首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
1. Radioactive products in detached leaf segments were examined after periods of steady-state photosynthesis in (14)CO(2). 2. After exposure to (14)CO(2) for approx. 1sec. more than 93% of the fixed radioactivity was located in malate, aspartate and oxaloacetate. After longer periods large proportions of the radioactivity appeared in 3-phosphoglycerate, hexose monophosphates and sucrose. Similar results were obtained with leaves still attached to the plant. 3. Radioactivity appeared first in C-4 of the dicarboxylic acids and C-1 of 3-phosphoglycerate. The labelling pattern in hexoses was consistent with their formation from 3-phosphoglycerate. 4. The reaction giving rise to C(4) dicarboxylic acid appears to be the only quantitatively significant carboxylation reaction. 5. Evidence is provided that the radioactivity incorporated into the C(4) dicarboxylic acid pool is transferred to sugars via 3-phosphoglycerate. A scheme is proposed to account for these observations.  相似文献   

2.
1. Leaves were exposed to (14)CO(2) under steady-state conditions for photosynthesis. The kinetics of entry or loss of label in pools of CO(2) and other compounds was examined during the period of the pulse and a ;chase' with (12)CO(2). 2. With maize the kinetics of labelling of the major CO(2) pool and of depletion of label during a ;chase' was consistent with this pool being derived from the C-4 of malate and being the precursor of the C-1 of 3-phosphoglycerate. 3. Similar results were obtained for Amaranthus leaves except that the C-4 of aspartate rather than malate was apparently the primary source of CO(2). 4. The size and turnover time of the CO(2) and C(4) acid pools was calculated. These results provided the basis for estimating the concentration of CO(2) in the bundle-sheath cells or chloroplasts assuming the pool was largely restricted to one or other of these compartments. 5. These findings are considered in relation to current schemes for the C(4)-pathway and the operation of a CO(2) concentrating mechanism to serve ribulose diphosphate carboxylase.  相似文献   

3.
Photosynthetic carbon assimilation and associated CO(2)-dependent O(2) evolution by chloroplasts isolated from pea shoots and spinach leaves is almost completely inhibited by 10mm-dl-glyceraldehyde. The inhibitor is without appreciable effect on photosynthetic electron transport, photophosphorylation, the carboxylation of ribulose 1,5-diphosphate or the reduction of 3-phosphoglycerate, but apparently blocks the conversion of triose phosphate into ribulose 1,5-diphosphate.  相似文献   

4.
1. The orthophosphate inhibition of photosynthesis by isolated spinach chloroplasts can be reversed by 3-phosphoglycerate, dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, fructose 6-phosphate and fructose 1,6-diphosphate. 2. Metabolically related compounds such as ribulose 1,5-diphosphate, glucose 6-phosphate, 6-phosphogluconate and phosphoenolpyruvate are ineffective. 3. The kinetics of reversal are characteristic of the intermediate used, but, in each instance, the onset of oxygen evolution is accompanied by a carbon dioxide fixation and except with 3-phosphoglycerate the stoicheiometry is close to unity. 4. The nature of orthophosphate inhibition and its reversal is discussed in relation to metabolic control of photosynthesis.  相似文献   

5.
D-Ribulose 1,5-diphosphate carboxylase has been purified from autotrophically grown cells of the facultative chemolithotrophic hydrogen bacterium Alcaligenes eutrophus. The enzyme was homogeneous by the criteria of polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 505000 determined by gel filtration and sucrose density gradient centrifugation, and a sedimentation coefficient of 18.2 S was obtained. It was demonstrated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis that the enzyme consists of two types of subunits of molecular weight 52000 and 13000. Electron microscopy on the intact and the partially dissociated enzyme lead to the construction of a model for the quaternary structure of the enzyme which is composed of 8 large and 8 small subunits. The most probable symmetry of the enzyme molecule is 4:2:2. Michaelis constant (Km) values for ribulose 1,5-diphosphate, Mg2+, and CO2 were 0.59 mM, 0.33 mM, and 0.066 mM measured under air. Oxygen was a competitive inhibitor with respect to CO2 suggesting that the enzyme also exhibits an oxygenase activity. The oxygenolytic cleavage of ribulose 1,5-diphosphate was shown and a 1:1 stoichiometry between oxygen consumption and 3-phosphoglycerate formation observed.  相似文献   

6.
The pathway of carbon assimilation in greening roots was compared to the pathway in leaves of Lens culinaris seedlings by means of labelling distribution analysis among the products of 14CO2 fixation in vivo, and in vitro with ribulose 1,5-diphosphate as the substrate. In green leaves, CO2 fixation via ribulose 1,5-diphosphate carboxylase predominated largely while, in green roots, this carboxylase activity and the phosphoenolpyruvate carboxylase contributed almost equally to the whole in vivo CO2 fixation. A participation of the activities of both carboxylases according to the double carboxylation pathway in the synthesis of dicarboxylic acids (malate and aspartate) was demonstrated in vitro after 48 h of greening in roots but seemed to be absent in in vivo experiments.  相似文献   

7.
1. Mesophyll and parenchyma-sheath chloroplasts of maize leaves were separated by density fractionation in non-aqueous media. 2. An investigation of the distribution of photosynthetic enzymes indicated that the mesophyll chloroplasts probably contain the entire leaf complement of pyruvate,P(i) dikinase, NADP-specific malate dehydrogenase, glycerate kinase and nitrite reductase and most of the adenylate kinase and pyrophosphatase. The fractionation pattern of phosphopyruvate carboxylase suggested that this enzyme may be associated with the bounding membrane of mesophyll chloroplasts. 3. Ribulose diphosphate carboxylase, ribose phosphate isomerase, phosphoribulokinase, fructose diphosphate aldolase, alkaline fructose diphosphatase and NADP-specific ;malic' enzyme appear to be wholly localized in the parenchyma-sheath chloroplasts. Phosphoglycerate kinase and NADP-specific glyceraldehyde phosphate dehydrogenase, on the other hand, are distributed approximately equally between the two types of chloroplast. 4. After exposure of illuminated leaves to (14)CO(2) for 25sec., labelled malate, aspartate and 3-phosphoglycerate had similar fractionation patterns, and a large proportion of each was isolated with mesophyll chloroplasts. Labelled fructose phosphates and ribulose phosphates were mainly isolated in fractions containing parenchyma-sheath chloroplasts, and dihydroxyacetone phosphate had a fractionation pattern intermediate between those of C(4) dicarboxylic acids and sugar phosphates. 6. These results indicate that the mesophyll and parenchyma-sheath chloroplasts have a co-operative function in the operation of the C(4)-dicarboxylic acid pathway. Possible routes for the transfer of carbon from C(4) dicarboxylic acids to sugars are discussed.  相似文献   

8.
The Biogenesis of Ethylene in Penicillium Digitatum   总被引:5,自引:4,他引:1  
The origin of the ethylene carbon skeleton in Penicillium digitatum appears to be intimately associated with the Krebs cycle acids, particularly the middle carbon atoms of dicarboxylic acids. Among the other compounds studied, certain carbon atoms of beta-alanine, propionic acid, and methionine can be incorporated into the ethylene carbon skeleton presumably by way of an indirect route via the Krebs cycle acids. Carbon atoms of acrylic acid, particularly C-2, were also found to be incorporated into the ethylene skeleton. Inhibition of ethylene but not respiratory CO(2) formation in the mold by cis-3-chloroacrylic acid at 1 x 10(-3)m pointed to the possibility that acrylic acid may be related to the precursor for ethylene.  相似文献   

9.
Level of photosynthetic intermediates in isolated spinach chloroplasts   总被引:15,自引:12,他引:3       下载免费PDF全文
Latzko E  Gibbs M 《Plant physiology》1969,44(3):396-402
The level of intermediates of the photosynthetic carbon cycle was measured in intact spinach chloroplasts in an attempt to determine the cause of the induction lag in CO2 assimilation. In addition, transient changes in the level of the intermediates were determined as affected by a light-dark period and by the addition of an excess amount of bicarbonate during a period of steady photosynthesis. Assayed enzymically were: ribulose 1,5-diphosphate, pentose monophosphates (mixture of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate, hexose monophosphates (mixture of glucose 6-phosphate, glucose 1-phosphate, and fructose 6-phosphate), glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, glycerate acid 3-phosphate, a mixture of fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate, adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP).  相似文献   

10.
The metabolism of fixed 14CO2 and the utilization of the C-4 carboxyl of malate and aspartate were examined during photosynthetic induction in Flaveria trinervia, a C4 dicot of the NADP-malic enzyme subgroup. Pulse/chase experiments indicated that both malate and aspartate appeared to function directly in the C4 cycle at all times during the induction period (examined after 30 seconds, 5 minutes and 20 minutes illumination). However, the rate of loss of 14C-label from the C-4 position of malate plus aspartate was relatively slow after 30 seconds of illumination, compared to treatments after 5 or 20 minutes of illumination. Similarly, the appearance of label in other photosynthetic products (e.g. 3-phosphoglycerate, sugar phosphates, alanine) during the chase periods was generally slower after only 30 seconds of leaf illumination, compared to that after 5 of 20 minutes illumination. This may be due to the lower rate of photosynthesis after 30 seconds illumination. The appearance of label in carbons 1→3 of each C4 acid during the chase periods was relatively slow after either 30 seconds or 5 minutes illumination, while there was a relatively rapid accumulation of label in carbons 1→3 of both C4 acids after 20 minutes illumination. Thus, while the turnover rate of the 14C-4 label in both C4 acids increased only during the first 5 minutes of the induction period, only later during induction is there an increased rate of appearance of label in other carbon atoms of the C4 acids. The implied source of 14C for labeling of the 1→3 positions of the C4 acids is an apparent carbon flux from 3-phosphoglycerate of the reductive pentose phosphate pathway to phosphoenolpyruvate of the C4 cycle.  相似文献   

11.
J M Sue  J R Knowles 《Biochemistry》1978,17(19):4041-4044
Ribulose-1,5-bisphosphate carboxylase catalyzes the conversion of D ribulose 1,5-bisphosphate and CO2 to 3-phospho-D-glycerate, with retention of the oxygen atoms at both C-2 and C-3 of the substrate. This observation is consistent with mechanistic pathways involving an enediol intermediate and eliminates suggested mechanisms that involve covalent intermediates between the enzyme and ribulose 1,5-bisphosphate in which the substrate oxygen at C-2 or C-3 is compulsorily lost.  相似文献   

12.
1. The role of pyruvate carboxylation in the net synthesis of tricarboxylic acid-cycle intermediates during acetate metabolism was studied in isolated rat hearts perfused with [1-14C]pyruvate. 2. The incorporation of the 14C label from [1-14C]pyruvate into the tricarboxylic acid-cycle intermediates points to a carbon input from pyruvate via enzymes in addition to pyruvate dehydrogenase and citrate synthase. 3. On addition of acetate, the specific radioactivity of citrate showed an initial maximum at 2 min, with a subsequent decline in labelling. The C-6 of citrate (which is removed in the isocitrate dehydrogenase reaction) and the remainder of the molecule showed differential labelling kinetics, the specific radioactivity of C-6 declining more rapidly. Since this carbon is lost in the isocitrate dehydrogenase reaction, the results are consistent with a rapid inactivation of pyruvate dehydrogenase after the addition of acetate, which was confirmed by measuring the 14CO2 production from [1-14C]pyruvate. 4. The results can be interpreted to show that carboxylation of pyruvate to the C4 compounds of the tricarboxylic acid cycle occurs under conditions necessitating anaplerosis in rat myocardium, although the results do not identify the enzyme involved. 5. The specific radioactivity of tissue lactate was too low to allow it to be used as an indicator of the specific radioactivity of the intracellular pyruvate pool. The specific radioactivity of alanine was three times that of lactate. When the hearts were perfused with [1-14C]lactate, the specific radioactivity of alanine was 70% of that of pyruvate. The results suggest that a subcompartmentation of lactate and pyruvate occurs in the cytosol.  相似文献   

13.
Polymers synthesized by heterotrophically growing (glucose as carbon source) cultures of Aphanocapsa 6714 were compared with polymers synthesized in photosynthetically grown cultures. Loss of photosystem II by dark incubation, or inhibition of light-grown cells with the photosystem II-specific inhibitor dichlorophenylmethylurea, caused an 80 to 90% reduction in the rate of lipid and total ribonucleic acid synthesis, and more than a 90% reduction in the rate of protein synthesis. In contrast, glycogen synthesis was reduced only about 50% in dark cells and less than 30% in dichlorphenylmethylurea-inhibited cells. After longer heterotrophic growth, glycogen became the major component, whereas in photosynthetically grown cultures protein was the major constituent. 14C (from 14CO2 and/or [14C]glucose) assimilated into protein by heterotrophically grown cells was found in amino acids in nearly the same proportions as in photosynthetically grown cells. Thus, routes of biosynthesis available to autotropic cells were also available to heterotrophic cultures, but the supply of carbon precursors to those pathways was greatly reduced. The limited biosynthesis in heterotrophic cells was not due to a limitation for cellular energy. The adenylates were maintained at nearly the same concentrations (and hence the energy charge also) as in photosynthetic cells. The concentration of reduced nicotinamide adenine dinucleotide phosphate was higher in heterotrophic (dark) cells than in photosynthetic cells. From rates of CO2 fixation and/or glycogen biosynthesis it was determined that stationary-phase cells expended approximately 835, 165, and less than 42 nmol of adenosine 5'-triphosphate per mg (dry weight) of algae per 30 min during photosynthetic, photoheterotrophic, and chemoheterotrophic metabolism, respectively. Analysis of the soluble metabolite pools in dark heterotrophic cultures by double-labeling experiments revealed rapid equilibration of 14C through the monophosphate pools, but much slower movement of label into the diphosphate pools of fructose-1,6-diphosphate and sedoheptulose-1,7-diphosphate. Carbon did flow into 3-phosphoglycerate in the dark; however, the initial rate was low and the concentration of this metabolite soon fell to an undetectable level. In photosynthetic cells, 14C quickly equilibrated throughout all the intermediates of the reductive pentose cycle, in particular, into 3-phosphoglycerate. Analysis of glucose-6-phosphate dehydrogenase in cell extracts showed that the enzyme was very sensitive to product inhibition by reduced nicotinamide adenine dinucleotide.  相似文献   

14.
W. Kaiser 《BBA》1976,440(3):476-482
Low concentrations of hydrogen peroxide strongly inhibit CO2 fixation of isolated intact chloroplasts (50% inhibition at 10−5 M hydrogen peroxide). Addition of catalase to a suspension of intact chloroplasts stimulates CO2 fixation 2–6 fold, indicating that this process is partially inhibited by endogenous hydrogen peroxide formed in a Mehler reaction.

The rate of CO2 fixation is strongly increased by addition of Calvin cycle intermediates if the catalase activity of the preparation is low. However, at high catalase activity addition of Calvin cycle intermediates remains without effect. Obviously the hydrogen peroxide formed at low catalase activity leads to a loss of Calvin cycle substrates which reduces the rate of CO2 fixation.

3-Phosphoglycerate-dependent O2-evolution is not influenced by hydrogen peroxide at a concentration (5 · 10−4 M) which inhibits CO2 fixation almost completely. Therefore the inhibition site of hydrogen peroxide cannot be at the step of 3-phosphoglycerate reduction. Dark CO2 fixation of lysed chloroplasts in a hypotonic medium is not or only slightly inhibited by hydrogen peroxide (2.5 · 10−4 M), if ribulose-1,5-diphosphate, ribose 5-phosphate or xylulose 5-phosphate were added as substrates. However, there is a strong inhibition of CO2 fixation by hydrogen peroxide, if fructose 6-phosphate together with triose phosphate are used as substrates. This indicates that hydrogen peroxide interrupts the Calvin cycle at the transketolase step, leading to a reduced supply of the CO2-acceptor ribulose 1,5-diphosphate.  相似文献   


15.
Plants using the C(4) pathway of carbon metabolism are marked by greater photosynthetic water and nitrogen-use efficiencies (PWUE and PNUE, respectively) than C(3) species, but it is unclear to what extent this is the case in C(3) -C(4) intermediate species. In this study, we examined the PWUE and PNUE of 14 species of Flaveria Juss. (Asteraceae), including two C(3) , three C(4) and nine C(3) -C(4) species, the latter containing a gradient of C(4) -cycle activities (as determined by initial fixation of (14) C into C-4 acids). We found that PWUE, PNUE, leaf ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) content and intercellular CO(2) concentration in air (C(i) ) do not change gradually with C(4) -cycle activity. These traits were not significantly different between C(3) species and C(3) -C(4) species with less than 50% C(4) -cycle activity. C(4) -like intermediates with greater than 65% C(4) -cycle activity were not significantly different from plants with fully expressed C(4) photosynthesis. These results indicate that a gradual increase in C(4) -cycle activity has not resulted in a gradual change in PWUE, PNUE, intercellular CO(2) concentration and leaf Rubisco content towards C(4) levels in the intermediate species. Rather, these traits arose in a stepwise manner during the evolutionary transition to the C(4) -like intermediates, which are contained in two different clades within Flaveria.  相似文献   

16.
Pyruvate is a minor product of the reaction catalyzed by ribulosebisphosphate carboxylase/oxygenase from spinach leaves. Labeled pyruvate was detected, in addition to the major labeled product, 3-phosphoglycerate, when 14CO2 was the substrate. Pyruvate production was also measured spectrophotometrically in the presence of lactate dehydrogenase and NADH. The Km for CO2 of the pyruvate-producing activity was 12.5 microM, similar to the CO2 affinity of the 3-phosphoglycerate-producing activity. No pyruvate was detected by the coupled assay when ribulose 1,5-bisphosphate was replaced by 3-phosphoglycerate or when the carboxylase was inhibited by the reaction-intermediate analog, 2'-carboxyarabinitol 1,5-bisphosphate. Therefore, pyruvate was not being produced from 3-phosphoglycerate by contaminant enzymes. The ratio of pyruvate produced to ribulose bisphosphate consumed at 25 degrees C was 0.7%, and this ratio was not altered by varying pH or CO2 concentration or by substituting Mn2+ for Mg2+ as the catalytically essential metal. The ratio increased with increasing temperature. Ribulose-bisphosphate carboxylases from the cyanobacterium Synechococcus PCC 6301 and the bacterium Rhodospirillum rubrum also catalyzed pyruvate formation and to the same extent as the spinach enzyme. When the reaction was carried out in 2H2O, the spinach carboxylase increased the proportion of its product partitioned to pyruvate to 2.2%. These observations provide evidence that the C-2 carbanion form of 3-phosphoglycerate is an intermediate in the catalytic sequence of ribulose-bisphosphate carboxylase. Pyruvate is formed by beta elimination of a phosphate ion from a small portion of this intermediate.  相似文献   

17.
Experiments were conducted with aged nuclear-free homogenate of sheep liver and aged mitochondria in an attempt to measure both the extent of oxidation of propionate and the distribution of label from [2-14C]propionate in the products. With nuclear-free homogenate, propionate was 44% oxidized with the accumulation of succinate, fumarate, malate and some citrate. Recovery of 14C in these intermediates and respiratory carbon dioxide was only 33%, but additional label was detected in endogenous glutamate and aspartate. With washed mitochondria 30% oxidation of metabolized propionate occurred, and proportionately more citrate and malate accumulated. Recovery of 14C in dicarboxylic acids, citrate, α-oxoglutarate, glutamate, aspartate and respiratory carbon dioxide was 91%. The specific activities of the products and the distribution of label in the carbon atoms of the dicarboxylic acids were consistent with the operation solely of the methylmalonate pathway together with limited oxidation of the succinate formed by the tricarboxylic acid cycle via pyruvate. In a final experiment with mitochondria the label consumed from [2-14C]propionate was entirely recovered in the intermediates of the tricarboxylic acid cycle, glutamate, aspartate, methylmalonate and respiratory carbon dioxide.  相似文献   

18.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

19.
Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone.  相似文献   

20.
1. Induction periods in carbon dioxide fixation by isolated pea chloroplasts were shortened by small quantities of Calvin-cycle intermediates. The additional fixation was larger than that which would have followed direct stoicheiometric conversion into ribulose 1,5-diphosphate. 2. When chloroplasts were illuminated in the absence of added substrates (other than carbon dioxide) soluble products were formed in the medium that stimulated fixation by fresh chloroplasts. 3. The induction periods were lengthened by washing the chloroplasts. Addition of catalytic quantities of Calvin-cycle intermediates then decreased the induction periods to their previous values. 4. The induction period was extended by a decrease in temperature but was largely unaffected by a decrease in light-intensity that was sufficient to decrease the maximum rate. 5. It is concluded that the lag periods are a consequence of the loss of Calvin-cycle intermediates, such as sugar phosphates, through the intact chloroplast envelope and that these losses can be made good by new synthesis from carbon dioxide in the reactions of the Calvin cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号