首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study characterizes whole tree root system distribution in a non-destructive way based on its functional parameters, particularly the sap flow patterns in stems. This approach particularly considers sap flow variation across stems, both radial and circumferential patterns of flow that are usually used for a better integration of sap flow density at the whole tree level. We focused at: (1) Showing examples of sap flow variation across stems at a defined situation (high midday values at the period of non-limiting water supply; (2) Analyzing radial flow patterns in terms of root distribution; (3) Validating these results at the stand level (mean data of series of individual trees) using results of classical biometric methods used at the same site; and (4) Applying the results for evaluation of root distribution around leaning trees. Sap flow rate was measured by the heat deformation method on a set of 14 trees at an experimental pine forest stand in Brasschaat (Belgium) during the growing season of 2000. Sap flow variation across stems was measured at a total of 700 points. Amounts of water supplied by superficial (horizontally oriented) and sinker (vertically oriented) roots were estimated from sap flow patterns. The vertical distribution of absorbing roots as derived from the analysis of sap flow patterns in stem sapwood was very similar to the distribution determined by the classical biometric analysis of fine roots. Trees leaning to the East had stem radii at the stump level and crown radii enhanced in the leaning direction. Sinker roots showed higher absorption activities in the leaning direction, but superficial roots were more absorbing in the opposite direction. The application of the above-described method allows for a better evaluation of the whole-tree behavior and facilitates the evaluation of tree and stand properties in traditional forest stands, which are not equipped for detailed scientific research. This may also facilitate practical applications in landscape-level studies.  相似文献   

2.
Thermometric sap flow sensors are widely used to measure water flow in roots, stems and branches of plants. Comparison of the timing of flow in branches and stems has been used to estimate water capacitance of large trees. We review studies of sap flow in branches and present our own data to show that there is wide variation in the patterns and timing of sap flow of branches in different parts of the crown, owing to the course of daily solar illuminance. In contiguous forest, east-facing and upper branches are illuminated earlier than west-facing and lower branches and most capacitance studies do not include adequate information about branch sampling regimes relative to the overall pattern of crown illuminance, raising questions about the accuracy of capacitance estimates. Measuring only upper branches and normalising these results to represent the entire crown is dangerous because flows at the stem base likely peak in response to maximum crown illuminance (and transpiration) and this will differ compared to the timing of peak flows in upper branches. We suggest that the magnitude of flow lags between branches and stems needs further study, with careful attention to branch position and method application before a robust understanding of capacitance, particularly in woody tissues of large trees, can be formed. We did not detect flow lags in the world’s tallest and largest tree species Sequoia sempervirens and Sequoiadendron giganteum, despite measurement along large pathlengths (∼57 and 85 m), which raises questions as to why large flow lags are often recorded for much smaller species. One conspicuous possibility is the different methods used among studies. Constant-heating methods such as the thermal dissipation probe (and also heat balance methods) include heat capacitance behaviour due to warming of wood tissues, which delays the response of the sensors to changing sap flow conditions. We argue that methods with intrinsic heat-capacitance present dangers when trying to measure water-capacitance in trees. In this respect heat pulse methods hold an advantage.  相似文献   

3.
A new method of sap flow rate determination in trees   总被引:1,自引:0,他引:1  
A new method of sap flow rate determination in stems of adult trees is described in which mass flow (the transpiration flux in the present case) is estimated from a heat-transfer measurement. The device used includes a couple of thermometers in a differential connection and plate electrodes, through which a controlled heat input flows into a denned studied segment of the xylem. The present method was tested first with a laboratory simulating system, then with the stem of a living adult treePrunus avium L. The data are registered continually and automatically; continuous measurement of sap flow rate of long duration with a greater number of trees is thus made possible.  相似文献   

4.
油松、栓皮栎树干液流速率比较   总被引:11,自引:0,他引:11  
聂立水  李吉跃  翟洪波 《生态学报》2005,25(8):1934-1940
应用TDP(ThermalDissipationProbe)技术对油松和栓皮栎树干液流进行了初步研究,经过野外近1a的实地定位观测,研究结果显示:栓皮栎月平均树干液流速率在整个生长期都较油松的月平均树干液流速率要高。前者大约是后者的5~10倍。栓皮栎在土壤干旱时期能够在白天产生明显的树干液流。在土壤干旱时期油松白天不产生树干液流而在晚上产生明显树干液流。在土壤相对湿润时期,油松和栓皮栎树干液流速率的波形与太阳总辐射的波形变化一致,但不同的是油松的树干液流速率波形呈明显的单峰状,而栓皮栎树干液流速率波形呈明显的多峰状。在土壤相对湿润时期太阳总辐射很低时能对油松树干液流速率产生明显的降低作用,而对栓皮栎树干液流则没有明显影响。在土壤干旱时期,油松和栓皮栎树干液流速率的峰值分别大约为0.0001cm/s和0.0006cm/s左右;在土壤水分充足时期,油松和栓皮栎树干液流速率的峰值分别大约相等约为0.0015cm/s左右,分别是油松和栓皮栎在干旱日期的液流速率峰值的10倍和2.5倍。  相似文献   

5.
BACKGROUND AND AIMS: The main stems of trees on forest slopes incline down the slope to various extents that are characteristic of the species. The inclination has been explained as an active response to a horizontally asymmetrical light environment, but the contributing physiological mechanisms are unknown. The present study tested the hypothesis that stem phototropism, gravitropism, or a combination of the two determines the inclination of tree stems on forest slopes. METHODS: Cryptomeria japonica, Pinus densiflora, Quercus myrsinaefolia and Q. serrata were studied. Measurements were made of stem inclination of mature trees on forest slopes in uniform plantations of each species, and changes in stem inclination of potted seedlings in response to illumination treatments (unilateral or overhead) and inclination treatments (artificially inclined or erect). Indices of phototropic and gravitropic responsiveness were evaluated for each species, calculated from the change in stem inclination in response to artificial inclination with unilateral or overhead illumination. KEY RESULTS: Stem inclination on forest slopes varied significantly among species: Q. serrata inclined most in the down-slope direction, C. japonica inclined the least, and P. densiflora and Q. myrsinaefolia were intermediate. The change in stem inclination of seedlings in each treatment varied significantly among species. One-year-old stems of Q. serrata and 2-year-old stems of Q. myrsinaefolia bent toward the light source. Interspecific variation in the change in stem inclination in response to the unilateral illumination or that in the index of phototropic responsiveness was strongly correlated with the variation in stem inclination on forest slopes. CONCLUSIONS: The orientation of woody stems that have finished elongation can be actively controlled by phototropism. Interspecific variation in phototropic responsiveness of trees is a possible significant determinant of interspecific variation in stem inclination on forest slopes.  相似文献   

6.
Qualitative and quantitative estimates of gene flow were obtained for fourteen gymnosperm and seven angiosperm forest tree species. High levels of gene flow were prevalent among gymnosperms while these levels varied from high to low among angiosperms. In both groups, species with greater pollen dispersal abilities appear to maintain high levels of gene flow. A detailed analysis of population structure in relation to gene flow was carried out on a gymnosperm species (Pinus rigida) and two angiosperm subspecies (Eucalyptus caesia ssp. caesia and ssp. magna). The results suggested that populations of many species may be concatenated systems bound by gene flow, and the overall levels of gene flow may be influenced by either single or clusters of populations. Different levels of gene flow was found between two closely related species of E. caesia growing under similar ecological conditions, suggesting a plausible link between pollinator behaviour and pollen flow.  相似文献   

7.
Improvement of the heat pulse method for determining sap flow in trees   总被引:11,自引:0,他引:11  
Abstract. The heat pulse method for determining sap flux in large woody sterns was modified for easier field operation. It uses the measurement of the time elapsed between heat pulse release by a line heater radially inserted in the stem, and the occurrence of maximum temperature 15 mm downstream of the heater. This spacing between heater and thermometer is critical to the reliability of the measurement. Calculations using uncorrected theory provide estimates of the sap flux density in stems with both uniform and non-uniform cross-sectional distribution of conducting tissues which are about 55% of the actual sap flux density. This factor results from insufficient thermal homogeneity between tissues where sap flow occurs and tissues where sap flow has been interrupted.
Sap flow in trunks of citrus trees was inferred from measurements of the cross-sectional distribution of sap flux density. Variability of sap flux density is specific to each trunk and is time-dependent and imposes multiple radial and angular measurements. The method was checked in a citrus trunk ramified into three branches. Instantaneous determinations of the flow in the trunk and in the branches differed by less than 5.7%. The daily values agreed within 2.8%.  相似文献   

8.
应用热技术研究树干液流进展   总被引:49,自引:4,他引:45  
综述了热技术方法测定树干液流的基本原理和不同适用范围.通过各种热技术方法可以确定树干水分运输格局及其数量;与树木生理指标和环境因素联合测定,可深入分析整树水分导度、气孔导度、边界层导度、水势及树干储水与树木蒸腾之间的关系,探讨树干液流受外界环境因素影响程度及其响应,揭示树木蒸腾内在的调节机制和外在影响因素;热技术可用于长期连续测定地带性森林主要树种蒸腾耗水特征。为正确评价森林的水文效应提供技术支持.  相似文献   

9.
BACKGROUND AND AIMS: Stem and branch respiration, important components of total forest ecosystem respiration, were measured on Norway spruce (Picea abies) trees from May to October in four consecutive years in order (1) to evaluate the influence of temperature on woody tissue CO2 efflux with special focus on variation in Q10 (change in respiration rate resulting from a 10 degrees C increase in temperature) within and between seasons, and (2) to quantify the contribution of above-ground woody tissue (stem and branch) respiration to the carbon balance of the forest ecosystem. METHODS: Stem and branch CO2 efflux were measured, using an IRGA and a closed gas exchange system, 3-4 times per month on 22-year-old trees under natural conditions. Measurements of ecosystem CO2 fluxes were also determined during the whole experiment by using the eddy covariance system. Stem and branch temperatures were monitored at 10-min intervals during the whole experiment. KEY RESULTS: The temperature of the woody tissue of stems and branches explained up to 68% of their CO2 efflux. The mean annual Q10 values ranged from 2.20 to 2.32 for stems and from 2.03 to 2.25 for branches. The mean annual normalized respiration rate, R10, for stems and branches ranged from 1.71 to 2.12 micromol CO2 m(-2)s (-1) and from 0.24 to 0.31 micromol CO2 m(-2) s(-1), respectively. The annual contribution of stem and branch CO2 efflux to total ecosystem respiration were, respectively, 8.9 and 8.1% in 1999, 9.2 and 9.2% in 2000, 7.6 and 8.6% in 2001, and 8.6 and 7.9% in 2002. Standard deviation for both components ranged from 3 to 8% of the mean. CONCLUSIONS: Stem and branch CO2 efflux varied diurnally and seasonally, and were related to the temperature of the woody tissue and to growth. The proportion of CO2 efflux from stems and branches is a significant component of the total forest ecosystem respiration, approx. 8% over the 4 years, and predictive models must take their contribution into account.  相似文献   

10.

1. 1. The ability to increase skin blood flow is an important mechanism for transferring heat from the body core to the skin for dissipation.

2. 2. During exercise, skin blood flow is typically 20–40% lower in men and women aged 55 and over (compared with 20–30 years old) at a given body core temperature. Yet criterion measures of heat tolerance (changes in core temperature, heat storage) often show minimal or no age-related alterations. From a series of studies conducted in our laboratory over the past 5 years, the following conclusions can be drawn.

3. 3. When fit healthy older subjects are matched with younger subjects of the same gender, size and body composition, VO2max, acclimation state, and hydration level, age-related differences in skin blood flow are evident. However, these differences often do not translate into “poorer” heat tolerance or higher core temperatures.

4. 4. The larger core-to-skin thermal gradient maintained by the older individuals allows for effective heat transfer at lower skin blood flows.

5. 5. Furthermore, there is an increased coefficient of variation for thermoregulatory response variables with increasing age.

6. 6. Despite differences in the mechanisms underlying thermoregulation, true thermal tolerance is less a function of chronological age than of functional capacity and physiological health status.

7. 7. While this conclusion is based primarily on cross-sectional studies, it is supported by the results of more recent studies using multiple regression analyses.

8. 8. Implicit in this conclusion is the notion that thermal tolerance, at any age, is a modifiable individual characteristic.

Author Keywords: Heat stress; temperature regulation; body temperature; skin blood flow; age  相似文献   


11.
荔枝树干液流速率与气象因子的关系   总被引:6,自引:0,他引:6  
采用热扩散茎流仪于2011—2012年连续监测‘桂味’荔枝树干液流速率,将所得数据和果园内自动气象站观测数据一起进行对比分析,建立了液流速率与气象因子的关系模型。实验结果表明:(1)树干液流速率日变化呈现"昼高夜低"的规律。季节变化有呈现"先高后低"的趋势,整体上以果实发育期和成熟期(5—7月)液流速率较高。2011年年平均液流速率明显大于2012年;(2)树干液流速率日变化在晴天时多呈单峰曲线,且振幅较大;在雨天呈多峰曲线,且振幅较小。总体上,晴天平均液流速率约是雨天的两倍;(3)回归分析表明,在一定范围内,树干液流速率与太阳辐射强度、空气温度呈正相关,与空气湿度呈负相关。影响液流速率最重要的气象因子在晴天是空气温度,在雨天是太阳辐射。  相似文献   

12.
Fine-scale structure of genetic diversity and gene flow were analysed in three Costa Rican populations of mahogany, Swietenia macrophylla. Population differentiation estimated using AFLPs and SSRs was low (38.3 and 24%) and only slightly higher than previous estimates for Central American populations based on RAPD variation (20%). Significant fine-scale spatial structure was found in all of the surveyed mahogany populations and is probably strongly influenced by the limited seed dispersal range of the species. Furthermore, a survey of progeny arrays from selected mother trees in two of the plots indicated that most pollinations involved proximate trees. These data indicate that very little gene flow, via either pollen or seed, is occurring between blocks of mahogany within a continuous or disturbed forest landscape. Thus, once diversity is removed from a forest population of mahogany, these data suggest that recovery would be difficult via seed or pollen dispersal, and provides an explanation for mahogany's apparent susceptibility to the pressures of logging. Evidence is reviewed from other studies of gene flow and seedling regeneration to discuss alternative extraction strategies that may maintain diversity or allow recovery of genetic resources.  相似文献   

13.
The efficiency of the conductive system in about 40-year-old Laurus azorica trees growing in a laurel forest was evaluated by comparing main stems and leaves (petioles) on the basis of theoretical sap flow values (1) calculated from vessel anatomy (taking vessels as ideal capillaries), (2) derived from measured dye velocity and (3) data taken from direct sap flow measurements. It was found that actual sap flow rate per wood area increases in stems from the pith towards the cambium. The outermost part of the stem is the most important part of the tree for conducting water. Maximum actually measured transpiration (sap flow rate) for the stand was practically identical to the theoretical rate calculated based on petiole anatomy, but it was about 45 times lower than that calculated based on stem anatomy. This illustrates the safety features of stem wood, which due to its high vessel density, is capable of transporting all the water required even when only a small area of its vessels is working. In the petioles, xylem is more efficiently used, but almost all vessels must work in order to supply water to leaves and any disturbance may cause leaf loss.  相似文献   

14.
Measurements of CO2 efflux from stems and branches, sap velocity, and respiratory activity of excised wood cores were conducted in Dacrydium cupressinum trees that differed in diameter, age, and canopy emergence. The objective of this study was to determine if consistent linkages exist among respiratory production of CO2 within stems, xylem transport of CO2, and the rate of CO2 diffusing from stem surfaces. Stem CO2 efflux was depressed during periods of sap flow compared with the efflux rate expected for a given stem temperature and was positively correlated with sapwood density. By contrast, no significant relationships were observed between CO2 efflux and the respiratory activity of wood tissues. Between 86 and 91% of woody tissue respiration diffused to the atmosphere over a 24-h period. However, at certain times of the day, xylem transport and internal storage of CO2 may account for up to 13-38% and 12-18%, respectively, of woody tissue respiration. These results demonstrate that differences in sap flow rates and xylem anatomy are critically important for explaining within- and between-tree variation in CO2 efflux from stems.  相似文献   

15.
Heat balance sap flow gauge for small diameter stems   总被引:4,自引:1,他引:3  
Applying heat balance sap flow gauges to plant stems <10 mm in diameter has been difficult because a miniature design is needed that can be attached to a range of stem geometries. This report presents a modified gauge design for use on small plant stems of irregular geometry and shows results from Glycine max with stem diameters of 3–4 mm. The gauge was evaluated on container-grown plants by comparing gauge measurements of flow to gravimetric estimates of transpiration. Experiments were conducted in the laboratory and greenhouse, using artificial and natural lighting, respectively. Laboratory comparisons of gauge versus gravimetric water loss measurements indicated that the instrument was accurate to within ±5% when soil water was not limiting. Similar results were obtained from greenhouse tests except when soil water availability was low and cumulative gauge estimates became 30–45% less than gravimetric measurements. Differences may have reflected reduced plant water uptake or errors in sap flow estimates associated with low flow rates. Gauge accuracy was not improved by including the rate change in heat storage (S) in the flow calculations because S was always less then 3% of the total heat balance. Relationships between system temperature and sap flow rate suggested a diagnostic test for determining optimum power input. A time constant of 15 s indicated potential application in many agronomic and physiological studies.  相似文献   

16.
A requirement for sucrose in xylem sap flow from dormant maple trees   总被引:1,自引:1,他引:0  
The response of excised stem segments of several tree species to freezing and thawing cycles was studied. All species studied (Thuja occidentalis, Fagus grandifolia, and Betula papyrifera) except maple (Acer spp.) exuded sap while freezing and absorbed on thawing. Maple stems absorbed sap while freezing and exuded sap during the thaw only when sucrose was present in the vessel solution. Increased concentration of sucrose in the vessel sap led to increased exudation. In the absence of sucrose, maple stems absorbed sap on thawing. The presence of sucrose enhanced sap absorption during freezing cycles in maples. In general, large sugars, disaccharides and larger, could substitute for sucrose in the maple exudation response while sugar hexoses could not. The results are discussed in relation to the O'Malley-Milburn model (1983 Can J Bot 61: 3100-3106) of sap flow in maples.  相似文献   

17.
ABSTRACT: BACKGROUND: On-going climate change is shifting the timing of bud burst (TBB) of broad leaf and conifer trees in temperate areas, raising concerns about the abilities of natural populations to respond to these shifts. The level of expected evolutionary change depends on the level and distribution of genetic variation of TBB. While numerous experimental studies have highlighted the role of divergent selection in promoting clinal TBB differentiation, we explored whether the observed patterns of variation could be generated by the joint effects of assortative mating for TBB and gene flow among natural populations. We tested this hypothesis using an in silico approach based on quantitative genetic models. RESULTS: Our simulations showed that genetic clines can develop even without divergent selection. Assortative mating in association with environmental gradients substantially shifted the mean genetic values of populations. Owing to assortative mating, immigrant alleles were screened for proximal or distant populations depending on the strength of the environmental cline. Furthermore, we confirmed that assortative mating increases the additive genetic variance within populations. However, we observed also a rapid decline of the additive genetic variance caused by restricted gene flow between neighboring populations resulting from preferential matings between phenologically-matching phenotypes. CONCLUSIONS: We provided evidence that the patterns of genetic variation of phenological traits observed in forest trees can be generated solely by the effects of assortative mating and gene flow. We anticipate that predicted temperature increases due to climate change will further enhance genetic differentiation across the landscape. These trends are likely to be reinforced or counteracted by natural selection if phenological traits are correlated to fitness.  相似文献   

18.
长白山阔叶红松林生长季热量平衡变化特征   总被引:19,自引:3,他引:16  
根据长白山阔叶红松林2001年5月下旬至10月上旬微气象梯度观测资料和辐射、土壤热通量资料,用波文比-能量平衡方法(BREB方法)计算了森林的显热通量和感热通量,并计算了森林大气和植被体的储热量,分析了阔叶红松林热量平衡各项的日变化和季节变化,结果发现,热量平衡(净辐射)与太阳总辐射呈线性关系;热量平衡各项都与净辐射有相同的日变化特征,为昼正夜负的曲线.各项的绝对值一般表现为净辐射>潜热通量>感热通量>储热变化.受日照时间的影响,6~10月各分量正值的日持续时间逐渐缩短.月平均结果,白天净辐射6月份最大,10月上旬最小,变化于0~527W·m^-2,夜间的净辐射在0~-121W·m^-2.潜热通量白天和夜间分别在0~441、0~-81W·m^-2,感热通量昼夜分别在0~80、0~-26W·m^-2.储热变化则为0~44、0~-26W·m^-2.白天潜热通量占净辐射的比例8~10月逐渐下降,而感热通量和储热变化的比例9~10月明显上升,特别在严霜后2~3d,出现潜热通量比例突减、感热通量比例突增的现象.文中还对通量观测仪器、方法进行了简要分析.  相似文献   

19.
测定位点对计算梨树树干液流的影响   总被引:6,自引:1,他引:5  
采用热脉冲法,研究了不同测定位点对计算梨树树干液流速率和液流量的影响.结果表明,不同时期内,各方向木质部液质比、木质比径向变幅分别为0.01~0.03和0~0.02,而同一深度木质部液质比和木质比季节变幅分别为0.02~0.09和0.02~0.08. 用同一月份不同深度木质部液质比和木质比参数计算特定深度液流速率差异不显著;而用不同时期测定的同一深度木质部参数计算特定月份相应深度液流速率差异显著或极显著.内层2个、4个测点平均低估液流量是外层相应测定位点的1.5和4.9倍,距形成层0~0.6四个位点的液流量基本可以代表整树耗水量.  相似文献   

20.
The diversity and composition of trees and shrubs of ≥5 cm diameter at breast height (DBH) were investigated in Kasagala woodland in central Uganda using 1 ha permanent sample plots. A total of 2745 trees and shrubs with a mean stem density of 686 ha−1 were recorded. These included 69 tree species belonging to 28 families and 47 genera. There was a larger number of small stems compared with that of larger stems. There was significant variation in stem size class distribution between the plots ( F  =   3.14, P  =   0.027). The variation in stem densities (counts) across different size classes was significant ( F  =   8.31, P  <   0.001). Species diversity was higher in the low lands compared with that in the elevated sites in the woodland. The species encountered were unevenly distributed across the plots. Species abundance was not significantly different across the sample plots ( F  =   2.63, P  =   0.053). We suggest that the structure of the forest is typical of any regenerating forest, but other human influences may have played a part in the dominance of size classes <10 cm DBH. The causes of the present status and composition of the woodland require further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号