首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
In Saccharomyces cerevisiae, many osmotically inducible genes are regulated by the Sko1p-Ssn6p-Tup1p complex. On osmotic shock, the MAP kinase Hog1p associates with this complex, phosphorylates Sko1p, and converts it into an activator that subsequently recruits Swi/Snf and SAGA complexes. We have found that phospholipase C (Plc1p encoded by PLC1) is required for derepression of Sko1p-Ssn6p-Tup1p-controlled osmoinducible genes upon osmotic shock. Although plc1Delta mutation affects the assembly of the preinitiation complex after osmotic shock, it does not affect the recruitment of Hog1p and Swi/Snf complex at these promoters. However, Plc1p facilitates osmotic shock-induced recruitment of the SAGA complex. Like plc1Delta cells, SAGA mutants are osmosensitive and display compromised expression of osmotically inducible genes. The reduced binding of SAGA to Sko1p-Ssn6p-Tup1p-repressed promoters in plc1Delta cells does not correlate with reduced histone acetylation. However, SAGA functions at these promoters to facilitate recruitment of the TATA-binding protein. The results thus provide evidence that Plc1p and inositol polyphosphates affect derepression of Sko1p-Ssn6p-Tup1p-controlled genes by a mechanism that involves recruitment of the SAGA complex and TATA-binding protein.  相似文献   

16.
17.
We previously showed that the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is recruited to the activated HXT2 and HXT4 genes and plays a role in the association of TBP-associated factors. Using the HXT2 and HXT4 genes, we now present evidence for a functional link between Snf1p-dependent activation, recruitment of the SAGA complex, histone H3 removal, and H3 acetylation. Recruitment of the SAGA complex is dependent on the release of Ssn6p-Tup1p repression by Snf1p. In addition, we found that the Gcn5p subunit of the SAGA complex preferentially acetylates histone H3K18 on the HXT2 and HXT4 promoters and that Gcn5p activity is required for removal of histone H3 from the HXT4 promoter TATA region. In contrast, histone H3 removal from the HXT2 promoter does not require Gcn5p. In conclusion, although similar protein complexes are involved, induction of HXT2 and HXT4 displays important mechanistic differences.  相似文献   

18.
19.
Mediator is a key RNA polymerase II (Pol II) cofactor in the regulation of eukaryotic gene expression. It is believed to function as a coactivator linking gene-specific activators to the basal Pol II initiation machinery. In support of this model, we provide evidence that Mediator serves in vivo as a coactivator for the yeast activator Met4, which controls the gene network responsible for the biosynthesis of sulfur-containing amino acids and S-adenosylmethionine. In addition, we show that SAGA (Spt-Ada-Gcn5-acetyltransferase) is also recruited to Met4 target promoters, where it participates in the recruitment of Pol II by a mechanism involving histone acetylation. Interestingly, we find that SAGA is not required for Mediator recruitment by Met4 and vice versa. Our results provide a novel example of functional interplay between Mediator and coactivators involved in histone modification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号