首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
2.
Anurans (frogs and toads) represent an example of peripheral specialization of the auditory systems. Their inner ear contains two distinct auditory organs: the amphibian papilla and the basilar papilla. Each organ is tuned to different species-specific frequency ranges. Because of this peripheral specialization, anurans offer an excellent opportunity to explore neural decoding of complex sounds in the central auditory system.  相似文献   

3.
4.
5.
Mechanics of the exceptional anuran ear   总被引:1,自引:0,他引:1  
The anuran ear is frequently used for studying fundamental properties of vertebrate auditory systems. This is due to its unique anatomical features, most prominently the lack of a basilar membrane and the presence of two dedicated acoustic end organs, the basilar papilla and the amphibian papilla. Our current anatomical and functional knowledge implies that three distinct regions can be identified within these two organs. The basilar papilla functions as a single auditory filter. The low-frequency portion of the amphibian papilla is an electrically tuned, tonotopically organized auditory end organ. The high-frequency portion of the amphibian papilla is mechanically tuned and tonotopically organized, and it emits spontaneous otoacoustic emissions. This high-frequency portion of the amphibian papilla shows a remarkable, functional resemblance to the mammalian cochlea.  相似文献   

6.
cDNA clones containing sequences complementary to Xenopus laevis albumin mRNA have been identified in a collection of cDNA clones made from poly(A)+ RNA prepared from male Xenopus laevis liver. Although all the albumin cDNA clones crosshybridise, restriction enzyme and heteroduplex analysis show that there are 2 closely related albumin mRNA sequences. The 2 albumin mRNAs are only mismatched by 8% but could be isolated by positive selection using stringent hybridization conditions. Oocytes injected with the 2 purified mRNAs, secreted either the 68,000 or 74,000 dalton albumin into the culture medium showing that the 2 albumins of X. laevis serum are encoded in the 2 closely related mRNAs. Measurements of the abundance of albumin mRNA show that the 2 albumin mRNAs together account for about 9% of total poly(A)+ RNA in male Xenopus laevis liver but the mRNA coding for the 74,000 dalton mRNA is about twice as abundant as that coding for the 68,000 dalton mRNA.  相似文献   

7.
The Xenopus community has made concerted efforts over the last 10-12 years systematically to improve the available sequence information for this amphibian model organism ideally suited to the study of early development in vertebrates. Here I review progress in the collection of both sequence data and physical clone reagents for protein coding genes. I conclude that we have cDNA sequences for around 50% and full-length clones for about 35% of the genes in Xenopus tropicalis, and similar numbers but a smaller proportion for Xenopus laevis. In addition, I demonstrate that the gaps in the current genome assembly create problems for the computational elucidation of gene sequences, and suggest some ways to ameliorate the effects of this.  相似文献   

8.
In this study we have examined the sensitivity of auditory nerve fibers in the bullfrog (Rana catesbeiana) to changes in the phase spectrum of an equal-amplitude multi-harmonic stimulus which spanned the bullfrog's range of hearing. To assess peripheral auditory phase sensitivity, changes in the response properties of VIIIth nerve fibers were measured when the relative phase angle of a single harmonic component nearest a unit's best excitatory frequency was systematically varied. The results revealed that shifts in the phase spectrum are encoded in at least J different ways by the peripheral auditory system of the bullfrog: 1) by changes in the degree of spike synchronization of fibers from both inner ear organs (the amphibian papilla and the basilar papilla) to the fundamental waveform period; 2) by changes in the shapes of period histograms of fibers from both organs; and 3) by changes in the spike rates of amphibian papilla fibers. The presence of phase sensitivity in the peripheral auditory system of the bullfrog indicates that information regarding the fine-temporal waveshape and the underlying phase spectrum of an acoustic signal is contained within the spike trains of VIIIth nerve fibers. Similar sensitivities to changes in the phase spectra and temporal waveshapes of acoustic signals may also be present in the peripheral auditory system of other vertebrates. Such studies could provide valuable insight into the role that phase spectra and temporal waveshape may play in bioacoustic communication.Abbreviations BEF best excitatory frequency - BEC best excitatory component - CSf 1 synchronization to the fundamental period Portions of this study have been summarized in abstract form (Bodnar and Capranica 1991)  相似文献   

9.
10.
cDNA clones for Xenopus laevis ribosomal protein L32 have been isolated and sequenced. The deduced amino acid sequence indicates that L32 is a basic protein of 110 amino acids, has a molecular weight of 12,603 and is homologous to the rat ribosomal protein L35. Using the cDNA clone as a probe to follow the expression of this gene during Xenopus development, it has been shown that the pattern of accumulation of this mRNA follows the one previously described for other ribosomal protein mRNAs during oogenesis and embryogenesis. The analysis of the utilization of L32 mRNA during embryogenesis shows that this is controlled by the translational regulation typical of other ribosomal protein mRNAs.  相似文献   

11.
We have isolated a cDNA encoding the junctional plaque protein plakoglobin of Xenopus laevis and determined its amino acid sequence. Comparisons with sequences of related proteins of the same and other species revealed that in Xenopus plakoglobin and beta-catenin are two different proteins, encoded by separate genes, that both genes are expressed in embryogenesis, and that the amphibian plakoglobin is more closely related to the human plakoglobin than to beta-catenin of the same species. Using this cDNA as a probe, we also show that plakoglobin mRNA is produced and stored in Xenopus oocytes and eggs. We discuss the possibility that the maternal pool of this junctional protein contributes to the junctional structures connecting the oocyte with the follicle epithelium and to the rapid formation of desmosomes and other plaque-bearing junctions in pregastrulation embryogenesis.  相似文献   

12.
Ovarian poly (A) + RNA from Xenopus laevis and Xenopus borealis was used to construct two cDNA libraries which were screened for histone sequences. cDNA clones to H4 mRNA were obtained from both species and an H3 cDNA clone from Xenopus laevis. The complete DNA sequences of these clones have been determined and are presented. These new sequences are compared with other H3 and H4 DNA sequences both in the coding and 3' noncoding regions. We find that there is considerable non-random codon usage in ten H4 genes. In addition there are some sequence similarities in the 3' noncoding regions of H3 and H4 genes.  相似文献   

13.
In the amphibian intermediate pituitary gland the biosynthetic activity for production of the precursor protein proopiomelanocortin (POMC) can be physiologically manipulated; POMC synthesis is high in animals adapted to a black background and low in white-adapted animals. In order to study genes associated with POMC gene expression we applied a differential hybridization technique involving screening of a pituitary cDNA library with probes derived from RNA of inactive and physiologically activated intermediate pituitary cells of the amphibian Xenopus laevis. A differentially hybridizing Xenopus pituitary cDNA clone encoded the novel polypeptide 7B2. This Mr-21,000 secretory granule-associated protein of unknown function is shown to be highly conserved between Xenopus and human (83% amino acid sequence similarity). Conserved segments within the 7B2 structure included the N-terminal portion, three pairs of basic amino acids which are potential recognition sites for proteolytic enzymes, and three regions sharing similarity with putative GTP-binding domains. Levels of 7B2 mRNA were about 3% of POMC mRNA levels in Xenopus pituitary glands. In the intermediate pituitary the amount of both POMC and 7B2 mRNA was much higher in black-adapted toads than in white-adapted animals. These physiologically-induced changes in POMC and 7B2 mRNA levels were not found in the anterior pituitary. We conclude that the POMC and 7B2 genes are coexpressed and that modulation of the activity of these genes is tissue-specific.  相似文献   

14.
15.
To clarify connective-tissue-specific genes involved in adult epithelial development during amphibian intestinal remodeling, we have isolated 16 cDNA clones derived from the anterior part of Xenopus laevis intestine cultured in vitro by using subtractive suppression hybridization. Among four genes identified, the expression of Xtld, a Xenopus homolog of Drosophila Tolloid closely related to bone morphogenic protein-1 (BMP-1), was most remarkably up-regulated during metamorphosis. To further explore the roles of Xtld in intestinal remodeling, we examined its developmental expression in the X. laevis intestine by in situ hybridization and northern blot analysis. Xtld mRNA first became detectable in the connective tissue just before the appearance of adult epithelial primordia. Subsequently, the level of Xtld mRNA reached a high in the connective tissue, concomitantly with adult epithelial development along the anteroposterior axis of the intestine. Thereafter, towards the completion of metamorphosis, the expression of Xtld mRNA was down-regulated. Thus, the expression profile of Xtld mRNA spatiotemporally correlates well with adult epithelial development in vivo. Furthermore, the present culture study has shown that thyroid hormone (TH) up-regulates the expression of Xtld mRNA organ-autonomously in the anterior part of the intestine, but not in its posterior part, and that TH up-regulation of Xtld expression is not mediated by the epithelium. These results suggest that TH directly up-regulates Xtld expression in the connective tissue along the anteroposterior axis, which in turn plays important roles in adult epithelial development during amphibian intestinal remodeling.  相似文献   

16.
We have carried out a large-scale, semi-automated whole-mount in situ hybridization screen of 8369 cDNA clones in Xenopus laevis embryos. We confirm that differential gene expression is prevalent during embryogenesis since 24% of the clones are expressed non-ubiquitously and 8% are organ or cell type specific marker genes. Sequence analysis and clustering yielded 723 unique genes displaying a differential expression pattern. Of these, 18% were already described in Xenopus, 47% have homologs and 35% are lacking significant sequence similarity in databases. Many of them encode known developmental regulators. We classified 363 of the 723 genes for which a Gene Ontology annotation for molecular function could be attributed and found 'DNA binding' and 'enzyme' the most represented terms. The most common protein domains encoded in these embryonic, differentially expressed genes are the homeobox and RNA Recognition Motif (RRM). Fifty-nine putative orthologs of human disease genes, and 254 organ or cell specific marker genes were identified. Markers were found for nasal placode and archenteron roof, organs for which a specific marker was previously unavailable. Markers were also found for novel subdomains of various other organs. The tissues for which most markers were found are muscle and epidermis. Expression of cell cycle regulators fell in two classes, containing proliferation-promoting and anti-proliferative genes, respectively. We identified 66 new members of the BMP4, chromatin, endoplasmic reticulum, and karyopherin synexpression groups, thus providing a first glimpse of their probable cellular roles. Cluster analysis of tissues to measure tissue relatedness yielded some unorthodox affinities besides expectable lineage relationships. In conclusion, this study represents an atlas of gene expression patterns, which reveals embryonic regionalization, provides novel marker genes, and makes predictions about the functional role of unknown genes.  相似文献   

17.
18.
19.
Recombinant cDNA libraries were constructed from poly(A)+ RNA isolated from different stages of oogenesis and embryogenesis from the clawed toad Xenopus laevis. Hybridization analyses were used to describe the accumulation of specific RNAs represented by these cDNA clones in oocytes, embryos, adult liver, a cell line derived from Xenopus borealis embryos (Xb693), and a tumorigenic substrain of that cell line (Xb693T). It was found that from 550 cDNA clones analysed, six sequences accumulate to higher titers in poly(A)+ RNA isolated from the tumorigenic cell line compared with the non-tumorigenic cell line. All six sequences were expressed at high levels during oogenesis, and the titers of three of these sequences decreased considerably during oogenesis. DNA sequencing of these three sequences followed by a computer search of protein data banks has identified them as coding for the glycolytic enzyme enolase, the ATP-ADP carrier protein, and a-tubulin.  相似文献   

20.
In order to investigate protein kinases expressed in the different developmental stages of Xenopus laevis, recently developed expression cloning was carried out. When two different expression libraries, Xenopus oocyte and Xenopus head (embryonic stage 28/30) cDNA libraries, were screened by kinase-specific monoclonal antibodies, cDNA clones for various known and novel protein serine/threonine kinases (Ser/Thr kinases) were isolated. In addition to well-characterized Ser/Thr kinases, one cDNA clone for a putative kinase was isolated from the Xenopus head library. The sequence of the open reading frame of the cDNA encoded a protein of 337 amino acid residues with a predicted molecular weight of 38,404. Since the deduced animo acid sequence of this protein was 75% identical to that of rat Ca(2+)/calmodulin-dependent protein kinase I (CaMKI), it was designated as CaMKIx. Although recombinant CaMKIx expressed in Escherichia coli showed no protein kinase activity against syntide-2, a synthetic peptide substrate, it was activated when phosphorylated by mouse Ca(2+)/calmodulin-dependent protein kinase kinase alpha (CaMKKalpha). Activated CaMKIx significantly phosphorylated various proteins including synapsin I, histones, and myelin basic protein. CaMKIx could not be detected in the early stages of embryogenesis, but was detected in late embryos of stages 37/38 and thereafter when examined by Western blotting using a specific antibody. This kinase was found to be highly expressed in adult brain and heart, and an upstream kinase that could activate CaMKIx was detected in these tissues. These results suggest that CaMKIx plays some critical role in the late stages of embryogenesis of Xenopus laevis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号