首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

2.
Effects on the linoleic acid metabolism in vivo of three dietary fats, rich in either oleic acid, trans fatty acids or alpha-linolenic acid, and all with the same linoleic acid content, were investigated in male Wistar rats. After 6 weeks of feeding, the rats were intubated with [1-14C]linoleic acid and [3H]oleic acid. The incorporation of these radiolabels into liver, heart and serum was investigated 2, 4, 8, 24 and 48 h after intubation. The amount of 14C-labelled arachidonic acid incorporated into the liver phospholipid of the group fed the oleic acid-rich diet was significantly higher than that of the other groups. However, compared to the trans fatty acids-containing diet, the oleic acid-rich diet induced only a slightly higher arachidonic acid level in the phospholipid fraction of the tissues as determined by GLC. Dietary alpha-linolenic acid more than halved the arachidonic acid levels. Our results do not support the hypothesis that the delta 6-desaturase system actually determines the polyunsaturated fatty acid levels in tissue lipids by regulating the amount of polyunsaturated fatty acids (e.g., arachidonic acid) synthesized. The biosynthesis of polyunsaturated fatty acids only is not sufficient to explain the complicated changes in fatty acid compositions as observed after feeding different dietary fats.  相似文献   

3.
The effect of dietary eicosapentaenoic acid (EPA, 20:5(n-3), as the ethyl ester) on plasma lipid levels and the incorporation of EPA into erythrocyte and plasma lipids were investigated in the marmoset monkey. Marmosets were fed high mixed-fat diets (14.5% total fat) supplemented with or without 0.8% EPA for 30 weeks. Markedly elevated plasma cholesterol (16.4 mmol/l) was induced by an atherogenic-type diet but with EPA supplementation, plasma cholesterol increased to only 6.6 mmol/l. Plasma triacylglycerol levels were not elevated with an atherogenic type diet. Substantial EPA incorporation was evident for plasma phospholipid, triacylglycerol and cholesterol ester fractions. The proportion of docosapentaenoic acid (22:5(n-3)) but not docosahexaenoic acid (22:6(n-3)) was also elevated in these plasma lipid fractions. Greatest incorporation of EPA occurred when it was administered with an atherogenic type diet having a P:M:S (polyunsaturated:monounsaturated:saturated) fatty acid ratio of about 0.2:0.6:1.0 in comparison to the control diet of 1.0:1.0:1.0. Incorporation of EPA and 22:5(n-3)) into erythrocyte phospholipids was also apparent and this was at the expense of linoleic acid (18:2(n-6)). These results in the marmoset highlight both the cholesterol-lowering properties of EPA and the extent of its incorporation into plasma lipids and erythrocyte membrane phospholipids with far greater incorporation occurring when the level of dietary linoleic acid was reduced.  相似文献   

4.
Among the saturated fatty acids (SFA), myristic acid is known to be one of the most atherogenic when consumed at high levels. Our purpose was to compare the effects of two moderate intakes of myristic acid on plasma lipids in an interventional study. Twenty-five male monks without dyslipidemia were given two isocaloric diets for 5 weeks each. In diet 1, 30% of the calories came from fat (8% SFA, 0.6% myristic acid) and provided 200 mg cholesterol/day. Calories of diet 2 were 34% fat (11% SFA, 1.2% myristic acid) with the same levels of oleate, linoleate, alpha-linolenate and cholesterol. A baseline diet was provided before each diet. In comparison with baseline, diets 1 and 2 induced a decrease in total cholesterol, LDL-cholesterol and triglycerides (P<.001); HDL-cholesterol was not modified and the apo A-I/apo B ratio increased (P<.001). Plasma triglycerides were lower after diet 2 than after diet 1 whereas HDL-cholesterol was higher (P<.05). In phospholipids, myristic acid, oleic acid, linoleic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased after diet 2 vs. baseline (P<.01) and diet 1 (P<.05). Both diets were associated with an increase in alpha-linolenate of cholesteryl esters (P<.05), but only diet 2 was associated with an increase in DHA of cholesteryl esters (P<.05). In diet 2, myristic acid intake was positively correlated with myristic acid of phospholipids, and alpha-linolenic acid intake was correlated with alpha-linolenic acid of cholesteryl esters. Moderate intake (1.2% of total calories) of myristic acid has beneficial lipidic effects and enhances DHA of cholesteryl esters.  相似文献   

5.
6.
Although dietary fat has been associated with inflammation and cardiovascular diseases (CVD), most studies have focused on individuals with preexisting diseases. However, the role of dietary fatty acids on inflammatory pathways before the onset of any abnormality may be more relevant for identifying initiating factors and interventions for CVD prevention. We fed young male pigs one of three diets differing in n-6 and n-3 polyunsaturated fatty acids (PUFA) linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3) for 30 days. Cardiac membrane phospholipid fatty acids, phospholipase A(2) (PLA(2)) isoform activities, and cyclooxygenase (COX)-1 and -2 and 5-lipoxygenase (5-LO) expression were measured. The low PUFA diet (% energy, 1.2% LA+0.06% ALA) increased arachidonic acid (AA) and decreased eicosapentaenoic acid (EPA) in heart membranes and increased Ca(2+)-independent iPLA(2) activity, COX-2 expression, and activation of 5-LO. Increasing dietary ALA while keeping LA constant (1.4% LA+1.2% ALA) decreased the heart membrane AA, increased EPA, and prevented proinflammatory enzyme activation. However, regardless of high ALA, high dietary LA (11.6% LA and 1.2% ALA) decreased EPA and led to a high heart membrane AA, and Ca(2+)-dependent cPLA(2) with a marked increase in nitrosative stress. Our results suggest that the potential cardiovascular benefit of ALA is achieved only when dietary LA is reduced concomitantly rather than fed with high LA diet. The increased nitrosative stress in the unstressed heart with high dietary LA suggests that biomarkers of nitrosative stress may offer a useful early marker of the effects of dietary fat on oxidative tissue stress.  相似文献   

7.
Alterations in lipid metabolism may play a role in the vascular pathology associated with hyperhomocysteinemia (HHcy). Homocysteine is linked to lipid metabolism through the methionine cycle and the synthesis of phosphatidylcholine (PC) by phosphatidylethanolamine (PE) methyltransferase, which is responsible for the synthesis of 20-40% of liver PC. The goal of the present study was to determine if the reduced methylation capacity in HHcy is associated with alterations in liver phospholipid and fatty acid metabolism. Mice heterozygous for disruption of cystathionine beta-synthase (Cbs+/-) fed a diet to induce HHcy (HH diet) had higher (p<0.001) plasma total homocysteine (30.8+/-4.4 microM, mean+/-S.E.) than C57BL/6 mice (Cbs+/+) fed the HH diet (7.0+/-1.1 microM) or Cbs+/+ mice fed a control diet (2.3+/-0.3 microM). Mild and moderate HHcy was accompanied by lower adenosylmethionine/adenosylhomocysteine ratios (p<0.05), higher PE (p<0.05) and PE/PC ratios (p<0.01), lower PE methyltransferase activity (p<0.001), and higher linoleic acid (p<0.05) and lower arachidonic acid (p<0.05) in PE. Mice with moderate HHcy also had higher linoleic acid and alpha-linolenic acid (p<0.05) and lower arachidonic acid and docosahexaenoic acid (p<0.05) in liver PC. The first step in the desaturation and elongation of linoleic acid and linolenic acid to arachidonic acid and docosahexaenoic acid, respectively, is catalyzed by Delta6-desaturase (encoded by Fads2). We found hypermethylation of the Fads2 promoter (p<0.01), lower Fads2 mRNA (p<0.05), and lower Delta6-desaturase activity (p<0.001) in liver from mice with HHcy. These findings suggest that methylation silencing of liver Fads2 expression and changes in liver fatty acids may contribute to the pathology of HHcy.  相似文献   

8.
Dietary fat is known to influence the variables of blood coagulation and fibrinolysis associated with vascular disease. However, the role of fat content and/or fat composition of the diet in this regard is still not well understood. In the present study, we investigated the effects of three isoenergic diets of differing fat composition in nine healthy young men in a strictly controlled residential study. Subjects consumed the three experimental diets for periods of 2 weeks each, separated by a washout period of at least 5 weeks in a randomized crossover design. The diets provided 38% of total energy intake as fat, 45% as carbohydrate, and 17% as protein, and differed only with respect to the fatty acid composition (stearic acid-rich diet: 34.1% stearic acid, 36.6% oleic acid; oleic acid-rich diet: 65.8% oleic acid; linoleic acid-rich diet: 36.5% linoleic acid, 38% oleic acid). Blood samples were collected at the beginning and at the end of each dietary period from fasted subjects for determination of factor VII coagulant activity (FVIIc), activated factor VII (FVIIa), factor VII antigen (FVIIag), tissue plasminogen activator (tPA) activity, plasminogen activator inhibitor type 1 (PAI-1) activity, fibrinogen, prothrombin fragment 1+2 (F(1+2)), and plasma lipids. There were no significant differences between diets in fasting plasma concentrations of FVIIc, FVIIa, FVIIag, fibrinogen, F(1+2), PAI-1 activity, and tPA activity. Plasma concentrations of lipids (high density lipoproteins, low density lipoproteins, triacylglycerols, and total cholesterol) were also unaffected. Although there were no changes in platelet aggregation response and membrane fluidity observed in any of the diets, increased anti-aggregatory prostaglandin E(1) binding to platelet membranes was observed only in the case of linoleic acid-rich diet. In conclusion, diets with very different fatty acid compositions, at 38% of energy as fat intake, did not significantly influence blood coagulation, fibrinolysis, or blood lipids in the fasting state in young healthy men.  相似文献   

9.
High intakes of linoleic acid (LA,18:2n-6) have raised concern due to possible increase in arachidonic acid (ARA, 20:4n-6) synthesis, and inhibition of alpha linolenic acid (ALA, 18:3n-3) desaturation to eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). In healthy men, 10.5% energy compared to 3.8% energy LA with 1% energy ALA increased plasma phospholipid LA and 20:2n-6, the elongation product of LA, and decreased EPA, with no change in ARA. However, LA was inversely related to ARA at both 10.5% energy and 3.8% energy LA, (r=?0.761, r=?0.817, p<0.001, respectively). A two-fold variability in ARA among individuals was not explained by the dietary LA, ARA, ALA, or fish intake. Our results confirm LA requirements for ARA synthesis is low, <3.8% energy, and they suggest current LA intakes saturate Δ-6 desaturation and adversely affect n-3 fatty acid metabolism. Factors other than n-6 fatty acid intake are important modifiers of plasma ARA.  相似文献   

10.
The aim of study was to investigate an influence of nutritional deficiency and dietary addition of vit. B(2), B(6) and folic acid on PUFAs content in rats' serum and liver. Limitation of consumption full value diet to 50% of its previously determined daily consumption, enriched with m/a vitamins, significant decreased of linoleic (LA) and alpha-linolenic (ALA) acids as well as distinctly increased arachidonic (AA) and docosahexaenoic (DHA) acids content in serum in 30th day. In 60th day lower content of AA and DHA fatty acids was found. Nutrition with such diet, lasting 90 days caused decrease of LA content and increase of AA. Diet limitation to its 30% of daily consumption decreased of eicosapentaenoic acid (EPA) and DHA in the 30th day, while AA and DHA content was increased in the 60th day. Distinct decrease of AA content and increase of EPA content were found in the 90th day of experiment. Use of diets, with limited consumption to 50% caused increase of LA and ALA acids content while AA and DHA acids content were significantly decreased in the liver, in 90th day. Limited consumption supplemented diet to 30% caused in liver significant decrease of LA and increase of EPA acids content.  相似文献   

11.
Diet and postnatal age effect the fatty acid composition of plasma and tissue lipids. This work was designed as a transversal study to evaluate the changes in the fatty acid composition of plasma phospholipids, cholesteryl esters, triglycerides and free fatty acids in preterm infants (28-35 weeks gestational age), fed human milk (HM) and milk formula (MF) from birth to 1 month of life. Sixteen blood samples were obtained from cord, and 19 at 6-8 h after birth, 14 at 1 week and 9 at 4 weeks from HM-fed infants and 18 at 1 week and 14 at 4 weeks from MF-fed ones. Groups had similar mean birth weight, gestational age and sex ratio. The MF provided 69 kcal/dl and contained 16% of linoleic acid and 1.3% of alpha-linolenic acid on the total fat. Plasma lipid fractions were extracted and separated by thin-layer chromatography and fatty acid methyl esters were quantitated by gas liquid chromatography. In plasma phospholipids, linoleic acid (18:2 omega 6) continuously increased from birth to 1 month of age, but no changes were seen as related to type of diet; polyunsaturated fatty acids greater than 18 carbon atoms of both the omega 6 and omega 3 series (PUFA omega 6 greater than 18 C and omega 3 greater than 18 C) dropped from birth to 1 week and continued to decrease in MF-fed infants until 1 month; eicosatrienoic (20:3 omega 6), arachidonic (20:4 omega 6) and docosahexaenoic (22:6 omega 3) were the fatty acids implicated. In cholesteryl esters palmitoleic (16:1 omega 7) and oleic (18:1 omega 9) acids decreased from birth to 1 month and linoleic acid increased and arachidonic acid dropped, especially in MF fed infants. In triglycerides, palmitic, palmitoleic and stearic acid (18:0) decreased during the first month of life; oleic acid remained constant and linoleic acid increased in all infants, but arachidonic acid decreased only in those fed formula. Free fatty acids showed a similar behavior in fatty acids and in plasma triglycerides. Preterm neonates seem to have special requirements of long-chain PUFA and adapted MF should contain these fatty acids in similar amounts to those of HM to allow the maintenance of an adequate tissue structure and physiology.  相似文献   

12.
The effects of alpha-linolenic acid (9-12-15 octadecadienoic) upon the conversion in vivo of [1-14C] linoleic acid and of [1-14C] gamma-linolenic acid into arachidonate have been studied in adult rats. The two tracers have been administered by stomach tubing and the amounts of [14C]-radioactivity incorporated into arachidonate in the liver, kidneys and whole rat have been measured 48 h later. Three experiments have been carried out on rats fed on alpha-linolenic acid containing diets prior to the radioactive tubing. In these diets, alpha-linolenic acid was brought either as ethyl ester or in the form of Primor oil (erucic acid free rapeseed oil). In all of them, the ratio alpha-linolenic acid: linoleic acid did not exceed 0.45. Control animals were fed, in the same conditions, ethyl oleate or peanut oil respectively. Comparing the alpha-linolenic acid fed-rats to the control animals, we were able to observe the following results: (1) The exogenous supplies of alpha-linolenic acid used in the diets have not brought about any significant alteration in the amounts (weights) of arachidonic acid present in the liver, kidneys and whole animal. (2) Using [1-14C] linoleic acid as a precursor, the amounts of [14C]-radioactivity incorporated into arachidonate in the same organs as well as in the whole rat have been significantly lowered by dietary alpha-linolenate. (3) alpha-Linolenate, on the contrary, had no significant effect upon the amounts of radioactivity incorporated into hepatic, renal and whole body arachidonate following the administration of [1-14C] gamma-linolenic acid. These results lead to the conclusion that alpha-linolenic acid, when present in the diet of rats at a limited, phyisological level, partly inhibits the desaturation of linoleic acid in vivo but does not affect the subsequent reactions in the biosynthesis of arachidonic acid.  相似文献   

13.
Miyazawa D  Ikemoto A  Fujii Y  Okuyama H 《Life sciences》2003,73(16):2083-2090
Rats fed a high linoleic acid (LA, 18:2n-6) diet or a high alpha-linolenic acid (ALA, 18:3n-3) diet for 4 months after weaning. Platelets from the high-LA group contained more arachidonic acid (AA, 20:4n-6) and less eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) compared with those from the high-ALA group. Incorporation of [32P]orthophosphate into platelet phospholipids was increased by thrombin-treatment, and was greater by ca. 30% in the high-LA group than in the high-ALA group both in the presence and absence of thrombin. The formation of [32P]lysophosphatidic acid (LPA), a lipid messenger, in [32P]orthophosphate-labeled platelets was increased 6.6-fold in the high-LA group and 4.1-fold in the high-ALA-group by thrombin-treatment. The formation of [32P] LPA in activated platelets was reduced by 35% in the high-ALA group.  相似文献   

14.
Long-chain conversion of linoleic acid (LA) and eicosanoid formation was followed in 6 healthy females who were given for 6 weeks liquid formula diets which contained no arachidonic acid but, for 2 weeks each, a LA supply of 0 energy% (en%), 4 en%, and 20 en%, respectively. RESULTS: higher LA intake resulted in higher LA percentages in investigated lipids, but not in higher amounts of LA present in plasma cholesterol esters or phosphatidylcholine of LDL and HDL comparing liquid formula diet (LFD) 4 and LFD 20. A higher intake of LA resulted in a decrease of arachidonic acid, which was most prominent in HDL phosphatidycholine. Eicosanoids derived from cyclo-oxygenase activity were unchanged by LA intake, while an increase of cytochrome P450-dependent tetranorprostanedioic acid formation was observed with LFD 20. CONCLUSION: LA intake of 4 en% appears to be a recommendable intake, without signs of stimulated eicosanoid biosynthesis or oxidation.  相似文献   

15.
To estimate in vivo alpha-linolenic acid (ALA; C18:3n-3) conversion, 29 healthy subjects consumed for 28 days a diet providing 7% of energy from linoleic acid (C18:2n-6) and 0.4% from ALA. On day 19, subjects received a single bolus of 30 mg of uniformly labeled [(13)C]ALA and for the next 8 days 10 mg twice daily. Fasting plasma phospholipid concentrations of (12)C- and (13)C-labeled ALA, eicosapentaenoic acid (EPA; C20:5n-3), docosapentaenoic acid (DPA; C22:5n-3), and docosahexaenoic acid (DHA; C22:6n-3) were determined on days 19, 21, 23, 26, 27, and 28. To estimate hepatic conversion of n-3 fatty acids, a tracer model was developed based on the averaged (13)C data of the participants. A similar tracee model was solved using the averaged (12)C values, the kinetic parameters derived from the tracer model, and mean ALA consumption. ALA incorporation into plasma phospholipids was estimated by solving both models simultaneously. It was found that nearly 7% of dietary ALA was incorporated into plasma phospholipids. From this pool, 99.8% was converted into EPA and 1% was converted into DPA and subsequently into DHA. The limited incorporation of dietary ALA into the hepatic phospholipid pool contributes to the low hepatic conversion of ALA into EPA. A low conversion of ALA-derived EPA into DPA might be an additional obstacle for DHA synthesis.  相似文献   

16.
High fat intake is associated with fat mass gain through fatty acid activation of peroxisome proliferator-activated receptors delta and gamma, which promote adipogenesis. We show herein that, compared to a combination of specific agonists to both receptors or to saturated, monounsaturated, and omega-3 polyunsaturated fatty acids, arachidonic acid (C20:4, omega-6) promoted substantially the differentiation of clonal preadipocytes. This effect was blocked by cyclooxygenase inhibitors and mimicked by carbacyclin, suggesting a role for the prostacyclin receptor and activation of the cyclic AMP-dependent pathways that regulate the expression of the CCAAT enhancer binding proteins beta and delta implicated in adipogenesis. During the pregnancy-lactation period, mother mice were fed either a high-fat diet rich in linoleic acid, a precursor of arachidonic acid (LO diet), or the same isocaloric diet enriched in linoleic acid and alpha-linolenic acid (LO/LL diet). Body weight from weaning onwards, fat mass, epididymal fat pad weight, and adipocyte size at 8 weeks of age were higher with LO diet than with LO/LL diet. In contrast, prostacyclin receptor-deficient mice fed either diet were similar in this respect, indicating that the prostacyclin signaling contributes to adipose tissue development. These results raise the issue of the high content of linoleic acid of i) ingested lipids during pregnancy and lactation, and ii) formula milk and infant foods in relation to the epidemic of childhood obesity.  相似文献   

17.
The long-chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are prevalent in aquatic ecosystems and are not part of the natural diet of herbivorous, terrestrial insects, which generally consume alpha-linolenic acid (ALA) and linoleic acid (LNA). However, recent advances in genetic engineering have lead to the development of terrestrial crops that express the novel traits of EPA and DHA production. In the present study, we examine the effects of dietary EPA and DHA on the growth, development and fatty acid content of two crop pest insects: bertha armyworm and cabbage looper. Five experimental diets were formulated to include increasing amounts of pure EPA and DHA (in relation to the total diet lipid level), according to the ratios (EPA + DHA relative to a vegetable oil containing ALA and LNA): 0 (control), 0.25 : 0.75 (lowest), 0.5 : 0.5 (low), 0.75 : 0.25 (medium) and 1 : 0 (high). Dietary EPA and DHA had significant effects on development time, mass and fatty acid content in both species. Dietary treatment (interactive with time) had a significant effect on individual mass of both insects, indicating that, over time, EPA and DHA impacted growth. However, insect mass, development and morphology results are not linearly related with increasing dietary EPA and DHA. Both species retained EPA and DHA in adult form, and the body content of EPA and DHA was significantly, positively correlated with EPA and DHA diet treatments in both the bertha armyworm (r2 = 91.3%) and cabbage looper (r2 = 75.8%). Dietary EPA and DHA could have fitness consequences for these organisms and could be nutritionally transferred to higher consumers.  相似文献   

18.
A rate-limiting step in docosahexaenoic acid (DHA) formation from alpha-linolenic acid (ALA) involves peroxisomal oxidation of 24:6n-3 to DHA. The aim of the study was to determine whether conjugated linoleic acid (CLA) would enhance conversion of ALA to DHA in humans on an ALA-supplemented diet. The subjects (n=8 per group) received daily supplementation of ALA (11g) and either CLA (3.2g) or placebo for 8 weeks. At baseline, 4 and 8 weeks, blood was collected for plasma fatty acid analysis and a number of physiological measures were examined. The ALA-supplemented diet increased plasma levels of ALA and eicosapentaenoic acid (EPA). The addition of CLA to the ALA diet resulted in increased plasma levels of CLA, as well as ALA and EPA. Plasma level of DHA was not increased with either the ALA alone or ALA plus CLA supplementation. The results demonstrated that CLA was not effective in enhancing DHA levels in plasma in healthy volunteers.  相似文献   

19.
The effects of dietary n - 3 polyunsaturated fatty acids (PUFA) on fatty acid profiles of rat brain phospholipid subclasses as well as on heart phosphatidylethanolamine through two generations were examined: Three groups of rats were fed 20 weight% fat diets in which approx. 30% of the fatty acids were polyunsaturated, either 17% linoleic acid + 13% C20(-) + C22 polyunsaturates from fish oil or 17% linoleic + 13% alpha-linolenic acid from linseed oil or 30% linoleic acid. The rats of the two generations were killed as adults at 18 weeks of age. The results demonstrated that fish oil was a better source than alpha-linolenic acid for incorporation of n - 3 PUFA into the examined phospholipids. This was seen both in brain and heart tissue and in both generations of rats. In the brain phosphatidylethanolamine (PE) and phosphatidylserine (PS) similar fatty acid profiles were found in 1st and 2nd generation, but fish oil was more efficient than 18:3(n - 3) in increasing the levels of 22:6(n - 3), 20:5(n - 3), 22:5(n - 3) and reducing 20:4(n - 6) and 22:5(n - 6). Fatty acid profiles of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2) were affected by dietary fats. In PIP and PIP2 of 2nd generation rats 20:4(n - 6) was reduced from 36 to 29% following fish oil intake, whereas alpha-linolenic acid had no effects. The cholesterol/phospholipid ratio was not affected in the brain, neither was the degree of unsaturation of the phospholipids. In heart PE the highest levels of 20:5(n - 3)(2%) and 22:6(n - 3) (36%) were observed following fish oil intake. However, in rats fed alpha-linolenic acid a considerable increase in the level of 22:6(n - 3) was observed from the 1st (21%) to the 2nd generation (26%).  相似文献   

20.
The effect of dietary lipid on the fatty acid composition of muscle, testis and ovary of cultured sweet smelt, Plecoglossus altivelis, was investigated and compared with that of wild sweet smelt. Cultured fish were fed three different diets for 12 weeks: a control diet rich in docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (CO group); a diet deficient in DHA and EPA (DP group); and a diet rich in alpha-linolenic acid (ALA, 18:3n-3), but deficient in DHA and EPA (LP group). The fatty acid composition of muscle and gonad lipids was related with dietary fatty acids. Despite the difference in DHA and EPA content in the diets, muscles and gonads, respectively, contained almost equal levels of DHA and EPA in each CO and DP group. However, the muscle and gonad of the LP group showed a lower level of DHA than other groups, due to having the highest level of ALA. In the wild fish muscle, the DHA content was similar to that of CO and DP groups, but the EPA content showed the highest level in all groups. There was no difference in the muscle fatty acid proportions between male and female. On the other hand, the testes of cultured and wild fish were rich in DHA, EPA, docosapentaenoic acid and arachidonic acid, while ovaries were rich in oleic, palmitoleic, linoleic acids and ALA. Moreover, of all the groups, the fish fatty acid composition of the LP group was closest to that of wild fish. These results indicate that in the sweet smelt, tissue n-3 polyunsaturated fatty acids (PUFAs) greater than C20 can be synthesized from dietary precursors and special fatty acids are preferentially accumulated to the testis or ovary, respectively, to play different physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号