首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
We previously screened a series of macrophage hybridomas derived from fusion of P388D1 (H-2d) tumor cells with CKB (H-2k) splenic adherent cells for their ability to induce I-J restricted Ts cell responses. One Ia+ macrophage clone (63) consistently induced Ag-specific, I-J-restricted Ts. To evaluate whether macrophage hybridoma 63 also induced delayed-type hypersensitivity (DTH) immunity, mice were immunized with hapten-coupled macrophage hybridoma cells. Hapten-coupled splenic adherent cells and control macrophage hybridomas induced significant primary DTH responses, whereas hapten-coupled macrophage 63 induced little or no immunity when injected into H-2 compatible hosts. However, macrophage hybridoma 63 specifically activated I-Ak, I-Ad, or I-Ed restricted T cell hybridomas/clones, in vitro in the presence of appropriate Ag. Three different strategies designed to eliminate suppressor cell activity were successfully used to demonstrate that hapten-coupled macrophage 63 could also induce in vivo immunity. First, after immunization with hapten-coupled macrophages, mice were treated with cyclophosphamide. Second, macrophage 63 was treated with anti-IJ idiotype antibody before 4-hydroxy-3-nitrophenyl acetyl hapten (NP) coupling. Finally, haptenated macrophages were injected into I-A compatible but I-J incompatible recipients. These protocols are known to inhibit the induction of Ts activity, thus these results indirectly suggest that there is stimultaneous generation of Ts activity in vivo. The latter hypothesis was tested in adoptive transfer experiments. Transfer of lymph node cells from NP-63 primed B10.BR (H-2k) mice induced immunity in naive 4R animals, whereas the same number of immune cells suppressed NP-induced DTH responses in 5R mice. The combined results indicate that a cloned macrophage line can activate both Th and Ts cells. Macrophages which induce Ts activity may be responsible for maintaining the balance of immunity vs suppression. The data support the hypothesis that IJ interacting molecules (IJ-IM) expressed on macrophages are critical for induction of suppressor cell activity.  相似文献   

2.
The phenotypic expression of cell surface markers by T cell hybridomas that elaborate suppressor factors specific for the polymers L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) or L-glutamic acid50-L-tyrosine50 (GT) has been analyzed. We found that determinants encoded by the I-J subregion of the H-2 complex were borne on the surface of these hybrid cells and on the factors they secrete, whereas I-J determinants were not expressed by the AKR thymoma fusion parent, BW5147. The level of expression of I-J determinants fluctuated widely depending upon culture conditions, but I-J products and other cell surface markers of normal T cells could be quantitatively increased, or induced to appear, by treatment of the hybridomas with chemical agents, such as dimethyl sulfoxide (DMSO) or phorbol myristate acetate (PMA). In contrast, the surface expression of the viral product gp70 was decreased by the same treatment. Using chemical induction, we typed BW5147, a group of antigen-specific suppressor T cell hybridomas, and two control hybridomas for expression of I-J, Thy-1, Lyt, and H-2K alloantigens. Also, a haplotype-specific hybridoma that produces an antigen-nonspecific factor was analyzed. The results demonstrated that BW5147 failed to express I-J or Lyt alloantigens but expressed Thy-1.1 and H-2Kk gene products. The pattern of expression of these antigens by T cell hybridomas was very complex, but three conclusions could be drawn: 1) Good correlation exists between the expression of certain I-J determinants and the ability of T cell hybridomas to produce suppressor factor. 2) The expression of Thy-1, Lyt, or H-2Kk determinants is variable, and no correlation was found between expression of these antigens and the ability to produce active suppressor factors. 3) I-Jk products contributed by the AKR thymoma fusion partner are expressed by T cell hybridomas.  相似文献   

3.
The IJ genetic restrictions of suppressor T (Ts) cells are controlled by H-2-related determinants that are expressed on antigen-presenting cells. This has led to the hypothesis that Ts cells carry receptors for a self H-2-related ligand that is expressed on specialized antigen-presenting cells. We refer to this H-2-related ligand as the IJ interacting molecule. This report evaluates the ability of rabbit antibodies directed against idiotypes on monoclonal anti-IJ antibodies (the latter are presumably reactive with the Ts cell receptor) to bind IJ interacting molecule and to inhibit antigen presentation to Ts cells. Such anti-idiotypic reagents were prepared against T cell-reactive monoclonal anti-IJk and anti-IJd antibodies. The F(ab')2 fragments of these anti-idiotypic reagents blocked Ts cell induction. The inhibition was haplotype specific and mapped to the IJ region. The anti-idiotypic antibodies blocked the generation of Ts1, Ts2, and Ts3 cells. The cellular target of the blocking activity mediated by these anti-idiotypic antibodies is a macrophage. This was shown by using a cloned macrophage hybridoma line for both Ts induction and absorption of antibody activity. The combined data support the concept that macrophages express IJ interacting determinants that are responsible for Ts cell induction.  相似文献   

4.
We have previously characterized a macrophage hybridoma clone, termed clone 59, which induced immunity but consistently failed to induce Ts responses. Macrophage 59 cells were cultured with supernatants from several activated T cell clones to determine if lymphokines could modulate the activity of this macrophage hybridoma to generate effector Ts. Culture supernatants from Th1 clones and from one atypical IL-4 and IFN-gamma-producing T cell clone successfully modulated clone 59 cells to induce effector Ts cells. In contrast, supernatants from activated Th2 cells failed to generate Ts-inducing activity in macrophage 59 cells. Culture with recombinant derived IFN-gamma was sufficient to cause modulation of Ts-inducing activity in macrophage 59 cells. The data imply that the differential functional activities ascribed to various macrophage hybridoma clones reflect macrophage heterogeneity instead of independent macrophage lineages. The suppression induced by clone 59 macrophages was genetically restricted to the putative I-J region. The ability of IFN-gamma containing supernatants to endow macrophage 59 with the capacity to induce effector suppressor cells was specifically abrogated by addition of an anti-IJk-idiotype antibody, which also reacts with IJ-interaction molecules, indicating that the mechanism of modulation most likely involves expression of IJ-interaction molecule determinants on antigen presenting cells.  相似文献   

5.
Eight different Ts cell hybridomas (including inducer (Ts1) and effector (Ts3) suppressor cells) specific for the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten were tested for their ability to respond to Ag or anti-CD3 antibody in a growth-inhibition assay. Results suggest that the expression of the TCR-CD3 complex on Ts hybridomas is required for the Ag or anti-CD3-mediated growth inhibition. One of the CD3+, Ts hybridomas (CKB-Ts3-9.H3) was tested in detail; this CD4- effector suppressor cell hybridoma showed specific inhibition of growth in the presence of NP or NIP-coupled protein conjugates but not in the presence of other irrelevant hapten-protein conjugates. In addition, growth of this hybridoma was specifically inhibited by anti-CD3 and anti-TCR-alpha/beta antibodies but not by control hamster antibodies. In order to study the role of MHC molecules in Ag-mediated growth inhibition, Ts cell hybridomas were incubated with Ag (NP-keyhole limpet hemocyanin) in the presence of spleen cells from various H-2 congenic strains. The results suggest that the Ts hybridomas that express donor Ts-derived TCR beta-chain recognize Ag in an MHC-restricted manner, whereas the two Ts3 hybridomas that utilize BW5147-derived TCR-beta recognize Ag in H-2 unrestricted way. Co-incubation of anti-CD3 and anti-TCR-alpha/beta antibodies with specific Ag enhanced the Ag-mediated growth inhibition, whereas anti-LFA-1 antibody completely blocked the Ag-mediated effect. The combined data suggest that, like Th hybridomas, expression of CD3-associated-TCR complex is essential for the Ag responsiveness of Ts cell hybridomas.  相似文献   

6.
An in vitro method for the generation of effector suppressor cells (Ts3) was developed. By utilizing this protocol, it was possible to investigate both the cellular and genetic requirements for suppressor cell induction. It was determined that populations containing Ts3 cells can be induced after a 4-day culture of spleen cells and antigen. These Ts3 cells are similar to Ts3 cells generated by in vivo immunization. Both populations are I-J+, bind NP hapten, bind NP hapten, bear receptors which share NPb idiotypic determinants with anti-NP antibodies, function during the effector phase of the immune response, and require activation with Ts2 cells. Generation of Ts3-containing populations required both nylon wool-nonadherent T cells and a nylon-adherent, B cell-enriched population from an Igh-identical donor. T cells cultured with antigen alone or with syngeneic macrophages and antigen did not develop suppressive activity. Lytic treatment of the nylon-adherent population with a B cell-specific monoclonal antibody (J11d) removed the ability to generate suppressor cells. These results imply that the induction of suppressor T cells requires B lymphocytes, and that this induction process is dependent on Igh-linked gene products.  相似文献   

7.
The induction of new suppressor T cells (Ts2) by suppressive extracts (TsF) from L-glutamic acid50L-tyrosine50 (GT) nonresponder mice was examined. Incubation of normal spleen cells with allogeneic GT-TsF for 2 days in vitro led to the generation of Ts2 cells able to suppress subsequent responses to the immunogen GT-methylated bovine serum albumin (GT-MBSA) in vivo. This induction occurred efficiently when TsF donor and target cells differed at all of H-2, including the I-J subregion. B10.BR (H-2k) GT-TsF, adsorbed on, then acid eluted from GT-Sepharose and anti-I-Jk [B10.A (3R) anti-B10.A (5R)]-Sepharose in a sequential fashion could induce BALB/c (H-2d) spleen cells to become Ts2 only if nanogram quantities of GT were added to the purified GT-TsF. This indicates a requirement for a molecule or molecular complex possessing both I-J determinants and antigen (GT)-binding specificity, together with GT itself, for Ts2 induction. The induced Ts2 are I-J+, since their function can be eliminated by treatment with anti-I-Jk plus C. These I-J determinants are coded for by the precursor of the Ts2 and do not represent passively adsorbed, I-J coded TsF, since anti-Ijk antiserum [(3R X DBA/2)F1 anti-5R] which cannot recognize the BALB/c (I-Jd) TsF used for induction still eliminates the activity of induced A/J (I-Jk) Ts2. These data provide further evidence for and information about the minimum of two T cells involved in antigen-specific suppressor T cell systems.  相似文献   

8.
We have investigated the ability of an Ia-, nonantigen-presenting macrophage tumor cell line, P388D, (H-2d), to present antigen to T cell hybridomas after incubation in a lymphokine-containing preparation. P388D, cells were incubated in microtiter wells with various concentrations of Con A-stimulated spleen cell supernatants. Antigen-specific stimulation of H-2d-restricted, KLH-specific T cell hybridomas was observed by P388D1 incubated with SUP.P388D1 cells incubated for 3 days in medium or control SUP did not present antigen. In addition, no stimulation of T hybridomas was seen by P388D1 in the inhibited by the appropriate monoclonal anti-Ia reagents. These results demonstrate that a macrophage tumor cell line can be induced to present antigen and provides for large numbers of readily available, homogeneous macrophages for studying the cellular biochemical requirements for antigen processing and presentation.  相似文献   

9.
A series of macrophage (M phi) hybridomas were generated by fusion of drug-marked P388D1 (H-2d) tumor cells with CKB (H-2k) splenic adherent cells. The ability of this panel of cloned M phi hybridomas expressing various levels of surface Ia antigens to induce allogeneic mixed lymphocytes responses (MLR) was examined. All MLR stimulatory M phi hybridomas expressed surface Ia antigens. However, some Ia+ and all Ia- M phi hybridomas were unable to induce vigorous MLR responses. Furthermore, even after induction of surface Ia antigen expression with Con A supernatants (Con A Sn) or purified interferon-gamma, the nonstimulatory M phi hybridomas remained ineffective at inducing strong MLR proliferative responses. Furthermore, addition of the latter M phi hybridoma clones (both with and without Con A Sn treatment) to conventional MLR cultures resulted in inhibition of MLR responses. The series of inhibitory M phi hybridomas secreted normal levels of IL 1 upon stimulation with lipopolysaccharide. After surface Ia induction with Con A Sn, the inhibitory M phi hybridomas could stimulate secretion of IL 2 and expression of IL 2 receptors. Moreover, although they inhibited conventional MLR responses, IL 2 production and IL 2 receptor expression were not significantly inhibited. Addition of these M phi hybridomas 24 to 48 hr after initiation of MLR response also inhibited MLR proliferation. The results indicated that the group of inhibitory M phi hybridomas can inhibit MLR responses after IL 2 secretion and acquisition of IL 2 receptors. Finally, this inhibitory activity has been maintained during 1 yr of continuous in vitro culture, and the hybridomas represent a stable "homogeneous" subpopulation of inhibitory macrophages. Thus, the inhibitory phenotype appears to reflect arrest at a distinct differentiation stage.  相似文献   

10.
A self-reactive T cell hybridoma that secretes IL-2 in response to H-2d haplotype cells resulted from a fusion of BALB/cBy lymph node cells with the AKR thymoma BW5147. The lymph node cells used had been enriched for cells reactive to (TG)-A--L, but neither this antigen nor fetal calf serum were required for stimulation of the hybridoma designated 3DT52.5. The gene product responsible for stimulation mapped to the H-2D region. Allogeneic cells of the b, f, k, q, and s haplotypes failed to stimulate. Not all H-2d haplotype cells were effective stimulators of 3DT52.5. Peritoneal cells and splenic B cells were much more stimulatory than splenic T cells. Most tumor cell lines of H-2d derivation and of B cell or macrophage/monocyte lineage were stimulatory, whereas H-2d T cell lines were not. The capacity to stimulate 3DT52.5 did not correlate with the ability to stimulate I region-restricted hybridomas, or with the ability to be induced to stimulate such hybridomas. Stimulatory cell lines did not apparently produce a soluble factor required for stimulation, and negative cell lines were not inhibitory. The monoclonal antibody 27-11-13, which reacts with H-2D of the b, d, and q haplotypes, inhibited stimulation of 3DT52.5 but did not inhibit stimulation of the sibling hybridoma 3DT18.11, which responds to (TG)-A--L plus I-Ad. Conversely, the monoclonal anti-I-Ad antibody MK-D6 inhibited stimulation of 3DT18.11 but not 3DT52.5. Although it is clear that 3DT52.5 recognizes a class I antigen coded for in the H-2D region, the precise molecular nature of the antigen is unknown. The structure of the antigen receptor on this hybridoma may prove to be of interest when it can be compared with receptors found on T cell hybridomas restricted by class II histocompatibility antigens.  相似文献   

11.
The involvement of a third-order suppressor T cell population (Ts3) in the suppression of in vitro PFC responses was analyzed. It was shown that Ts2 effector-phase suppressor cells, induced by the i.v. injection of NP-coupled syngeneic spleen cells, require a third suppressor T cell population to effect NPb idiotype-specific suppression of an in vitro B cell response. This Ts3 population was shown to be present in NP-primed but not unprimed donors. The Ts3 population specifically binds NP and is Lyt-1-, Lyt-2+, I-J+ and bears NPb idiotypic determinants. The involvement of the Ts3 population in a suppressor pathway that requires recognition of idiotypic determinants is discussed.  相似文献   

12.
The role of accessory cell populations in the generation of effector suppressor (Ts3) cells was studied. By using an in vitro culture system, it was previously determined that the induction of NP-specific effector suppressor activity requires T cells, antigen, and an anti-idiotypic B cell population. We now demonstrate that the generation of Ts3 cells in this system also requires accessory cells. The accessory population appears to play a role in the processing and presentation of antigen. These antigen-presenting accessory cells are required early in the induction phase of Ts3 generation. These accessory cells can present NP coupled to immunogenic or non-immunogenic polypeptide carriers, including polymers of L-amino acids. However, NP coupled to polymers of poorly metabolized D-amino acids fail to induce suppressor T cell generation. Furthermore, the data demonstrate that an H-2 homology must exist between the Ts3 precursors and the antigen-presenting cell population if suppressor activity is to be generated. We also characterize the differential genetic restrictions that govern the induction of Ts3 cells that control suppression of either T cell or B cell responses. The data suggest that although I-J region encoded gene products control the induction and effector phases of suppressor cell activity as measured on T cell responses, the suppression of B cell responses appear to be controlled by I-A gene products. Possible cellular mechanisms that might explain these findings are discussed.  相似文献   

13.
Requirements for suppressor cell activation. Role of accessory cells   总被引:1,自引:0,他引:1  
In the 4-hydroxy-3-nitrophenyl acetyl (NP) suppressor system, third order suppressor cells (Ts3) subset of suppressor cells is generated after Ag priming, but, in order to express suppressor activity, these cells need to be further activated or triggered with a specific second order suppressor factor. By in vitro activation of Ts3-containing lymph node cells or a pTs3 hybridoma we now show that macrophages are also required for Ts3 activation. In addition, we demonstrate that IJ genetic restrictions control this activation process. Furthermore, we directly demonstrate Ts3 activation using cloned macrophage hybridoma cells. To further investigate the interactions between Ts3 cells and the accessory cells involved in their activation, we attempted to block the second order suppressor factor mediated activation of Ts3 cells with antibodies. The activation of Ts3 cells can be blocked by the addition of anti-IJ, anti-IJ idiotype or anti-NPb idiotype antibodies, but not by anti-CD8, anti-IA, or anti-IE antibodies. Anti-IJ mAb blocked Ts3 activation at the lymphocyte level whereas anti-IJ idiotype blocked activation at the accessory cell level. Finally we tested, whether these antibodies can also directly activate primed Ts3 cells. We demonstrate that cross-linked anti-IJ, anti-NPb and anti-CD3 antibodies can activate Ts3 cells. The results are discussed in terms of receptor-ligand structures on Ts and accessory cells which are required for the activation of Ts3 cells.  相似文献   

14.
Fusion of spleen cells from rats hyperimmunized with T cell hybridoma derived GAT-specific TsF1 or TsF2 suppressor T cell factors has resulted in the generation of hybridomas secreting monoclonal antibodies reactive with the appropriate GAT-TsF used for immunization, and in several cases, reactive with other GAT-TsF1 and TsF2. The monoclonal anti-TsF1 antibodies are capable of modulating in vitro GAT-specific PFC response in a GAT-specific manner; some suppress responses to GAT directly, whereas others reverse GAT-TsF1-mediated suppression of responses. The monoclonal anti-TsF2 antibodies all reverse suppression but are reactive with combinatorial determinants, I-J+ chains or antigen-binding chains of the GAT-TsF2. The data are discussed in terms of the nature of the determinants recognized by these antibodies as well as the potential uses of these reagents for studying the suppressor T cell pathway and potential relationships between Ts1, Ts2, and T helper cells.  相似文献   

15.
Four cloned macrophage hybridoma cells prepared by fusion of splenic adherent cells with a P388D1 macrophage tumor markedly inhibited the growth of lymphocytes and tumor cells. Macrophage clones 5, 8, 63, and 64 are strong inhibitors of B-cell blastogenesis, T-cell blastogenesis, and tumor proliferation, while the P388D1, tumor line and clones 13, 59, and 67 demonstrated little inhibitory activity in all three systems. The inhibitory effect of macrophage hybridomas can be detected within 8 hr, although greater inhibition was noted following longer incubation. The correlations among these three assay systems suggest that similar mechanisms may be involved. The data indicate that the inhibition of cell proliferation was not due to cell lysis. Furthermore, the inhibition of lymphocyte proliferation in Con A-stimulated cultures was not accompanied by inhibition of lymphokine production in the same cultures. Neither prostaglandins nor hydrogen peroxide appear to be primarily responsible for growth inhibition. The inhibitory properties of these macrophage hybridoma lines represent a stable phenotype and provide a homogeneous source of cells for further analysis of the phenomenon.  相似文献   

16.
The mechanism of MHC-restricted T and B cell interactions in antibody response was studied with IgM-inducible B hybridomas and antigen-specific helper T cell clones. B hybridomas were prepared by fusion between splenic B cells from (CBA/N (H-2k) X BALB/c (H-2d)) F1 (NBF1) male mice and a B lymphoma cell line, M12.4.5. A B hybridoma clone, 1M70, which expressed I-Ad but not I-Ak determinants was chosen in the present study. IgM secretion was induced in 1M70 when it was cocultured with a "resting" KLH-specific and H-2d restricted helper T cell clone in the presence of KLH. A "resting" KLH-specific and H-2k restricted T cell clone did not induce IgM secretion in 1M70 even in the presence of KLH. However, when these KLH-specific T cell clones were activated by KLH and appropriate antigen presenting cells, both H-2d and H-2k restricted T cell clones induced IgM secretion in 1M70 even in the absence of KLH. A monoclonal anti-I-Ad antibody inhibited IgM secretion induced by a "resting" H-2d restricted T cell clone, but not by an "activated" T cell clone. These results indicated that T cell clones recognized antigens in the context of Ia molecules on B hybridomas in a MHC-restricted manner and were activated to produce B cell stimulatory factors which in turn acted on B hybridomas in a non-MHC-restricted manner and induced differentiation of B hybridomas into IgM secreting cells.  相似文献   

17.
Third-order (Ts3) suppressor cells are generated after conventional immunization. These cells, however, will not mediate suppressor cell function unless specifically triggered by an activating signal, termed TsF2. This report analyzes the mechanism of this TsF2-mediated triggering event. TsF2-mediated suppression is genetically restricted by genes in the I-J and Igh-V regions. The target of the I-J restrictions is a firmly adherent accessory cell, which appears to express I-J-related determinants. These accessory cells are sensitive to cyclophosphamide treatment and 500 R irradiation. In contrast, the target of the Igh-V restriction of TsF2 appears to be the Ts3 cell, which carries antigen-specific, idiotype-related receptors. The mechanism of suppressor cell activation appears to involve two stages. Presentation of I-J-restricted TsF2 by I-J-compatible presenting cells and a second step involving idiotype-anti-idiotype interactions between TsF2 and the Ts3 cell. I-J compatibility is not required with the accessory cell for Ts3 activation. Finally, we hypothesize that the anti-idiotypic determinants expressed on TsF2 can serve as an internal image of antigen, thereby permitting specific targeting of the factor.  相似文献   

18.
We have examined the expression of TCR genes in 4-hydroxy-3-nitrophenyl-acetyl (NP)-specific Ts cell hybridomas. Each of three independently isolated hybridomas expressed in-frame TCR alpha-chain rearrangements derived from the original suppressor Ts cell. Different V alpha and J alpha gene segments were rearranged and expressed in each Ts cell line. The only TCR beta-chain expressed in these cells was derived from the BW5147 fusion partner. Expression of the BW5147 beta-chain was found to correlate with cell surface Ag binding, inasmuch as subclones derived from one of the original Ts lines expressed greatly reduced levels of beta-chain mRNA and no longer bound to NP-coupled RBC. Subclones that continued to express beta-chain mRNA did bind to NP-coupled RBC. This suggests that the Ag receptor on Ts hybridomas is a TCR-alpha beta dimer composed of a unique alpha-chain and the BW5147 beta-chain. Ag binding could be modulated by preincubation of Ts hybridoma cells with anti-TCR-alpha beta antibody, thereby supporting this conclusion. Suppressor factor activity was measured in the conditioned media of Ts subclones that differed by 250-fold in levels of beta-chain mRNA expression. No difference in suppressor factor activity was found; conditioned media from these subclones suppressed both plaque-forming cell responses and delayed-type hypersensitivity responses at approximately equivalent dilutions. Suppressor factor activity in the conditioned media of both a beta-chain negative subclone and a beta-chain positive subclone could be absorbed with an antibody that recognizes the TCR alpha-chain, but not with an antibody that recognizes the TCR beta-chain. We conclude that suppressor factor activity in the conditioned media of these Ts hybridomas is not derived from surface TCR-alpha beta receptors, although it does share TCR alpha-chain determinants.  相似文献   

19.
Previous studies of the immune response of C57BL/6 mice to the 4-hydroxy-3-nitrophenyl acetyl (NP) hapten determined that challenge with antigenic forms of hapten induces both immunity and suppression. The anti-NP plaque-forming cell response can be down regulated by an Ag-induced cascade consisting of three suppressor T cell subsets. These three populations, termed Ts1, Ts2, and Ts3 have been characterized to have inducer, transducer and effector functions, respectively. Although the functions of each of these subsets have been examined in vivo, the cellular requirements for in vitro Ts induction have only been investigated for the Ts3 population. The present study characterizes the cellular events that lead to the induction of the Ts2, suppressor transducer population. Culture of naive C57BL/6 spleen cells with Ts1-derived suppressor factor in the absence of exogenous Ag leads to the generation of Ts2 cells that mediate Ag-specific suppression of NP plaque-forming cell responses. Phenotypic analyses demonstrate that a CD3+, CD4-, CD5+, CD8+, and I-J+ precursor population is stimulated by TsF1 to become mature Ts2 cells that express CD3, CD8, and I-J but not CD5. Although previous studies have reported an essential role for B cells in the induction of other Ts populations, depletion of B cells from Ts2 induction cultures had no effect on Ts2 generation. Despite the absence of B cells in these cultures, the mature Ts2 cells were functionally IgH restricted. Studies with IgH congenic B.C-8 mice suggest that this restriction specificity was imposed by the idiotype-related determinants expressed on the TsF1, not the T cell genotype.  相似文献   

20.
Allogeneic effect factors (AEF) were produced across an I-J subregion incompatibility. The helper activity of these AEFs is H-2 restricted since they help B cells only of the stimulator haplotype and of other haplotypes that carry the same I-J subregion gene(s) as the stimulator haplotype. Immunoadsorption studies demonstrate that they consist of I-J determinants derived initially from the GVHR host and MLR stimulator cells and not the GVHR donor and MLR responder cells used to generate AEF. It is postulated that the genetic restriction of AEF helper activity is mediated in part by the ability of the GVHR activated donor T cells to acquire, in vivo, recipient T cell and/or macrophage derived I-J determinants. Cellular adsorption studies indicate that AEF helper activity may be adsorbed by B cells, but neither T cells nor macrophages, of the stimulator haplotype. The results suggest that an I-J-positive AEF interacts with an I-J subregion controlled complementary recognition structure on a target B cell and, after antigenic stimulation, activates that B cell to IgG antibody synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号