首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of a filtering device, an air-line breathing apparatus and a self-contained breathing apparatus ( SCBA ) on pulmonary ventilation, oxygen consumption and heart rate were studied in 12 well-trained firemen aged 21-35 years. Their average maximal oxygen consumption (VO2 max) was 64.9 ml X min-1 X kg-1. Sequential tests without and with the respirator were performed on a treadmill. The continuous test contained five components, each of which lasted 5 min: sitting at rest, walking at 20%, 40%, and 60% of the individual VO2 max, and recovery sitting. During the higher submaximal work levels and recovery, ventilation, heart rate, and oxygen consumption in particular increased more with respirators than without them. At the highest work level the increments in oxygen consumption caused by the respirators were 13%, (8.7 ml X min-1 X kg-1), 7% (4.4 ml X min-1 X kg-1), and 20% (12.7 ml X min-1 X kg-1) of VO2 max. All three respirators hampered respiration, resulting in hypoventilation. The additional effort of breathing and the weight of the apparatus (15 kg with the SCBA ) increased the subjects' cardiorespiratory strain so clearly that the need for rest periods and the individual's work capacity when the respirators are worn must be carefully considered, particularly with the SCBA .  相似文献   

2.
To determine why black distance runners currently out-perform white distance runners in South Africa, we measured maximum oxygen consumption (VO2max), maximum workload during a VO2max test (Lmax), ventilation threshold (VThr), running economy, inspiratory ventilation (VI), tidal volume (VT), breathing frequency (f) and respiratory exchange ratio (RER) in sub-elite black and white runners matched for best standard 42.2 km marathon times. During maximal treadmill testing, the black runners achieved a significantly lower (P less than 0.05) Lmax (17 km h-1, 2% grade, vs 17 km h-1, 4% grade) and VI max (6.21 vs 6.82 l kg-2/3 min-1), which was the result of a lower VT (101 vs 119 ml kg-2/3 breath-1) as fmax was the same in both groups. The lower VT in the black runners was probably due to their smaller body size. The VThr occurred at a higher percentage VO2max in black than in white runners (82.7%, SD 7.7% vs 75.6%, SD 6.2% respectively) but there were no differences in the VO2max. However, during a 42.2-km marathon run on a treadmill, the black athletes ran at the higher percentage VO2max (76%, SD 7.9% vs 68%, SD 5.3%), RER (0.96, SD 0.07 vs 0.91, SD 0.04) and f (56 breaths min-1, SD 11 vs 47 breaths min-1, SD 10), and at lower VT (78 ml kg-2/3 breath-1, SD 15 vs 85 ml kg-2/3 breath-1, SD 19). The combination of higher f and lower VT resulted in an identical VI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The role of the sinoaortic reflexes in the regulation of ventilation during exercise was evaluated in seven awake dogs prepared with chronic tracheostomies and arterial catheters. Each dog ran on a treadmill at several work loads before and after sinoaortic denervation and served as its own control. Minute ventilation in the sinoaortic denervated state was significantly reduced from intact values by 10-40% at the mild and moderate levels of exercise [O2 uptake (VO2) = 30-50 ml . kg-1 . min-1] mainly as a result of a lowering respiratory frequency. At higher work loads (VO2 = 70-80 ml . kg-1 . min-1) minute ventilation was similar in the intact and denervated states, but the pattern of ventilation was altered with a higher frequency and a lower tidal volume in the denervated state. The rise in ventilation toward a stable plateau was slower at all work loads in the denervated than in the intact state. After sinoaortic denervation, arterial PCO2(PaCO2) levels were significantly elevated above intact PaCO2 levels during both the preexercise period and the steady state at all exercise levels. These results suggest that the sinoaortic reflexes contribute to both the control of ventilation and the pattern of breathing during mild and heavy levels of exercise in the conscious dog.  相似文献   

4.
Six trained male cyclists and six untrained sedentary men were studied to determine whether the plasma lactate threshold (PLT) and ventilation threshold (VT) occur at the same work rate in both fit and unfit populations. The PLT was determined from a marked increase in plasma lactate concentration ([La]) and VT from a nonlinear increase in expired minute ventilation (VE) during incremental leg-cycling tests; work rate was increased 30 W every 2 min until volitional exhaustion. The trained subjects' mean VO2 max (63.8 ml O2 X kg-1 X min-1) and VT (65.8% VO2 max) were significantly higher (P less than 0.05) than the untrained subjects' mean VO2max (35.5 ml O2 X kg-1 X min-1) and VT (51.4% VO2 max). The trained subjects' mean PLT (68.8% VO2 max) and VT did not differ significantly, but the untrained subjects' mean PLT (61.6% VO2 max) was significantly higher than their VT. The trained subjects' mean peak [La] (10.5 mmol X l-1) did not differ significantly from the untrained subjects' mean peak [La] (11.5 mmol X l-1). However, the time of appearance of the peak [La] during passive recovery was inversely related to VO2 max. These results suggest that variance in lactate diffusion and/or removal processes between the trained and untrained subjects may account in part for the different relationships between the VT and PLT in each population.  相似文献   

5.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

6.
Oxygen consumption and metabolic strain in rowing ergometer exercise   总被引:2,自引:0,他引:2  
Oxygen consumption (VO2) when rowing was determined on a mechanically braked rowing ergometer (RE) with an electronic measuring device. VO2 was measured by an open spirometric system. The pneumotachograph valve was fixed to the sliding seat, thus reducing movement artefacts. A multi-stage test was performed, beginning with a work load of 150 W and increasing by 50 W every 2 minutes up to exhaustion. Serum lactate concentrations were determined in a 30 s break between the work stages. 61 examinations of oarsmen performing at maximum power of 5 W X kg-1 or more were analysed VO2 and heart rate (HR) for each working stage were measured and the regression line of VO2 on the work load (P) and an estimation error (Sxy) were calculated: VO2 = 12.5 X P + 415.2 (ml X min-1) (Sxy = +/- 337 ml, r = 0.98) Good reproducibility was found in repeated examinations. Similar spiroergometry was carried out on a bicycle ergometer (BE) with 10 well trained rowers and 6 trained cyclists. VO2 of rowing was about 600 ml X min-1 higher than for bicycling in the submaximal stages for both groups. The VO2max of RE exercise was 2.6% higher than for oarsmen on BE, and the cyclists reached a greater VO2 on BE than the oarsmen. No differences were found between RE and BE exercise heart rate. The net work efficiency when rowing was 19% for both groups, experienced and inexperienced: when cycling it was 25% for cyclists and 23% for oarsmen.  相似文献   

7.
The effects of beta-blockade on tidal volume (VT), breath cycle timing, and respiratory drive were evaluated in 14 endurance-trained [maximum O2 uptake (VO2max) approximately 65 ml X kg-1 X min-1] and 14 untrained (VO2max approximately 50 ml X kg-1 X min-1) male subjects at 45, 60, and 75% of unblocked VO2max and at VO2max. Propranolol (PROP, 80 mg twice daily), atenolol (ATEN, 100 mg once a day) and placebo (PLAC) were administered in a randomized double-blind design. In both subject groups both drugs attenuated the increases in VT associated with increasing work rate. CO2 production (VCO2) was not changed by either drug during submaximal exercise but was reduced in both subject groups by both drugs during maximal exercise. The relationship between minute ventilation (VE) and VCO2 was unaltered by either drug in both subject groups due to increases in breathing frequency. In trained subjects VT was reduced during maximal exercise from 2.58 l/breath on PLAC to 2.21 l/breath on PROP and to 2.44 l/breath on ATEN. In untrained subjects VT at maximal exercise was reduced from 2.30 l/breath on PLAC to 1.99 on PROP and 2.12 on ATEN. These observations indicate that 1) since VE vs. VCO2 was not altered by beta-adrenergic blockade, the changes in VT and f did not result from a general blunting of the ventilatory response to exercise during beta-adrenergic blockade; and 2) blockade of beta 1- and beta 2-receptors with PROP caused larger reductions in VT compared with blockade of beta 1-receptors only (ATEN), suggesting that beta 2-mediated bronchodilation plays a role in the VT response to heavy exercise.  相似文献   

8.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

9.
We studied whether bronchodilatation occurs with exercise during the late asthmatic reaction (LAR) to allergen (group 1, n = 13) or natural asthma (NA; group 2, n = 8) and whether this is sufficient to preserve maximum ventilation (VE(max)), oxygen consumption (VO(2 max)), and exercise performance (W(max)). In group 1, partial forced expiratory flow at 30% of resting forced vital capacity increased during exercise, both at control and LAR. W(max) was slightly reduced at LAR, whereas VE(max), tidal volume, breathing frequency, and VO(2 max) were preserved. Functional residual capacity and end-inspiratory lung volume were significantly larger at LAR than at control. In group 2, partial forced expiratory flow at 30% of resting forced vital capacity increased greatly with exercise during NA but did not attain control values after appropriate therapy. Compared with control, W(max) was slightly less during NA, whereas VO(2 max) and VE(max) were similar. Functional residual capacity, but not end-inspiratory lung volume at maximum load, was significantly greater than at control, whereas tidal volume decreased and breathing frequency increased. In conclusion, remarkable exercise bronchodilation occurs during either LAR or NA and allows VE(max) and VO(2 max) to be preserved with small changes in breathing pattern and a slight reduction in W(max).  相似文献   

10.
The aim of this study was to investigate the effect of growth on ventilation and breathing pattern during maximal exercise oxygen consumption (VO2max) and their relationships with anthropometric characteristics. Seventy six untrained schoolboys, aged 10.5-15.5 years, participated in this study. Anthropometric measurements made included body mass, height, armspan, lean body mass, and body surface area. During an incremental exercise test, maximal ventilation (VEmax), tidal volume (VTmax), breathing frequency (fmax), inspiratory and expiratory times (tImax and tEmax), total duration of respiratory cycle (tTOTmax), mean inspiratory flow (VT/tImax), and inspiration fraction (tI/tTOTmax) were measured at VO2max. A power function was calculated between anthropometric characteristics and ventilatory variables to determine the allometric constants. The results showed firstly, that VEmax, VTmax, tImax, tEmax, tTOTmax, and VT/tImax increased with age and anthropometric characteristics (P less than 0.001), fmax decreased (P less than 0.001), and tI/tTOTmax remained constant during growth; secondly that lean body mass explained the greatest percentage of variance of VEmax (62.1%), VTmax (76.8%), and VT/tImax (70.6%), while anthropometric characteristics explained a slight percentage of variance of fmax and timing; and thirdly that VEmax, VTmax, and VT/tImax normalized by lean body mass did not change significantly with age. We concluded that at VO2max there were marked changes in ventilation and breathing pattern with growth. The changes in VEmax, VTmax, and VT/tImax were strongly related to the changes in lean body mass.  相似文献   

11.
Increases in functional residual capacity (FRC) decrease inspiratory muscle efficiency; the present experiments were designed to determine the effect of FRC change on the ventilatory response to exercise. Six well-trained adults were exposed to expiratory threshold loads (ETL) ranging from 5 to 40 cmH2O during steady-state exercise on a bicycle ergometer at 40-95% VO2max. Inspiratory capacity (IC) was measured and changes of IC interpreted as changes of FRC. ETL did not consistently limit exercise performance. At heavy work (greater than 92% VO2max) minute ventilation decreased with increasing ETL; at moderate work (less than 58% VO2max) it did not. Decreases in ventilation were due to decreases in respiratory frequency with prolongation of the duration of expiration being the most consistent change in breathing pattern. At moderate work levels, FRC increased with ETL; at maximum work it did not. Changes in FRC were dictated by constancy of tidal volume and a fixed maximum end-inspiratory volume of 80-90% of the inspiratory capacity. When tidal volume was such that end-inspiratory volume was less than this value, FRC increased with ETL. Mouth pressure measured during the first 0-1 s of inspiratory effort against an occluded airway (P0-1) was increased by ETL equals 30 cmH2O, in spite of the fact that ventilation was decreased. We concluded that changes in FRC due to ETL had no effect on the ventilatory response to exercise and that changes in P0-1 induced by ETL did not reflect changes of inspiratory drive so much as changes of the pattern of inspiration.  相似文献   

12.
Age and aerobic power: the rate of change in men and women   总被引:7,自引:0,他引:7  
The historic studies by Robinson and Astrand as well as more recent studies present a fairly uniform rate of decline in VO2max with age at 0.40-0.50 ml X kg-1 X min-1 X year-1 in men. In women the rate of decline appears to be less--approximately 0.20-0.35 ml X kg-1 X min-1 X year-1, at least in cross-sectional studies. Further, there is no clear distinction in the rate of change in VO2max when comparing active and inactive populations. Longitudinal studies varying from 2.5 to 21 to 56 years present a confounding picture. The rate of decline in VO2max varies from 0.04 to 1.43 ml X kg-1 X min-1 X year-1. There is some indication that active individuals decline at a slower rate than inactive persons but the results are not uniform. A possible explanation is that changes in VO2max over the entire age range may be curvilinear, with active individuals declining slowly as long as they maintain a regular exercise program, and sedentary individuals declining at a rapid rate during their 20's and 30's followed by a slower rate of decline of their VO2max as they age further.  相似文献   

13.
The purpose of this study was to determine the potential effects on progressive aerobic work while breathing through a new military type chemical and biological (CB) respirator loaded with three different types of purifying canisters. Twelve healthy well-motivated male subjects (mean age 23 +/- 3 years) participated in the study. Results indicated that mean maximal oxygen uptake (VO2max), time to exhaustion, respiratory exchange ratio, rate of perceived exertion, respiratory rate and tidal volume at exhaustion, maximal lactate and the 2-min post-exercise lactate were not significantly influenced when breathing with the respirator and the canisters in comparison to a laboratory valve. Mean pulmonary ventilation, however, was reduced by 21% while oxygen and carbon dioxide ventilatory equivalents were significantly lower by 9% and 8% respectively. Review of the stage-by-stage responses to the treadmill test between the laboratory valve and respirator/canister conditions indicated no significant differences (NS) in oxygen uptake but slightly lower heart rates (NS). Ventilation was not influenced by the canisters until 80% of VO2max at which time the mean oxygen ventilatory equivalent became significantly lower. Blood lactate was significantly depressed between 60% and 90% VO2max under the respirator/canister conditions. It was concluded that, although physiological adaptation occurred, breathing with the new CB respirator and each of the three purifying canisters had no detrimental effect on progressive aerobic work to exhaustion. However, prolonged work at intensities greater than 80-85% of VO2max would in all probability be impaired when breathing with the CB mask and the canisters.  相似文献   

14.
To determine whether aerobic conditioning alters the orthostatic responses of older subjects, cardiovascular performance was monitored during graded lower body negative pressure in nine highly trained male senior athletes (A) aged 59-73 yr [maximum O2 uptake (VO2 max) = 52.4 +/- 1.7 ml.kg-1 x min-1] and nine age-matched control subjects (C) (VO2 max = 31.0 +/- 2.9 ml.kg-1 x min-1). Cardiac volumes were determined from gated blood pool scintigrams by use of 99mTc-labeled erythrocytes. During lower body negative pressure (0 to -50 mmHg), left ventricular end-diastolic and end-systolic volume indexes and stroke volume index decreased in both groups while heart rate increased. The decreases in cardiac volumes and mean arterial pressure and the increase in heart rate between 0 and -50 mmHg were significantly less in A than in C. For example, end-diastolic volume index decreased by 32 +/- 4 ml in C vs. 14 +/- 2 ml in A (P < 0.01), mean arterial pressure declined 7 +/- 5 mmHg in C and increased by 5 +/- 3 mmHg in A (P < 0.05), and heart rate increased 13 +/- 3 beats/min in C and 7 +/- 1 beats/min in A (P < 0.05). These data suggest that increased VO2 max among older men is associated with improved orthostatic responses.  相似文献   

15.
The effect of training on VO2 max, endurance capacity (EC) and ventilation during maximal exercise (VE max) were studied in 17 normal subjects aged 21--51 years. At the beginning of the study 11 of the subjects (eight women and three men) were untrained (U) and six others (three women and three men) trained regulatory (T). A maximal intensity exercise (on a cycle ergometer) which could be sustained for 45 min (MIE45) was performed three times per week for 6 weeks; the total mechanical work (TMW) corresponding to the MIE45 per session varied between 3.14 and 9.24 kJ . kg-1. Before training, VO2 max (a), VEmax (b), and TMW (c) were higher in T than in U subjects. Training increased these variables in most of the subjects; the increase being significantly higher (mean +/- SEM) in U (a = +29.9 +/- 3.8%; b = 49.6 +/- 6.5%; c = 47 +/- 6.9%) than in T subjects (a = 6.6 +/- 3.8%; b = 17.5 +/- 3.6+; c = 19.1 +/- 2.8%). In all but three cases the % increase of TMW was higher than that of VO2 max, suggesting a higher sensitivity of TMW in measuring EC. The significant increase in VE max, maximal voluntary ventilation, peak flows (inspiratory and expiratory) and static maximum voluntary ventilation, peak flows (inspiratory and expiratory) and static maximum pressures indicate that this training protocol improves in healthy subjects the performance of respiratory muscles as well.  相似文献   

16.
Endurance training of older men: responses to submaximal exercise.   总被引:2,自引:0,他引:2  
The purpose of this study was to quantify the exercise response of older subjects on a time-to-fatigue (TTF) submaximal performance test before and after a training program. Eight older men (67.4 +/- 4.8 yr) performed two maximal treadmill tests to determine maximum oxygen uptake (VO2max) and ventilation threshold (TVE) and a constant-load submaximal exercise treadmill test that required an oxygen uptake (VO2) between TVE and VO2max. The submaximal test, performed at the same absolute work rate before and after the training program, was performed to volitional fatigue to measure endurance time. The men trained under supervision at an individualized pace representing approximately 70% of VO2max (80% maximum heart rate) for 1 h, four times per week for 9 wk. Significant increases were demonstrated for VO2max (ml.kg-1.min-1; 10.6%); maximal ventilation (VE, l/min; 11.6%), and TVE (l/min; 9.8%). Weight decreased 2.1%. Performance time on the TTF test increased by 180% (7.3 +/- 3.0 to 20.4 +/- 13.5 min). The similar end points for VO2, VE, and heart rate during the TTF and maximal treadmill tests established that the TTF test was stopped because of physiological limitations. The increase in performance time among the subjects was significantly correlated with improvements in VO2max and TVE, with the submaximal work rate representing a VO2 above TVE by 88% of the difference between TVE and VO2max pretraining and 73% of this difference on posttraining values.  相似文献   

17.
The purpose of this study was to investigate the physical activity levels in eleven 9-10 year old boys with reference to aerobic power or lactate threshold (LT). Daily physical activity levels were evaluated from a HR monitoring system for 12 h on three different days. VO2max, VO2-HR relationship and LT were determined by the progressive treadmill test. LT was 36.7 +/- 3.1 ml X kg-1 X min-1 and 71.0 +/- 6.6% VO2max. Mean total time of activities with HR above the level corresponding to 60% VO2max (T-60%) and that above LT (T-LT) were 34 +/- 7 and 18 +/- 7 min, respectively. VO2max (ml X kg-1 X min-1) correlated significantly with T-60% (p less than 0.01), while no significant relationship was found with LT in ml X kg-1 X min-1. In conclusion, longer daily physical activities at moderate to higher intensity for preadolescent children seem to increase VO2max rather than LT.  相似文献   

18.
19.
The purpose of this study was to determine whether a test developed to predict maximal oxygen consumption (VO2max) during over-ground walking, was similarly valid as a predictor of peak oxygen consumption (VO2) when administered during a 1-mile (1.61 km) treadmill walk. Treadmill walk time, mean heart rate over the last 2 full min of the walk test, age, and body mass were entered into both generalized (GEN Eq.) and gender-specific (GSP Eq.) prediction equations. Overall results indicated a highly significant linear relationship between observed peak VO2 and GEN Eq. predicted values (r = 0.91), a total error (TE) of 5.26 ml.kg-1.min-1 and no significant difference between observed and predicted peak VO2 mean values. The peak VO2 for women (n = 75) was predicted accurately by GSP Eq. (r = 0.85; TE = 4.5 ml.kg-1.min-1), but was slightly overpredicted by GEN Eq. (overall mean difference = 1.4 ml.kg-1.min-1; r = 0.86; TE = 4.56 ml.kg-1.min-1). No significant differences between observed peak VO2 and either GEN Eq. (r = 0.85; TE = 4.3 ml.kg-1.min-1) or GSP Eq. (r = 0.85; TE = 4.8 ml.kg-1.min-1) predicted values were noted for men (n = 48) with peak VO2 values less than or equal to 55 ml.kg-1.min-1. However, both equations significantly underpredicted peak VO2 for the remaining high peak VO2 men (n = 22). In conclusion, the over-ground walking test, when administered on a treadmill, is a valid method of predicting peak VO2 but underpredicts peak VO2 of subjects with observed high peak VO2 values.  相似文献   

20.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号