首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Previous studies indicated that Alcaligenes eutrophus H850 attacks a different spectrum of polychlorinated biphenyl (PCB) congeners than do most PCB-degrading bacteria and that novel mechanisms of PCB degradation might be involved. To delineate this, we have investigated the differences in congener selectivity and metabolite production between H850 and Corynebacterium sp. strain MB1, an organism that apparently degrades PCBs via a 2,3-dioxygenase. H850 exhibited a superior ability to degrade congeners via attack on 2-, 2,4-, 2,5-, or 2,4,5-chlorophenyl rings in PCBs but an inferior ability to degrade congeners via attack on a 4-chlorophenyl ring. Reactivity preferences were also reflected in the products formed from unsymmetrical PCBs; thus MB1 attacked the 2,3-chlorophenyl ring of 2,3,2',5'-tetrachlorobiphenyl to yield 2,5-dichlorobenzoic acid, while H850 attacked the 2,5-chlorophenyl ring to yield 2,3-dichlorobenzoic acid and a novel metabolite, 2',3'-dichloroacetophenone. Furthermore, H850 oxidized 2,4,5,2',4',5'-hexachlorobiphenyl, a congener with no adjacent unsubstituted carbons, to 2',4',5'-trichloroacetophenone. The atypical congener selectivity pattern and novel metabolites produced suggest that A. eutrophus H850 may degrade certain PCB congeners by a new route beginning with attack by some enzyme other than the usual 2,3-dioxygenase.  相似文献   

2.
We compared the metabolism of eight di- and trichlorobiphenyls by eight bacterial strains chosen to represent a broad range of degradative activity against polychlorinated biphenyls (PCBs). The PCB congeners used were 2,3-, 2,3′-, 2,4′-, 3,3′-, 2,3,3′-, 2,4,4′-, 2,5,3′-, and 3,4,2′-chlorobiphenyl. The bacterial strains used wereCorynebacterium sp. MB1,Alcaligenes strainsA. eutrophus H850 andA. faecalis Pi434, andPseudomonas strains LB400 and H1130,P. testosteroni H430 and H336, andP. cepacia H201. The results indicated that both the relative rates of primary degradation of PCBs and the choice of the ring attacked were dependent on the bacterial strain used. The bacterial strains exhibited considerable differences in their relative reactivity preferences for attack on mono- and dichlorophenyl groups and in the degree to which the attack was affected by the chlorine substitution pattern on the nonreacting ring. For MB1 the reactivity pattern was 3-≥4-≫2-chlorophenyl with no attack on 2,4- or 2,5-chlorophenyl groups. This strain was relatively insensitive to the chlorine substitution pattern on the nonreacting ring. Strains H1130, H430, H201, and Pi434 exhibited the same reactivity preferences as MB1, but for these strains (and for all others tested) the chlorination pattern on the nonreacting ring had a strong effect. For strain H336 the reactivity preference was 4-≥2->2,4-≥3-chlorophenyl, with no evidence of attack on 2,5-chlorophenyl rings. For strains H850 and LB400 the relative reactivity was 2->2,5->3-≫2,4->4-chlorophenyl. On this basis we propose that the eight bacterial strains represent four distinct classes of biphenyl/PCB-dioxygenase activity. The types of products formed were largely strain-independent and were determined primarily by the chlorine substitution pattern on the reacting ring. When the reacting ring was an unsubstituted phenyl or a 2-chlorophenyl group, the products were chlorobenzoic acids in high yields; for a 3-chlorophenyl ring, both chlorobenzoic acids and chloroacetophenones in moderate yields; and for a 4- or 2,4-chlorophenyl group, chlorobenzoic acids in low yields with an apparent accumulation ofmeta ring-fission product. Strains H850 and LB400 were able to degrade the 3-chlorobenzoic acid that they produced from the degradation of 2,3′-chlorobiphenyl. We conclude that despite differences among strains in the specificity of the initial dioxygenase, the specificities of the enzymes responsible for the subsequent degradation to chlorobenzoic acid and/or chloroacetophenone are quite similar for all strains.  相似文献   

3.
We designed a rapid assay that assesses the polychlorinated biphenyl (PCB)-degradative competence and congener specificity of aerobic microorganisms, identifies strains capable of degrading highly chlorinated biphenyls, and distinguishes among those that degrade PCBs by alternative pathways. Prior attempts to assay PCB-degradative competence by measuring disappearance of Aroclors (commercial PCB mixtures) have frequently produced false-positive findings because of volatilization, adsorption, or absorption losses. Furthermore, these assays have generally left the chemical nature of the competence obscure because of incomplete gas chromatographic resolution and uncertain identification of Aroclor peaks. We avoided these problems by using defined mixtures of PCB congeners and by adopting incubation and extraction methods that prevent physical loss of PCBs. Our assay mixtures include PCB congeners ranging from dichloro- to hexachlorobiphenyls and representing various structural classes, e.g., congeners chlorinated on a single ring (2,3-dichlorobiphenyl), blocked at 2,3 sites (2,5,2'5'-tetrachlorobiphenyl), blocked at 3,4 sites (4,4'-dichlorobiphenyl), and lacking adjacent unchlorinated sites (2,4,5,2',4',5'-hexachlorobiphenyl). The PCB-degrative ability of microorganisms is assessed by packed-column gas chromatographic analysis of these defined congener mixtures following 24-h incubation with resting cells. When tested with 25 environmental isolates, this assay revealed a broad range of PCB-degradative competence, highlighted differences in congener specificity and in the extent of degradation of individual congeners, predicted degradative competence on commercial PCBs, and (iv) identified strains with superior PCB-degradative ability.  相似文献   

4.
Robust and effective bioremediation strategies have not yet been developed for polychlorinated biphenyl (PCB)-contaminated soils. This is in part a result of the fact that ortho - or ortho - and para -substituted congeners, frequent dead-end products of reductive dechlorination of PCB mixtures, have greatly reduced aerobic biodegradability. In this study, we report substantial evidence of utilization of diortho -substituted trichlorobiphenyls (triCBs) as growth substrates by Ralstonia sp. SA-4 and Pseudomonas sp. SA-6 in which ortho -substitution resulted in no obvious patterns of recalcitrance. These stains exhibited unusual preferences for growth on congeners chlorinated on both rings. Substrate uptake studies with benzoate-grown cells revealed that the isolates attacked the 2-chlorophenyl rings of 2,2',4- and 2,2',5-triCB. Between 71% and 93% of the initial 0.23–0.34 mM dose of congeners were transformed in less than 261 h concomitant with non-stoichiometric production of respective dichlorobenzoates and chloride ion. In enzyme assays, activity of 2,3-dihydroxybiphenyl-1,2-dioxygenase was constitutive. Additionally, these strains harboured no detectable plasmids which, coupled with exponential growth on the two triCB congeners, suggested chromosomal location of PCB degradative genes. In addition to the fact that there is a paucity of information on degradation of PCBs by tropical isolates, growth on triCBs as a sole carbon and energy source has never been demonstrated for any natural or engineered microorganisms. Such isolates may help prevent accumulation of ortho -substituted congeners in natural systems and offer the hope for development of effective bioaugmentation or sequential anaerobic–aerobic bioremediation strategies.  相似文献   

5.
We have isolated and characterized a strain of Alcaligenes eurtrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strain, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, para-dechlorination agent system C (J. F. Brown, R. E. Wagner, Jr., D. L. Bedard, M. J. Brennan, J. C. Carnahan, R. J. May, and J. J. Tofflemire, Northeast Environ. Sci. 3:167-179, 1984). The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all of the congeners in Aroclor 1242 and possibly all those in Aroclor 1254.  相似文献   

6.
We have isolated and characterized a strain of Alcaligenes eurtrophus, designated H850, that rapidly degrades a broad and unusual spectrum of polychlorinated biphenyls (PCBs) including many tetra- and pentachlorobiphenyls and several hexachlorobiphenyls. This strain, which was isolated from PCB-containing dredge spoils by enrichment on biphenyl, grows well on biphenyl and 2-chlorobiphenyl but poorly on 3- and 4-chlorobiphenyl. Capillary gas-chromatographic analysis showed that biphenyl-grown resting cells of H850 degraded the components of 38 of the 41 largest peaks of Aroclor 1242 and 15 of the 44 largest peaks of Aroclor 1254, resulting in an overall reduction of PCBs by 81% for Aroclor 1242 (10 ppm) and 35% for Aroclor 1254 (10 ppm) in 2 days. Furthermore, H850 metabolized the predominantly ortho-substituted PCB congeners that resulted from the environmental transformation of the more highly chlorinated congeners of Aroclor 1242 by the upper Hudson River anaerobic meta-, para-dechlorination agent system C (J. F. Brown, R. E. Wagner, Jr., D. L. Bedard, M. J. Brennan, J. C. Carnahan, R. J. May, and J. J. Tofflemire, Northeast Environ. Sci. 3:167-179, 1984). The congener selectivity patterns indicate that a two-step process consisting of anaerobic dechlorination followed by oxidation by H850 can effectively degrade all of the congeners in Aroclor 1242 and possibly all those in Aroclor 1254.  相似文献   

7.
Xu L  Xu JJ  Jia LY  Liu WB  Jian X 《Current microbiology》2011,62(3):784-789
The relationship between the selectivity of a particular polychlorinated biphenyls (PCBs) congener and its biodegradability under the same concentration, especially by Enterobacter sp. LY402, is less well studied. To measure congener selectivity of Enterobacter sp. LY402, several influencing factors were studied. The results showed LY402 effectively degraded coplanar 3,4,3',4'-chlorobiphenyl (CB) at a concentration of 0.05 μM, but not 0.5 μM. The degradation rates of 2,4,5,2',3'-CB and 2,4,5,2',4',5'-CB were increased significantly when the sample constituents were changed from 12 to 5 congeners or to one congener. This indicated that bioremediation of individual congener was affected by other congeners present in the mixture. Moreover, for PCBs containing one chlorine on each phenyl ring, the reactivity preference of LY402 was 2,2'-CB ≥ 3,3'-CB ? 4,4'-CB. For two ortho chlorines congeners of PCBs, 2,2'-CB was degraded faster than 2,6-CB. Although 2,6-CB and 4,4'-CB were poorly degraded, the addition of one (i.e., 2,4,4'-CB and 2,6,3'-CB) or two more chlorines (i.e., 2,4,2',4'-CB) on the phenyl ring significantly increased their biodegradability. In addition, comparing the two congeners of ortho-meta-chlorinated biphenyl, 2,3,2',3'-CB with neighbor meta chlorines was degraded slower than 2,5,2',5'-CB with interval meta chlorines. All these indicated that the transformation rates of PCBs were not consistent with the number of chlorines, and PCBs containing the same numbers of chlorines but at different positions also resulted in different conversions. In principle, the extents of effect caused by the position of chlorine substituents on the degradation of PCBs by LY402 were ortho- > meta- > para-CB. In conclusion, the congener selectivity of LY402 was determined by many factors, including the composition of the congeners, their concentrations in the mixture and location and number of chlorine substituents on the phenyl rings.  相似文献   

8.
Acinetobacter sp. strain P6 and a soil isolate, Arthrobacter sp. strain B1B, were tested for their ability to transform Aroclor 1254 as washed resting cells and as growing cells with biphenyl as the substrate. Growing cells were far superior to resting-cell suspensions in terms of total polychlorinated biphenyl (PCB) transformation, transformation of specific PCB congeners, and diversity of congeners that were attacked. Growing cells of Acinetobacter sp. strain P6 and Arthrobacter sp. strain B1B transformed 32 and 23% of the [14C]Aroclor 1254, respectively, whereas resting cells of the same respective cultures transformed only 17 and 8%. Transformation was significantly greater with resting cells in only 2 of 39 cases in which congeners were transformed by both growing and resting cells of both cultures. The components of 19 and 12 capillary gas-chromatographic peaks of Aroclor 1254 were transformed by biphenyl-grown resting cells of Acinetobacter sp. strain P6 and Arthrobacter sp. strain B1B, respectively, whereas the components of an additional 6 and 7 peaks were attacked by growing cells of the same respective cultures. Biphenyl oxidation by resting cells of both cultures decreased with time to less than 8% in 28 h. In addition to the normal 2,3-dioxygenase attack on PCBs, Acinetobacter sp. strain P6 also attacked congeners lacking an open 2,3-position. The ability of Acinetobacter sp. strain P6 to transform the components of 25 of the 40 largest peaks of Aroclor 1254 makes it one of the most versatile PCB-transforming organisms yet reported.  相似文献   

9.
Acinetobacter sp. strain P6 and a soil isolate, Arthrobacter sp. strain B1B, were tested for their ability to transform Aroclor 1254 as washed resting cells and as growing cells with biphenyl as the substrate. Growing cells were far superior to resting-cell suspensions in terms of total polychlorinated biphenyl (PCB) transformation, transformation of specific PCB congeners, and diversity of congeners that were attacked. Growing cells of Acinetobacter sp. strain P6 and Arthrobacter sp. strain B1B transformed 32 and 23% of the [14C]Aroclor 1254, respectively, whereas resting cells of the same respective cultures transformed only 17 and 8%. Transformation was significantly greater with resting cells in only 2 of 39 cases in which congeners were transformed by both growing and resting cells of both cultures. The components of 19 and 12 capillary gas-chromatographic peaks of Aroclor 1254 were transformed by biphenyl-grown resting cells of Acinetobacter sp. strain P6 and Arthrobacter sp. strain B1B, respectively, whereas the components of an additional 6 and 7 peaks were attacked by growing cells of the same respective cultures. Biphenyl oxidation by resting cells of both cultures decreased with time to less than 8% in 28 h. In addition to the normal 2,3-dioxygenase attack on PCBs, Acinetobacter sp. strain P6 also attacked congeners lacking an open 2,3-position. The ability of Acinetobacter sp. strain P6 to transform the components of 25 of the 40 largest peaks of Aroclor 1254 makes it one of the most versatile PCB-transforming organisms yet reported.  相似文献   

10.
Biphenyl dioxygenase (Bph Dox) is responsible for the initial dioxygenation of biphenyl. The large subunit (BphA1) of Bph Dox plays a crucial role in determination of substrate specificity of biphenyl-related compounds including polychlorinated biphenyls (PCBs). Functional evolution of Bph Dox of Pseudomonas pseudoalcaligenes KF707 was accomplished by random priming recombination of the bphA1 gene, involving two rounds of in vitro recombination and mutation followed by selection for increased activity in vivo. Evolved Bph Dox acquired novel and multifunctional degradation capabilities not only for PCBs but also for dibenzofuran, dibenzo-p-dioxin, dibenzothiophene, and fluorene, the compounds scarcely attacked by the original KF707 Bph Dox. The modes of oxygenation were angular and lateral dioxygenation for dibenzofuran and dibenzo-p-dioxin, sulfoxidation for dibenzothiophene, and mono-oxygenation for fluorene. These enzymes also exhibited enhanced degradation abilities for PCB congeners, retaining 2,3-dioxygenase activity and gaining 3,4-dioxygenase activity, depending on the chlorine substitution of PCB congeners. Further mutation analysis revealed that the amino acid at position 376 in BphA1 is significantly involved in the acquisition of multifunctional oxygenase activities and mode of oxygenation.  相似文献   

11.
The purpose of this study was to explore the influence of different polychlorinated biphenyls (PCBs) upon the release of oleic and palmitic acid from the intracellular lipids, which were previously labeled with [3H]oleic or [3H]palmitic acid, respectively. Studies have been realized with Aroclor 1248 (a commercial PCB mixture with 48% chlorine by weight), and two pure PCB congeners: 3,3',4, 4'-tetrachlorobiphenyl (a non-ortho-substituted planar congener) and 2,2',4,4',5,5'-hexachlorobiphenyl (a di-ortho-substituted nonplanar congener). The treatment of cells with Aroclor 1248 increased [3H]oleic acid release in a concentration-dependent manner. Our results showed that only the di-ortho-substituted congener which prefers a nonplanar configuration stimulated the release of [3H]oleic acid from the intracellular phospholipids to the culture medium, while the exposure of cell cultures to the chosen non-ortho-substituted coplanar congener did not alter the release of [3H]oleic acid to the culture medium. Finally, none of the PCBs studied could increase the release of [3H]palmitic acid from the intracellular stores significantly. The possibility that these differential alterations in the fatty acid release affect cell function during PCB exposure should therefore be postulated.  相似文献   

12.
The transformation of 20 polychlorinated biphenyls (PCBs) through the meta-cleavage pathway by recombinant Escherichia coli cells expressing the bphEFGBC locus from Burkholderia cepacia LB400 and the bphA genes from different sources was compared. The analysis of PCB congeners for which hydroxylation was observed but no formation of the corresponding yellow meta-cleavage product demonstrated that only lightly chlorinated congeners including one tetrachlorobiphenyl (2,2',4,4'-CB) were transformed into their corresponding yellow meta-cleavage products. Although many other tetrachlorobiphenyls (2, 2',5,5'-CB, 2,2',3,5'-CB, 2,4,4',5-CB, 2,3',4',5-CB, 2,3',4,4'-CB) and one pentachlorobiphenyl (2,2',4,5,5'-CB) tested were depleted from resting cell suspensions, no yellow meta-cleavage products were observed. For most of these congeners, dihydrodiol compounds accumulated as the endproducts, indicating that the bphB-encoded biphenyl-2,3-dihydrodiol-2,3-dehydrogenase is a key limiting step for further degradation of highly chlorinated congeners. These results suggest that engineering the biphenyl dioxygenase alone is insufficient for an improved removal of PCB. Rather, improved degradation of PCBs is more likely to be achieved with recombinant strains containing metabolic pathways not only specifically engineered for expanding the initial dioxygenation but also for the mineralization of PCBs.  相似文献   

13.
Polychlorinated biphenyls (PCBs) are a family of 209 isomers (congeners) with a wide range of toxic effects. In structural terms, they are of two types: those with and those without chlorines at the ortho positions (2, 2', 6 and 6'). Only 20 congeners have no ortho chlorines. Three of these are bound by the aryl hydrocarbon receptor and are one to four orders of magnitude more toxic than all others. A monoclonal antibody, S2B1, and its recombinant Fab have high selectivity and nanomolar binding affinities for two of the most toxic non-ortho-chlorinated PCBs, 3,4,3',4'-tetrachlorobiphenyl and 3,4,3',4',5'-pentachlorobiphenyl. To investigate the basis for these properties, we built a three-dimensional structure model of the S2B1 variable fragment (Fv) based on the high-resolution crystallographic structures of antibodies 48G7 and N1G9. Two plausible conformations for the complementarity-determining region (CDR) H3 loop led to two putative PCB-binding pockets with very different shapes (models A and B). Docking studies using molecular mechanics and potentials of mean force (PMF) indicated that model B was most consistent with the selectivity observed for S2B1 in competition ELISAs. The binding site in model B had a deep, narrow pocket between V(L) and V(H), with a slight constriction at the top that opened into a wider pocket between CDRs H1 and H3 on the antibody surface. This binding site resembles those of esterolytic antibodies that bind haptens with phenyl rings. One phenyl ring of the PCB fits into the deep pocket, and the other ring is bound in the shallower one. The bound PCB is surrounded by the side chains of TyrL91, TyrL96 and TrpH98, and it has a pi-cation interaction with ArgL46. The tight fit of the binding pocket around the ortho positions of the bound PCBs indicates that steric hindrance of ortho chlorines in the binding site, rather than induced conformational change of the PCBs, is responsible for the selectivity of S2B1.  相似文献   

14.
A Gram-negative bacterium, named LY402, was isolated from contaminated soil. 16S rDNA sequencing and measurement of the physiological and biochemical characteristics identified it as belonging to the genus Enterobacter. Degradation experiments showed that LY402 had the ability to aerobically transform 79 of the 91 major congeners of Aroclor 1242, 1254, and 1260. However, more interestingly, the strain readily degraded certain highly chlorinated and recalcitrant polychlorinated biphenyls (PCBs). Almost all the tri- and tetra-chlorobiphenyls (CBs), except for 3,4,3',4'-CB, were degraded in 3 days, whereas 73% of 3,4,3',4'-, 92% of the penta-, 76% of the hexa-, and 37% of the hepta-CBs were transformed after 6 days. In addition, among 12 octa-CBs, 2,2',3,3',5,5',6,6- CB was obviously degraded, and 2,2',3,3',4,5,6,6'- and 2,2',3,3',4,5,5',6'-CB were slightly transformed. In a metabolite analysis, mono- and di-chlorobenzoic acids (CBAs) were identified, and parts of them were also transformed by strain LY402. Analysis of PCB degradation indicated that strain LY402 could effectively degrade PCB congeners with chlorine substitutions in both ortho- and para-positions. Consequently, this is the first report of an Enterobacteria that can efficiently degrade both low and highly chlorinated PCBs under aerobic conditions.  相似文献   

15.
In contrast to the degradation of penta-and hexachlorobiphenyls in chemostat cultures, the metabolism of PCBs by Alcaligenes sp. JB1 was shown to be restricted to PCBs with up to four chlorine substituents in resting-cell assays. Among these, the PCB congeners containing ortho chlorine substituents on both phenyl rings were found to be least degraded. Monochloro-benzoates and dichlorobenzoates were detected as metabolites. Resting cell assays with chlorobenzoates showed that JB1 could metabolize all three monochlorobenzoates and dichlorobenzoates containing only meta and para chlorine substituents, but not dichlorobenzoates possessing an ortho chlorine substituent. In enzyme activity assays, meta cleaving 2,3-dihydroxybiphenyl 1,2-dioxygenase and catechol 2,3-dioxygenase activities were constitutive, whereas benzoate dioxygenase and ortho cleaving catechol 1,2-dioxygenase activities were induced by their substrates. No activity was found for pyrocatechase II, the enzyme that is specific for chlorocatechols. The data suggest that complete mineralization of PCBs with three or more chlorine substituents by Alcaligenes sp. JB1 is unlikely.Abbreviations PCB polychlorinated biphenyls - CBA chlorobenzoate - D di - Tr tri - Te tetra - Pe penta- - H hexa  相似文献   

16.
Polychlorinated biphenyls (PCBs) are known to be carcinogenic, but the mechanisms of this action are uncertain. Most, but not all, studies have concluded that PCBs are not directly mutagenic, and that much if not all of the carcinogenic activity resides in the fraction of the PCB mixture that contains congeners with dioxin-like activity. The present study was designed to determine genotoxic effects of an ortho-substituted, non-coplanar congener, 2,2',5,5'-tetrachlorobiphenyl (PCB 52), and a non-ortho-substituted coplanar congener with dioxin-like activity, 3,3',4,4'-tetrachlorobiphenyl (PCB 77) on cultured human peripheral lymphocytes. DNA damage was assessed by use of the comet assay (alkaline single-cell gel electrophoresis). After cell cultures were prepared, test groups were treated with different concentrations of PCB 52 (0.2 and 1 microM) and PCB 77 (1 and 10 microM) for 1h at 37 degrees C in a humidified carbon dioxide incubator, and compared to a DMSO vehicle control group. The cells were visually classified into four categories on the basis of extent of migration such as undamaged (UD), low damage (LD), moderate damage (MD) and high damage (HD). The highest concentration of PCBs 52 and 77 significantly increased DNA breakage in human lymphocytes (p<0.001). Our results indicate that both the non-coplanar PCB 52 and coplanar PCB 77 cause DNA damage, and that the ortho-substituted congener was significantly more potent than the dioxin-like coplanar congener.  相似文献   

17.
Oxidation of biphenyl and nine chlorinated biphenyls (CBs) by the biphenyl 2,3-dioxygenase from Pseudomonas sp. strain LB400 was examined. The purified terminal oxygenase required the addition of partially purified electron transport components, NAD(P)H, and ferrous iron to oxidize biphenyl and CBs. cis-Biphenyl 2,3-dihydrodiol was produced with biphenyl as the substrate. Dihydrodiols were produced from all CBs, and more than one compound was produced with most substrates. Catechols were produced when the dioxygenase-catalyzed reaction occurred at the 2,3 position of a 2-chlorophenyl ring, resulting in dechlorination of the substrate. Oxidation at the 3,4 position of a 2,5-dichlorophenyl ring produced a 3,4-dihydrodiol. Compounds resulting from both types of reaction were produced during oxidation of 2,5,2'-trichlorobiphenyl. The broad substrate specificity and the ability to oxidize at different ring positions suggest that the biphenyl 2,3-dioxygenase is responsible for the wide range of CBs oxidized by Pseudomonas sp. strain LB400.  相似文献   

18.
D Dietrich  W J Hickey    R Lamar 《Applied microbiology》1995,61(11):3904-3909
The white rot fungus Phanerochaete chrysosporium has demonstrated abilities to degrade many xenobiotic chemicals. In this study, the degradation of three model polychlorinated biphenyl (PCB) congeners (4,4'-dichlorobiphenyl [DCB], 3,3',4,4'-tetrachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl) by P. chrysosporium in liquid culture was examined. After 28 days of incubation, 14C partitioning analysis indicated extensive degradation of DCB, including 11% mineralization. In contrast, there was negligible mineralization of the tetrachloro- or hexachlorobiphenyl and little evidence for any significant metabolism. With all of the model PCBs, a large fraction of the 14C was determined to be biomass bound. Results from a time course study done with 4,4'-[14C]DCB to examine 14C partitioning dynamics indicated that the biomass-bound 14C was likely attributable to nonspecific adsorption of the PCBs to the fungal hyphae. In a subsequent isotope trapping experiment, 4-chlorobenzoic acid and 4-chlorobenzyl alcohol were identified as metabolites produced from 4,4'-[14C]DCB. To the best of our knowledge, this the first report describing intermediates formed by P. chrysosporium during PCB degradation. Results from these experiments suggested similarities between P. chrysosporium and bacterial systems in terms of effects of congener chlorination degree and pattern on PCB metabolism and intermediates characteristic of the PCB degradation process.  相似文献   

19.
Three species within a deeply branching cluster of the Chloroflexi are the only microorganisms currently known to anaerobically transform polychlorinated biphenyls (PCBs) by the mechanism of reductive dechlorination. A selective PCR primer set was designed that amplifies the 16S rRNA genes of a monophyletic group within the Chloroflexi including Dehalococcoides spp. and the o-17/DF-1 group. Assays for both qualitative and quantitative analyses by denaturing gradient gel electrophoresis and most probable number-PCR, respectively, were developed to assess sediment microcosm enrichments that reductively dechlorinated PCBs 101 (2,2',4,5,5'-CB) and 132 (2,2',3,3',4,6'-CB). PCB 101 was reductively dechlorinated at the para-flanked meta position to PCB 49 (2,2',4,5'-CB) by phylotype DEH10, which belongs to the Dehalococcoides group. This same species reductively dechlorinated the para- and ortho-flanked meta-chlorine of PCB 132 to PCB 91 (2,2',3',4,6'-CB). However, another phylotype designated SF1, which is more closely related to the o-17/DF-1 group, was responsible for the subsequent dechlorination of PCB 91 to PCB 51 (2,2',4,6'-CB). Using the selective primer set, an increase in 16S rRNA gene copies was observed only with actively dechlorinating cultures, indicating that PCB-dechlorinating activities by both phylotype DEH10 and SF1 were linked to growth. The results suggest that individual species within the Chloroflexi exhibit a limited range of congener specificities and that a relatively diverse community of species within a deeply branching group of Chloroflexi with complementary congener specificities is likely required for the reductive dechlorination of different PCBs congeners in the environment.  相似文献   

20.
This paper elucidates the effect of different polychlorinated biphenyls (PCBs) on the phospholipase D (PLD) activity in soluble and particulate fractions of rat renal proximal tubular culture cells. Treatment with Aroclor 1248 (a commercial PCB mixture) caused a marked increase in the activity of PLD in intact renal tubular cells. The PLD activity was increased by Aroclor 1248 in the particulate fraction while the enzyme activity was unaffected in the soluble fraction. This work also shows that PCB 153 (2,2',4,4',5,5'-hexachlorobiphenyl, a di-ortho-substituted nonplanar congener) can increase the activity of PLD only in the particulate fraction. The exposure of cell cultures to PCB 77 (3,3',4,4'-tetrachlorobiphenyl, a non-ortho-substituted planar congener) does not alter PLD activity. These results suggest that PCB effects are structure dependent. Therefore, in order to clarify the molecular mechanism of activation of PLD by PCBs, the contents of immunoreactive PLD were examined by immunoblot analysis. Renal tubular cells expressed a PLD protein of 120 kDa corresponding with the PLD1 mammalian isoform in both the particulate and the soluble fraction. Aroclor 1248, PCB 153, and PCB 77 do not induce changes in the levels of PLD protein. These data indicate that PCBs, particularly nonplanar congeners, increase PLD activity. Moreover, these changes could not be demonstrated in the enzyme content in rat renal tubular cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号