首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In contrast to the closely related bacteria Erwinia chrysanthemi, bacteria Erwinia carotovora subsp. atroseptica produce lower levels of main pathogenicity and virulence factors (pectate lyases, cellulases, and proteases) in the presence of pectins. This effect was shown to be connected with the accumulation of the intermediate product of intracellular degradation of these substances, 2,5-diketo-3-deoxygluconate (DK2). The presence of DK2 in the culture broth of mutant bacteria, connected to its export in the environment, was established. The production of pectate lyases, cellulases, and proteases is repressed by DK2 only at its high concentrations in the cultivation medium, whereas low concentrations of DK2 induce the production of virulence factors. Genes involved in the intracellular catabolism of pectin substances and induced by both low and high DK2 concentrations in the cultivation medium are not repressed by this metabolite.  相似文献   

2.
The ability of the enterobacterium Erwinia chrysanthemi to induce pathogenesis in plant tissue is strongly related to the massive production of plant-cell-wall-degrading enzymes (pectinases, cellulases, and proteases). Additional factors, including flagellar proteins and exopolysaccharides (EPS), also are required for the efficient colonization of plants. Production of these virulence factors, particularly pectate lyases, the main virulence determinant, is tightly regulated by environmental conditions. The possible involvement of the protein H-NS in this process was investigated. The E. chrysanthemi hns gene was cloned by complementation of an Escherichia coli hns mutation. Its nucleotide sequence contains a 405-bp open reading frame that codes for a protein with 85% identity to the E. coli H-NS protein. An E. chrysanthemi hns mutant was constructed by reverse genetics. This mutant displays a reduced growth rate and motility but an increased EPS synthesis and sensitivity toward high osmolarity. Furthermore, pectate lyase production is dramatically reduced in this mutant. The hns mutation acts on at least two conditions affecting pectate lyase synthesis: induction of pectate lyase synthesis at low temperatures (25 degrees C) is no longer observed in the hns mutant and induction of pectate lyase production occurs in the late stationary growth phase in the hns background, instead of in the late exponential growth phase as it does in the parental strain. Moreover, the E. chrysanthemi hns mutant displays reduced virulence on plants. Taken together, these data suggest that H-NS plays a crucial role in the expression of the virulence genes and in the pathogenicity of E. chrysanthemi.  相似文献   

3.
Summary Erwinia chrysanthemi is a soft-rot pathogenic enterobacterium that provokes maceration of host plant tissues by producing extracellular cell-wall-degrading enzymes, among which are pectate lyases, pectin methyl esterases, and cellulases. Cell wall degradation in leaves and petiole tissue of infectedSaintpaulia ionantha plants has been investigated in order to define the structural and temporal framework of wall deconstruction. The degradation of major cell wall components, pectins and cellulose, was studied by both classical histochemical techniques (Calcofluor and periodic acid-thiocarbohydrazide-silver proteinate staining) and immunocytochemistry (tissue printing for detection of pectate lyases; monoclonal antibodies JIM5 and JIM7 for detection of pectic substrates). The results show that the mode of progression of the bacteria within the host plant is via the intercellular spaces of the parenchyma leaf and the petiole cortex. Maceration symptoms and secretion of pectate lyases PelA, -D, and -E can be directly correlated to the spread of the bacteria. Wall degradation is very heterogeneous. Loss of reactivity with JIM5 and JIM7 was progressive and/or clearcut. The primary and middle lamella appear to be the most susceptible regions of the wall. The innermost layer of the cell wall frequently resists complete deconstruction. At the wall intersects and around intercellular spaces resistant domains and highly degraded domains occurred simultaneously. All results lead to the hypothesis that both spatial organisation of the wall and accessibility to enzymes are very highly variable according to regions. The use of mutants lacking pectate lyases PelA, -D, -E or -B, -C confirm the important role that PelA, PelD, and PelE play in the rapid degradation of pectins from the host cell walls. In contrast, PelB and PelC seem not essential for degradation of the wall, though they can be detected in leaves infected with wild-type bacteria. With Calcofluor staining, regularly localised cellulose-rich and cellulose-poor domains were observed in pectic-deprived walls.Abbreviations MAb monoclonal antibody - PATAg periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

4.
A mutant that cannot utilize pectin substances of plant cell walls was obtained via insertion of mini-Tn5xylE transposon into the chromosome of phytopathogenic bacteria Erwinia carotovora subsp. atroseptica. the inability of mutant cells to utilize these substrates was caused by a failure to accomplish the catabolism of unsaturated digalacturonic acid (UDA). Study of enzymatic activities has established that mutant bacteria lost the ability to produce 2,5-diketo-3-deoxygluconate dehydrogenase, an enzyme of intracellular UDA utilization. Molecular cloning of the mutant gene was conducted, and its nucleotide sequence was determined. It was shown that the nucleotide sequence of this gene had an 82% homology with the sequence of Erwinia chrysanthemi EC3937 kduD gene encoding 2,5-diketo-3-deoxygluconate dehydrogenase. The intergene kduI–kduD region in bacteria Erwinia carotovora subsp. atroseptica is shorter in length by 98 nucleotides than the corresponding region of Erwinia chrysanthemi and does not contain promoter sequences. The kduD gene was located at 126.8 min of the Erwinia carotovora subsp. atroseptica genetic map.  相似文献   

5.
6.
7.
Erwinia chrysanthemi produced several pectate lyases (EC 4.2.2.2) and endocellulases (EC 3.2.1.4) which were largely secreted into the culture medium. Mutants deficient in the secretion mechanism for these enzymes were obtained by chemical and insertion mutagenesis. Further study of one such mutant revealed that both enzyme activities were retained simultaneously within the periplasmic space.  相似文献   

8.
9.
Phoma exigua associated with seed-rot ofVigna radiata produced lyases which varied with the media tested. The production of lyases was higher in pectin-supplemented media.Vigna seed meal medium was not suitable for induction of lyase production. The pectin lyase and pectate lyase was maximum after 11 d of incubation by which time the pH was shifted to alkaline side. Temperature of 25 °C and pH 9 was found to be optimum for the activity of pectin lyase and pectate lyase. Fungicides (antracol and panoctine), phenols (pyrocatechol and gallic acid) and growth substances (gibberellic acid and yeast extract) adversely affected the enzyme secretion.  相似文献   

10.
11.
Pectate lyases are plant virulence factors that degrade the pectate component of the plant cell wall. The enzymes share considerable sequence homology with plant pollen and style proteins, suggesting a shared structural topology and possibly functional relationships as well. The three-dimensional structures of two Erwinia chrysanthemi pectate lyases, C and E, have been superimposed and the structurally conserved amino acids have been identified. There are 232 amino acids that superimpose with a root-mean-square deviation of 3 A or less. These amino acids have been used to correct the primary sequence alignment derived from evolution-based techniques. Subsequently, multiple alignment techniques have allowed the realignment of other extracellular pectate lyases as well as all sequence homologs, including pectin lyases and the plant pollen and style proteins. The new multiple sequence alignment reveals amino acids likely to participate in the parallel beta helix motif, those involved in binding Ca2+, and those invariant amino acids with potential catalytic properties. The latter amino acids cluster in two well-separated regions on the pectate lyase structures, suggesting two distinct enzymatic functions for extracellular pectate lyases and their sequence homologs.  相似文献   

12.
An Erwinia chrysanthemi gene able to complement an Escherichia coli dsbA mutation has been cloned and sequenced. This gene codes for a periplasmic protein with disulphide isomerase activity that has 69% identity and 94% similarity with the E. coli DsbA protein. An E. chrysanthemi dsbA-uidA fusion mutant has been constructed. dsbA expression seems to be constitutive. This mutant has multiple phenotypes resulting from the absence of disulphide bond formation in periplasmic and secreted proteins. Pectate lyases and the cellulase EGZ are rapidly degraded in the periplasm of the dsbA mutant. E. chrysanthemi synthesizes another periplasmic protein with disulphide isomerase activity, namely DsbC. The dsbC gene introduced on a multicopy plasmid in a dsbA mutant was only partially able to restore EGZ secretion, indicating that even if DsbA and DsbC possess disulphide oxydoreductase activity, they are not completely interchangeable. Moreover, pectate lyases expressed in an E. coli dsbA mutant were very instable but their stability was unaffected in a dsbC mutant. These results indicate that DsbA and DsbC could have different substrate specificities.  相似文献   

13.
14.
The virulence of soft-rot Erwinia species is dependent mainly upon secreted enzymes such as pectinases, pectin lyases, and proteases that cause maceration of plant tissue. Some soft-rot Erwinia spp. also harbor genes homologous to the hypersensitive reaction and pathogenesis (hrp) gene cluster, encoding components of the type III secretion system. The hrp genes are essential virulence determinants for numerous nonmacerating gram-negative plant pathogens but their role in the virulence of soft-rot Erwinia spp. is not clear. We isolated and characterized 11 hrp genes of Erwinia carotovora subsp. carotovora. Three putative sigmaL-dependent Hrp box promoter sequences were found. The genes were expressed when the bacteria were grown in Hrp-inducing medium. The operon structure of the hrp genes was determined by mRNA hybridization, and the results were in accordance with the location of the Hrp boxes. An E. carotovora strain with mutated hrcC, an essential hrp gene, was constructed. The hrcC- strain was able to multiply and cause disease in Arabidopsis, but the population kinetics were altered so that growth was delayed during the early stages of infection.  相似文献   

15.
The addition of 1 mM cyclic AMP to induced and repressed cultures of Aspergillus nidulans and its mutant strain (CRR 141) resistant to catabolite repression was fully capable of releasing the wild type from catabolite repression while it caused hyperproduction of cellulases in glycerol repressed cultures. The relief of the catabolite repression was also accompanied by a dramatic drop in enhanced protease levels, thereby indicating that the synthesis of proteases (during the catabolite repression) is under the control of cyclic AMP.  相似文献   

16.
17.
18.
Erwinia chrysanthemi 3937 secretes into the external medium several pectinolytic enzymes, among which are eight isoenzymes of the endo-cleaving pectate lyases: PelA, PelB, PelC, PelD, and PelE (family 1); PelI (family 4); PelL (family 3); and PelZ (family 5). In addition, one exo-cleaving pectate lyase, PelX (family 3), has been found in the periplasm of E. chrysanthemi. The E. chrysanthemi 3937 gene kdgC has been shown to exhibit a high degree of similarity to the genes pelY of Yersinia pseudotuberculosis and pelB of Erwinia carotovora, which encode family 2 pectate lyases. However, no pectinolytic activity has been assigned to the KdgC protein. After verification of the corresponding nucleotide sequence, we cloned a longer DNA fragment and showed that this gene encodes a 553-amino-acid protein exhibiting an exo-cleaving pectate lyase activity. Thus, the kdgC gene was renamed pelW. PelW catalyzes the formation of unsaturated digalacturonates from polygalacturonate or short oligogalacturonates. PelW is located in the bacterial cytoplasm. In this compartment, PelW action could complete the degradation of pectic oligomers that was initiated by the extracellular or periplasmic pectinases and precede the action of the cytoplasmic oligogalacturonate lyase, Ogl. Both cytoplasmic pectinases, PelW and Ogl, seem to act in sequence during oligogalacturonate depolymerization, since oligomers longer than dimers are very poor substrates for Ogl but are good substrates for PelW. The estimated number of binding subsites for PelW is three, extending from subsite -2 to +1, while it is probably two for Ogl, extending from subsite -1 to +1. The activities of the two cytoplasmic lyases, PelW and Ogl, are dependent on the presence of divalent cations, since both enzymes are inhibited by EDTA. In contrast to the extracellular pectate lyases, Ca2+ is unable to restore the activity of PelW or Ogl, while several other cations, including Co2+, Mn2+, and Ni2+, can activate both cytoplasmic lyases.  相似文献   

19.
20.
The enterobacterium Erwinia chrysanthemi causes soft-rot diseases involving extensive tissue maceration in a wide variety of plants and secretes multiple pectic enzymes that degrade plant cell walls and middle lamellae. An E. chrysanthemi mutant with directed deletions or insertions in genes pehX, pelX, pelA, pelB, pelC, and pelE, which encode exo-poly-alpha-d-galacturonosidase, exopolygalacturonate lyase, and four isozymes of pectate lyase, respectively, was constructed by the marker exchange of a cloned pehX::TnphoA fragment into E. chrysanthemi CUCPB5010, a Delta(pelA pelE) Delta(pelB pelC)::28bp Delta(pelX)Delta4bp derivative of strain EC16. This mutant, E. chrysanthemi CUCPB5012, no longer caused pitting in a standard pectate semisolid agar medium used to detect pectolytic activity in bacteria. Nevertheless, the mutant still macerated leaves of chrysanthemum (Chrysanthemum morifolium), although with reduced virulence. The mutant was found to produce significant pectate lyase activity in rotting chrysanthemum tissue and in minimal media containing chrysanthemum extracts or cell walls as the sole carbon source. Activity-stained, ultra-thin-layer isoelectric focusing gels revealed the presence in these preparations of several pectate lyase isozymes with pIs ranging from highly acidic to highly alkaline. Sterile culture fluids containing these isozymes were able to macerate chrysanthemum leaf tissue. Unlike the products of the pelA, pelB, pelC, and pelE genes in E. chrysanthemi EC16, these plant-inducible pectate lyase isozymes were not produced in minimal medium containing pectate. The results suggest that E. chrysanthemi produces two sets of independently regulated pectate lyase isozymes that are capable of macerating plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号