首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Advanced glycation end products (AGEs) have been proposed to be involved in pulmonary fibrosis, but its role in this process has not been fully understood. To investigate the role of AGE formation in pulmonary fibrosis, we used a bleomycin (BLM)-stimulated rat model treated with aminoguanidine (AG), a crosslink inhibitor of AGE formation.

Methods

Rats were intratracheally instilled with BLM (5 mg/kg) and orally administered with AG (40, 80, 120 mg/kg) once daily for two weeks. AGEs level in lung tissue was determined by ELISA and pulmonary fibrosis was evaluated by Ashcroft score and hydroxyproline assay. The expression of heat shock protein 47 (HSP47), a collagen specific molecular chaperone, was measured with RT-PCR and Western blot. Moreover, TGFβ1 and its downstream Smad proteins were analyzed by Western blot.

Results

AGEs level in rat lungs, as well as lung hydroxyproline content and Ashcroft score, was significantly enhanced by BLM stimulation, which was abrogated by AG treatment. BLM significantly increased the expression of HSP47 mRNA and protein in lung tissues, and AG treatment markedly decreased BLM-induced HSP47 expression in a dose-dependent manner (p < 0.05). In addition, AG dose-dependently downregulated BLM-stimulated overexpressions of TGFβ1, phosphorylated (p)-Smad2 and p-Smad3 protein in lung tissues.

Conclusion

These findings suggest AGE formation may participate in the process of BLM-induced pulmonary fibrosis, and blockade of AGE formation by AG treatment attenuates BLM-induced pulmonary fibrosis in rats, which is implicated in inhibition of HSP47 expression and TGFβ/Smads signaling.  相似文献   

2.
Bleomycin (BLM) is an anticancer drug, administration of which leads to severe lung injury, in which the generation of intracellular reactive oxygen species (ROS) is thought to participate in that. Thioredoxin (TRX) has been found to function as a powerful antioxidant by reducing ROS, and thus protecting against ROS-mediated cytotoxicity. However, a protective role of TRX in BLM-induced lung injury has not been determined. In the present study, we therefore attempted to clarify this issue. Human TRX-transfected L929 murine fibrosarcoma cells were more resistant to BLM-induced cytotoxicity than the parental and the control transfected cells, indicating that TRX plays the protective role in BLM-induced cytotoxicity. Next, we examined TRX expression in the lung of in vivo model of BLM-induced lung injury and BLM-stimulated bronchial epithelial cells in vitro to clarify the role of TRX in BLM-induced lung injury. In the lungs of BLM-treated mice, the expression of TRX was strongly induced in bronchial epithelial cells. TRX expression was also up-regulated at both the mRNA and protein levels in cultured BEC with the treatment with BLM. However, the expression of other major antioxidants, such as Cu/Zn-SOD, Mn-SOD, catalase and glutathione peroxidase, was not affected by BLM. These observations suggest that the cellular reduction and oxidation (redox) state modified by TRX is involved in the BLM resistancy and the induction of TRX in bronchial epithelial cells might play a protective role in BLM-induced lung injury.  相似文献   

3.

Objective

Secretoglobin (SCGB) 3A2 is a novel lung-enriched cytokine, previously shown to exhibit anti-inflammatory, growth factor, and anti-fibrotic activities. The latter activity was demonstrated using exogenously-administered recombinant SCGB3A2 in the bleomycin (BLM)-induced pulmonary fibrosis model. Whether SCGB3A2 exhibits anti-fibrotic activity in vivo is not known.

Methods

Mice null for the Scgb3a2 gene were subjected to the BLM-induced pulmonary fibrosis model, and the severity of pulmonary fibrosis determined using histological and biochemical methods.

Results

BLM treatment caused weight loss of both Scgb3a2-null and wild-type mice, however, the loss was far more pronounced in BLM-treated Scgb3a2-null than wild-type mice, and the weight of day 21 of BLM-treated Scgb3a2-null mice was about half of that of BLM-treated wild-type mice. Hematoxylin & Eosin, Masson Trichrome, and Sirius Red staining of lung sections, Ashcroft fibrosis scores, hydroxyproline contents, and the levels of mRNAs encoding various collagens demonstrated that BLM-treated Scgb3a2-null mouse lungs had more severe fibrosis than those of wild-type mouse lungs. Total and differential inflammatory cell numbers in bronchoalveolar lavage fluids, and levels of lung mRNAs including those encoding Th2 cytokines such as IL-4 and profibrotic cytokines such as TGFβ were higher in BLM-treated Scgb3a2-null mouse lungs as compared to those of wild-type mouse lungs. In contrast, mRNAs encoding surfactant proteins A, B, C, and D, and SCGB1A1 did not differ between BLM-treated Scgb3a2-null and wild-type mouse lungs.

Conclusion

The role of SCGB3A2 in fibrosis was revisited using Scgb3a2-null mice and littermate controls in the BLM-induced pulmonary fibrosis model. The pulmonary fibrosis in the Scgb3a2-null mice was more severe than the wild-type controls, thus establishing that SCGB3A2 has anti-fibrotic activity in vivo. Importantly, surfactant proteins and SCGB1A1 appear not to be involved in the susceptibility of Scgb3a2-null mice to BLM-induced pulmonary fibrosis.  相似文献   

4.
Found in inflammatory zone (FIZZ)1, also known as resistin-like molecule alpha, belongs to a novel class of cysteine-rich secreted protein family, named FIZZ/resistin-like molecule, with unique tissue expression patterns. FIZZ1 is induced in alveolar type II epithelial cells (AECs) in bleomycin (BLM)-induced lung fibrosis, and found to induce myofibroblast differentiation in vitro. The objective of this study was to elucidate the regulation of AEC FIZZ1 expression in pulmonary fibrosis. AECs were isolated from rat lungs and the effects of a number of cytokines on FIZZ1 expression were evaluated by RT-PCR. Of all cytokines examined, only IL-4 and IL-13 were effective in stimulating FIZZ1 expression in AECs. Stimulation by IL-4/IL-13 was accompanied by increases in phosphorylated STAT6 and JAK1. FIZZ1 expression was also stimulated by transfection with a STAT6 expression plasmid, but was inhibited by antisense oligonucleotides directed against STAT6. In vivo studies showed that compared with wild-type controls, both IL-4- and IL-13-deficient mice showed reduced BLM-induced lung FIZZ1 expression and fibrosis, which were essentially abolished in IL-4 and IL-13 doubly deficient mice. Furthermore, STAT6-deficient mice showed marked reduction in BLM-induced lung FIZZ1 expression. Thus, IL-4 and IL-13 are potent inducers of AEC FIZZ1 expression via STAT6 and play key roles in BLM-induced lung FIZZ1 expression and fibrosis. This represents a potential mechanism by which IL-4/IL-13 could play a role in the pathogenesis of lung fibrosis.  相似文献   

5.
Uncontrolled fibrosis of skin and internal organs is the main characteristic of scleroderma, and collagen is a major extracellular matrix protein that deposits in the fibrotic organs. As the chaperone of collagen, heat shock protein 47 (HSP47) is closely related with the development of fibrosis. To explore the potential function of HSP47 in the pathogenesis of scleroderma, the clinical, in vivo and in vitro studies were performed. In clinical, the increased mRNA level of HSP47 was observed in the skin fibroblasts and PBMC from scleroderma patients, and the enhanced protein level of HSP47 was also detected in the skin biopsy and plasma of the above patients. Unexpectedly, the enhanced levels of HSP47 were positively correlated with the presence of anti-centromere antibody in scleroderma patients. Moreover, a high expression of HSP47 was found in the skin lesion of BLM-induced scleroderma mouse model. Further in vitro studies demonstrated that HSP47 knockdown could block the intracellular and extracellular collagen over-productions induced by exogenous TGF-β. Therefore, the results in this study provide direct evidence that HSP47 is involved in the pathogenesis of scleroderma. The high expression of HSP47 can be detected in the circulatory system of scleroderma patients, indicating that HSP47 may become a pathological marker to assess the progression of scleroderma, and also explain the systemic fibrosis of scleroderma. Meanwhile, collagen over-expression is blocked by HSP47 knockdown, suggesting the possibility that HSP47 can be a potential therapeutic target for scleroderma.  相似文献   

6.
Pirfenidone (5-methyl-1-phenyl-2-(1H)-pyridone) is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and patients with idiopathic pulmonary fibrosis (IPF). Heat shock protein (HSP) 47, a collagen-specific molecular chaperone, is involved in the processing and/or secretion of procollagen and plays an important role in the pathogenesis of IPF. The present study evaluated the in vitro effects of pirfenidone on expression of HSP47 and collagen type I in cultured normal human lung fibroblasts (NHLF). Expression levels of HSP47 and collagen type I in NHLF stimulated by transforming growth factor (TGF)-beta1 were evaluated genetically, immunologically and immunocytochemically. Treatment with TGF-beta1 stimulated both mRNA and protein expressions of both HSP47 and collagen type I in NHLF, and pirfenidone significantly inhibited this TGF-beta1-enhanced expression in a dose-dependent manner. We concluded that the anti-fibrotic effect of pirfenidone may be mediated not only through direct inhibition of collagen type I expression but also at least partly through inhibition of HSP47 expression in lung fibroblasts, with a resultant reduction of collagen synthesis in lung fibrosis.  相似文献   

7.
Neutrophils and lung fibroblasts are thought to play a role in the pathogenesis of pulmonary fibrosis. We reported previously that heat shock protein 47 (HSP47), a collagen-specific molecular chaperon, and collagen-1 synthesis were involved in pulmonary fibrosis, and that plasma levels of alpha-defensins (HNP; human neutrophil peptide), cationic proteins with antimicrobial and cytotoxic activity in neutrophils, were significantly higher in patients with idiopathic pulmonary fibrosis than in control subjects. Here, we investigated the direct effect of HNP-1 in vitro on the expression of HSP47 and collagen-1 in human lung fibroblasts (NHLF). HNP-1 at 5 microg/ml induced fibroblast proliferation but at concentrations >50 microg/ml, HNP-1 reduced cell viability. Incubation of NHLF with 10 to 25 microg/ml of HNP-1 for 24-h increased the expression of HSP47 and collagen-1 mRNAs (p<0.05). The levels of HSP47 protein also increased significantly at 50 microg/ml, and those of collagen-1 protein increased at 10 to 50 microg/ml of HNP-1 (p<0.05). The mitogen-activated protein kinase (MAPK) signaling pathway in NHLF was activated by HNP-1 stimulation, but inhibitor of MEK (PD98059) did not block HNP-1-induced HSP47 protein production. Our results suggest that alpha-defensin is a fibrogenic mediator that promotes collagen synthesis through the upregulation of HSP47 and collagen-1 in lung fibroblasts and participates in the pathogenesis of neutrophil-induced pulmonary fibrosis.  相似文献   

8.
目的: 观察拮抗白介素11(IL-11)对博来霉素(BLM)诱导的实验性小鼠肺纤维化的作用。方法: 将120只雄性C57BL/6小鼠随机分为正常对照组、IL-11拮抗剂组、BLM组和BLM+IL-11拮抗剂组(每组各30只)。BLM组和BLM+ IL-11拮抗剂组小鼠一次性气管注射BLM(1.5 mg/kg)诱导肺纤维化。于造模当日开始,IL-11拮抗剂组和BLM+IL-11拮抗剂组小鼠每间隔3 d尾静脉注射IL-11拮抗剂IL-11 Rα FC(2.5 mg/kg)。观察各组小鼠生存状态。于造模后第21日取肺组织进行HE染色、Masson染色以及Ashcroft评分评价肺纤维化程度。通过碱水解法测定肺组织中羟脯氨酸(HYP)的含量;采用Real-time PCR和Western blot检测肺组织中Collagen I、Collagen IIIα-SMA 的基因和蛋白表达;采用酶联免疫吸附法测定肺组织中TGF-β1含量。结果: 与正常对照组相比,BLM可降低小鼠存活率(P<0.05),破坏肺组织结构,导致大量胶原沉积,显著升高HYP含量、肺组织中Collagen I、Collagen III和α-SMA的基因和蛋白表达(P<0.05),以及TGF-β1含量(P<0.05)。而IL-11 Rα Fc处理可改善肺纤维小鼠的生存率,减轻肺组织病理学改变以及胶原沉积,减少肺组织中HYP含量(P<0.05),下调肺组织中Collagen I、Collagen III和α-SMA的基因和蛋白表达(P<0.05),以及TGF-β1含量(P<0.05)。结论: IL-11拮抗剂可减轻BLM诱导的小鼠肺纤维化,为临床治疗肺纤维化提供了新思路。  相似文献   

9.
By studying the responses of nitric oxide in pulmonary fibrosis, the role of inducible nitric oxide synthase in diffuse pulmonary fibrosis as caused by lipopolysaccharide (LPS) treatment was investigated. When compared to rats treated with LPS only, the rats pretreated with 1400W (an iNOS-specific inhibitor) were found to exhibit a reduced level in: (i) NOx (nitrate/nitrite) production, (ii) collagen type I protein expression, (iv) soluble collagen production, and (iv) the loss of body weight and carotid artery PO2. In the pulmonary fibroblast culture, exogenous NO from LPS-stimulated secretion by macrophages or from a NO donor, such as DETA NONOate, was observed to induce the expression of TIMP-1, HSP47, TGF-beta1, and collagen type I as well as the phosphorylation of SMAD-2. After inhalation of NO for 24 h, an up-regulation of collagen type I protein was also noted to occur in rat pulmonary tissue. The results suggest that the NO signal pathway enhanced the expression of TGF-beta1, TIMP-1, and HSP47 in pulmonary fibroblasts, which collectively demonstrate that the NO signal pathway could activate the SMAD-signal cascade, by initiating a rapid increase in TGF-beta1, thereby increasing the expression of TIMP-1 and HSP47 in pulmonary fibroblasts, and play an important role in pulmonary fibrosis.  相似文献   

10.
To investigate the effect and mechanism of polydatin on bleomycin (BLM)-induced pulmonary fibrosis in a mouse model. The lung fibrosis model was induced by BLM. The contents of TNF-α, LPS, IL-6 and IL-1β in lung tissue, intestine and serum were detected by ELISA. Gut microbiota diversity was detected by 16S rDNA sequencing; R language was used to analyse species composition, α-diversity, β-diversity, species differences and marker species. Mice were fed drinking water mixed with four antibiotics (ampicillin, neomycin, metronidazole, vancomycin; antibiotics, ABx) to build a mouse model of ABx-induced bacterial depletion; and faecal microbiota from different groups were transplanted into BLM-treated or untreated ABx mice. The histopathological changes and collagen I and α-SMA expression were determined. Polydatin effectively reduced the degree of fibrosis in a BLM-induced pulmonary fibrosis mouse model; BLM and/or polydatin affected the abundance of the dominant gut microbiota in mice. Moreover, faecal microbiota transplantation (FMT) from polydatin-treated BLM mice effectively alleviated lung fibrosis in BLM-treated ABx mice compared with FMT from BLM mice. Polydatin can reduce fibrosis and inflammation in a BLM-induced mouse pulmonary fibrosis model. The alteration of gut microbiota by polydatin may be involved in the therapeutic effect.  相似文献   

11.
Jia H  Chen XL  Chen C  Hu YY  Yun XJ 《生理学报》2010,62(6):535-540
To clarify the mechanism underlying the preventive effect of baicalin (Bai) on fibrosis in lung, we investigated the influence of Bai on the up-regulation of connective tissue growth factor (CTGF) in fibrotic lungs. Male Sprague-Dawley (SD) rats were divided into four groups randomly: normal saline (NS)+NS group (a single intratracheal instillation of NS plus i.p. injection of NS), NS+Bai group (intratracheal instillation of NS plus i.p. injection of Bai), bleomycin (BLM)+NS group (intratracheal instillation of BLM plus i.p. injection of NS) and BLM+Bai group (intratracheal instillation of BLM plus i.p. injection of Bai). All the i.p. injections were performed once daily. On day 28 after intratracheal instillation of BLM or NS, the rats were sacrificed for lung tissue sampling. As the index of the severity of pulmonary fibrosis, the content of hydroxyproline in lungs was analyzed by chloramine T method. The expression levels of CTGF mRNA and protein in the lungs were detected by RT-PCR and immunohistochemistry, respectively. The results showed that, compared to the rats in NS+NS group, the rats in BLM+NS group showed increased hydroxyproline content and higher levels of CTGF mRNA and protein expressions (P<0.01), suggesting that BLM had induced fibrosis in lung and up-regulated CTGF expression in the fibrotic lungs. Administration of different dosages of Bai (6, 12.5 and 50 mg/kg per d, for 28 days) into the BLM-treated rats reduced the increased content of hydroxyproline, and ameliorated the up-regulation of CTGF mRNA and protein levels, respectively. These results suggest that Bai could prevent the up-regulation of CTGF expression in fibrotic lungs of rats receiving BLM instillation, which might be one of the mechanisms underlying the preventive effect of Bai on pulmonary fibrosis.  相似文献   

12.
Several reports indicate that melatonin alleviates bleomycin (BLM)-induced pulmonary fibrosis in rodent animals. Nevertheless, the exact mechanism remains obscure. The present study investigated the effects of melatonin on endoplasmic reticulum (ER) stress and epithelial-mesenchymal transition (EMT) during BLM-induced lung fibrosis. For the induction of pulmonary fibrosis, mice were intratracheally injected with a single dose of BLM (5.0 mg/kg). Some mice were intraperitoneally injected with melatonin (5 mg/kg) daily for a period of 3 wk. Twenty-one days after BLM injection, lung fibrosis was evaluated. As expected, melatonin significantly alleviated BLM-induced pulmonary fibrosis, as evidenced by Sirius red staining. Moreover, melatonin significantly attenuated BLM-induced EMT to myofibroblasts, as determined by its repression of α-SMA expression. Further analysis showed that melatonin markedly attenuated BLM-induced GRP78 up-regulation and elevation of the cleaved ATF6 in the lungs. Moreover, melatonin obviously attenuated BLM-induced activation of pulmonary eIF2α, a downstream target of the PERK pathway. Finally, melatonin repressed BLM-induced pulmonary IRE1α phosphorylation. Correspondingly, melatonin inhibited BLM-induced activation of XBP-1 and JNK, two downstream targets of the IRE1 pathway. Taken together, these results suggest that melatonin alleviates ER stress and ER stress-mediated EMT in the process of BLM-induced pulmonary fibrosis.  相似文献   

13.

Background

Increased expression of nitric oxide synthase (NOS) and an increase in plasma nitrite plus nitrate (NOx) have been reported in patients with pulmonary fibrosis, suggesting that nitric oxide (NO) plays an important role in its development. However, the roles of the entire NO and NOS system in the pathogenesis of pulmonary fibrosis still remain to be fully elucidated. The aim of the present study is to clarify the roles of NO and the NOS system in pulmonary fibrosis by using the mice lacking all three NOS isoforms.

Methods

Wild-type, single NOS knockout and triple NOS knockout (n/i/eNOS−/−) mice were administered bleomycin (BLM) intraperitoneally at a dose of 8.0 mg/kg/day for 10 consecutive days. Two weeks after the end of the procedure, the fibrotic and inflammatory changes of the lung were evaluated. In addition, we evaluated the effects of long-term treatment with isosorbide dinitrate, a NO donor, on the n/i/eNOS−/− mice with BLM-induced pulmonary fibrosis.

Results

The histopathological findings, collagen content and the total cell number in bronchoalveolar lavage fluid were the most severe/highest in the n/i/eNOS−/− mice. Long-term treatment with the supplemental NO donor in n/i/eNOS−/− mice significantly prevented the progression of the histopathological findings and the increase of the collagen content in the lungs.

Conclusions

These results provide the first direct evidence that a lack of all three NOS isoforms led to a deterioration of pulmonary fibrosis in a BLM-treated murine model. We speculate that the entire endogenous NO and NOS system plays an important protective role in the pathogenesis of pulmonary fibrosis.  相似文献   

14.
We investigated the potential usefulness of vesnarinone, a novel cytokine inhibitor, for the treatment of lung fibrosis using a murine model of bleomycin (BLM)-induced pulmonary fibrosis. Mice were fed a control diet (n=42), or a diet containing low (n=42) or high (n=42) dose of vesnarinone. Dietary intake of vesnarinone minimized the BLM toxicity as reflected by significant decreases in numbers of inflammatory cells, KC, and soluble TNF receptors in the bronchoalveolar lavage fluid. A quantitative evaluation of histology demonstrated significantly mild lung parenchymal lesions in BLM-treated mice fed with diet containing high dose of vesnarinone than in the control diet group. Consistent with the histopathology, hydroxyproline levels in lung tissue from BLM-treated mice fed with diet containing vesnarinone were significantly lower than that from mice fed with control diet. We concluded that vesnarinone inhibits BLM-induced pulmonary fibrosis, at least in part, by the inhibition of acute lung injuries in the early phase.  相似文献   

15.
To explore the possible role of heat shock protein (HSP) 47 in the age-related renal changes in Fischer 344 (F 344) rats, the expression of collagen-binding HSP47 with various proteins implicated in phenotypic modulation (α-smooth muscle actin, desmin, and vimentin) and fibrosis (type I, type III, and type IV collagens) was examined in young and old F 344 rat kidneys. Male F 344 rats often develop spontaneous nephropathy in old age. Kidneys obtained from 24-month-old F 344 rats showed glomerulosclerosis with marked tubulointerstitial damage including interstitial fibrosis, while no significant histological alteration was found in the kidneys of 6-month-old rats. Immunohistochemical analysis showed an increased accumulation of type I, type III, and type IV collagens in areas of glomerulosclerosis and interstitial fibrosis in old rat kidneys. In kidneys of young rats, collagen-binding HSP47 expression was weak in the glomeruli and occasionally seen in the interstitial cells. In contrast, strong immunostaining for HSP47 was noted in the glomeruli, tubular epithelial cells, and interstitial cells in kidneys of old rats. In addition, phenotypic alterations of mesangial cells and interstitial cells (immunopositive for α-smooth muscle actin), glomerular epithelial cells (immunopositive for desmin), and tubular epithelial cells (immunopositive for vimentin) were found in the kidneys of old F 344 rats. Double immunostaining showed that all these phenotypically altered renal cells express HSP47 and that increased expression of HSP47 was always associated with increased expression of collagens in the old rat kidneys. From the above observations, it is concluded that overexpression of HSP47 by phenotypically altered renal cells might play an important role in the excessive assembly of collagens and could thereby contribute to the glomerulosclerosis and interstitial fibrosis found in kidneys of aged F 344 rats.  相似文献   

16.
17.
黄芪甲甙对实验性肺纤维化大鼠Cathepsin B表达的影响   总被引:5,自引:0,他引:5  
目的:探讨黄芪甲甙时实验性肺纤维化大鼠肺组织中组织蛋白酶B(Cathepsin B,CB)表达的影响。方法:36只SD大鼠,随机分为对照组、模型组和干预组。模型组和干预组气管内注射博来霉素(BLM,5mg/kg)诱导肺纤维化,对照组在相同条件下给予生理盐水。第二天起干预组大鼠每天经胃管灌服0.1g/L黄芪甲甙2ml,其余两组相同条件下给予助溶剂羧甲基纤维素钠。治疗的第7d和28d,处死动物取出肺组织,进行病理学观察;测定28d肺组织中羟脯氨酸含量;用免疫组化和RT-PCR观察各组鼠肺组织CB蛋白及mRNA表达的水平。结果:病理学观察显示:与模型组比较,干预组肺泡炎和纤维化程度均减轻;模型组羟脯氨酸含量显著增高,而干预组与模型组比较羟脯氨酸含量明显降低;与模型组比较,干预组CB蛋白及mRNA表达显著降低。结论:黄芪甲甙可能通过押制CB的过度表达,对实验性大鼠肺纤维化具有良好的治疗作用。  相似文献   

18.
Colligin or heat shock protein 47 (HSP47) is a stress protein that resides in the endoplasmic reticulum and is thought to participate in intracellular processing, folding, assembly and secretion of procollagens. Irrespective of the tissue site and organ, induction of colligin/HSP47 expression is always noted during the process of fibrosis, particularly in and around the fibrotic lesions in both humans and experimental models. Its expression is highly tissue- and cell-specific, and restricted to mostly phenotypically altered collagen-producing cells. These observations suggest that upregulation of this collagen-specific chaperone-colligin/HSP47 may play an important role in the subsequent fibrotic process, possibly by regulating increased synthesis/assembly of collagens.  相似文献   

19.
Idiopathic pulmonary fibrosis (IPF) is a fatal parenchymal lung disease with limited effective therapies. Interleukin (IL)-18 belongs to a rather large IL-1 gene family and is a proinflammatory cytokine, which acts in both acquired and innate immunity. We have previously reported that IL-18 play an important role in lipopolysaccharide-induced acute lung injury in mice. Persistent inflammation often drives fibrotic progression in the bleomycin (BLM) injury model. However, the role of IL-18 in pulmonary fibrosis (PF) is still unknown. IL-18 binding protein (IL-18BP) is able to neutralize IL-18 biological activity and has a protective effect against renal fibrosis. The aim of this study was to investigate the effects of IL-18BP on BLM-induced PF. In the present study, we found that IL-18 was upregulated in lungs of BLM-injured mice. Neutralization of IL-18 by IL-18BP improved the survival rate and ameliorated BLM-induced PF in mice, which was associated with attenuated pathological changes, reduced collagen deposition, and decreased content of transforming growth factor-β1 (TGF-β1). We further demonstrated that IL-18BP treatment suppressed the BLM-induced epithelial mesenchymal transition (EMT), characterized by decreased α-smooth muscle actin (α-SMA) and increased E-cadherin (E-cad) in vivo. In addition, we provided in vitro evidence demonstrating that IL-18 promoted EMT through upregulation of Snail-1 in A549 cells. In conclusion, our findings raise the possibility that the increase of IL-18 is involved in the development of BLM-induced PF through modulating EMT in a Snail-1-dependent manner. IL-18BP may be a worthwhile candidate option for PF therapy.  相似文献   

20.
Little is known about the pathophysiology of acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF). Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for biosynthesis and secretion of collagen molecules. Previous studies in experimental animal fibrosis models have shown that downregulation of HSP47 expression reduces collagen production and diminishes fibrosis progression. In this study, serum HSP47 levels were evaluated to elucidate pathogenic differences involving HSP47 between AE-IPF and stable (S)-IPF. Subjects comprised 20 AE-IPF and 33 S-IPF patients. Serum levels of HSP47, Krebs von den Lungen-6 (KL-6), surfactant protein (SP)-A, SP-D, and lactate dehydrogenase (LDH) were measured. Immunohistochemical analysis of lung HSP47 expression was determined in biopsy and autopsy tissues diagnosed as diffuse alveolar damage (DAD) and usual interstitial pneumonia (UIP). Serum levels of HSP47 were significantly higher in AE-IPF than in S-IPF patients, whereas serum levels of KL-6, SP-A, and SP-D did not differ significantly. Receiver operating characteristic curves revealed that HSP47 was superior for discriminating AE-IPF and S-IPF. The cutoff for HSP47 resulting in the highest diagnostic accuracy was 559.4 pg/mL; sensitivity, specificity, and diagnostic accuracy were 100.0 %, 93.9 %, and 96.2 %, respectively. Immunohistochemical analysis revealed that pulmonary HSP47 expression was greater in DAD than UIP tissues. Serum HSP47 was significantly higher in AE-IPF than in S-IPF patients, suggesting that underlying fibrogenic mechanisms involving HSP47 differ in the two conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号