-1 NaCl had a glomerular filtration rate of 25.7 ml·h-1, a urine flow rate of 4.4 ml·h-1, and excreted 71% of the infused Na+ load in the urine. With infusion of 250 mmol·l-1 NaCl, the glomerular filtration rate was unchanged (23.3 ml·h-1), but urine flow rate was reduced to 0.93 ml·h-1 and only 35% of the Na+ load was excreted in the urine. Infusion of 550 mmol·l-1 NaCl induced a sharp decrease in glomerular filtration rate (to 3.8 ml·h-1) and urine flow rate (to 0.08 ml·h-1), and only 1.4% of the infused Na+ was excreted in the urine. The contribution of different nephron populations to filtration was assessed by the pattern of staining of glomeruli by alcian blue infused during the last 30 min of the saline infusion. The numbers of stained glomeruli did not differ between birds infused with 125 and 250 mmol·l-1 NaCl (59000 and 55000 glomeruli per kidney, respectively), and the patterns of staining were similar for birds in these two groups. Birds infused with 550 mmol·l-1 NaCl had lighter staining overall and fewer stained glomeruli (37000 per kidney). This absence of staining was predominant in the smaller size classes of glomeruli, suggesting a selective shutdown of smaller (reptilian-type) nephrons during times of osmotic challenge in these birds. This may be part of an overall suite of water-conserving strategies employed by these chicks during their long confinement with irregular feeding in the nesting burrow.Abbreviations ADH antidiuretic hormone - GFR glomerular filtration rate - MT mammalian-type - P plasma inulin concentration - RT reptilian-type - U urine inulin concentration - V urine flow rate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号