首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe the discovery of phenoxymethylbenzamide derivatives as a novel class of glycine transporter type-2 (GlyT-2) inhibitors. We found hit compound 1 (human GlyT-2, IC50 = 4040 nM) in our library and converted its 1-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)pyrrolidin-3-yl group to an 1-(N,N-dimethylaminopropyl)piperidyl group and its tert-butyl group to a trifluoromethyl group to obtain N-(1-(3-(dimethylamino)propyl)piperidin-4-yl)-4-((4-(trifluoromethyl)phenoxy)methyl)benzamide (20). Compound 20 showed good inhibitory activity against human GlyT-2 (IC50 = 15.3 nM) and exhibited anti-allodynia effects in a mouse neuropathic pain model.  相似文献   

2.
The synthesis of novel melatonin analogues 3a and 4a-c designed as melatonin receptor ligands is described. Among the newly synthesized ligands, 2-((S)-2-hydroxymethylindolin-1-ylmethyl)-melatonin 4b displayed the highest affinity for MT(1) receptors (K(i)=9.8 nM) and for MT(2) subtype (K(i)=7.8 nM), whereas the rigid pentacyclic ligand 3 showed the highest selectivity towards the MT(2) receptor subtype (K(i)=319.3 nM for MT(1) and K(i)=65.2 nM for MT(2)).  相似文献   

3.
Herein we report the synthesis and biological evaluation of some potent and selective A(1) adenosine receptor agonists, which incorporate a functionalised linker attached to an antioxidant moiety. N(6)-(2,2,5,5-Tetramethylpyrrolidin-1-yloxyl-3-ylmethyl)adenosine (VCP28, 2e) proved to be an agonist with high affinity (K(i)=50nM) and good selectivity (A(3)/A(1) > or = 400) for the A(1) adenosine receptor. N(6)-[4-[2-[1,1,3,3-Tetramethylisoindolin-2-yloxyl-5-amido]ethyl]phenyl]adenosine (VCP102, 5a) has higher binding affinity (K(i)=7 nM), but lower selectivity (A(3)/A(1)= approximately 3). All compounds bind weakly (K(i)>1 microM) to A(2A) and A(2B) receptors. The combination of A(1) agonist activity and antioxidant activity has the potential to produce cardioprotective effects.  相似文献   

4.
We report the discovery of a series of (naphthalen-4-yl)(phenyl)methanones as potent inducers of apoptosis using our proprietary cell- and caspase-based ASAP HTS assay. Through SAR studies, a group of N-methyl-N-phenylnaphthalen-1-amines also were identified as potent inducers of apoptosis. (1-(Dimethylamino)naphthalen-4-yl)(4-(dimethylamino)phenyl)methanone (2a), one of the most potent analogs, had EC(50) values of 37, 49 and 44nM in T47D, HCT116 and SNU398 cells, respectively. Compound 2a also was highly active in a growth inhibition assay with an GI(50) value of 34nM in T47D cells. Functionally, compound 2a arrested HCT116 cells in G(2)/M followed by induction of apoptosis and inhibited tubulin polymerization.  相似文献   

5.
Seventeen biarylcarboxybenzamide derivatives were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor (VR1) in rat DRG neurons. The replacement of the piperazine moiety of the lead compound 1 with phenyl ring showed quite enhanced antagonistic activity. Among the prepared derivatives, N-(4-tert-butylphenyl)-4-pyridine-2-yl-benzamide (2, IC(50)=31 nM) and N-(4-tert-butylphenyl)-4-(3-methylpyridine-2-yl)benzamide (3g, IC(50)=31 nM), showed 5-fold higher antagonistic activity than 1 in (45)Ca(2+)-influx assay.  相似文献   

6.
To identify selective high-affinity ligands for the vesicular acetylcholine transporter (VAChT), we have incorporated a carbonyl group into the structures of trozamicol and prezamicol scaffolds, and also converted the secondary amines of the piperidines of trozamicols and prezamicols into amides. Of 18 new racemic compounds, 4 compounds displayed high affinity for VAChT (K(i)=10-20 nM) and greater than 300-fold selectivity for VAChT over σ(1) and σ(2) receptors, namely (4-(4-fluorobenzoyl)-4'-hydroxy-[1,3'-bipiperidin]-1'-yl)(3-methylthiophen-2-yl)methanone oxalate (9g) (K(i-VAChT)=11.4 nM, VAChT/σ(1)=1063, VAChT/σ(2)=370), (1'-benzoyl-4'-hydroxy-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10c) (K(i-VAChT)=15.4 nM, VAChT/σ(1)=374, VAChT/σ(2)=315), (4'-hydroxy-1'-(thiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10e) (K(i-VAChT)=19.0 nM, VAChT/σ(1)=1787, VAChT/σ(2)=335), and (4'-hydroxy-1'-(3-methylthiophene-2-carbonyl)-[1,3'-bipiperidin]-4-yl)(4-methoxyphenyl)methanone oxalate (10g) (K(i-VAChT)=10.2 nM, VAChT/σ(1)=1500, VAChT/σ(2)=2030). These four compounds can be radiosynthesized with C-11 or F-18 to validate their possibilities of serving as PET probes for quantifying the levels of VAChT in vivo.  相似文献   

7.
From hit compounds identified by high throughput screening (HTS), we have found compound 1 as a lead TRPV1 antagonist and confirmed its potential as a treatment for pain. Compound 1 has led to potent TRPV1 antagonistic benzamide derivatives ((+/-)-2: human IC(50)=23 nM, (+/-)-3: human IC(50)=14 nM in the capsaicin-induced calcium influx assay) containing indole and naphthyl moieties, obtained by elaboration of the tryptamine scaffold or via bioisosteric replacements.  相似文献   

8.
N-[(R,R)-(E)-(3,4-dichlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (DNK333, 1b) has been reported to be a potent and balanced dual neurokinin (tachykinin) receptor antagonist. A recent clinical trial using DNK333 has shown that it blocks the NKA-induced bronchoconstriction in patients with asthma. A series of six analogues 3-8 derived from modification of 3,5-bis(trifluoromethyl)benzamide moiety of DNK333 has been synthesized to serve as the dual NK(1)/NK(2) receptor probes. The 3,5-dinitro substituted benzamide compound 3 was found to possess potent and balanced dual NK(1)/NK(2) receptor antagonist activities (pK(b)=8.4 for the NK(1) receptors, pK(b)=7.87 for the NK(2) receptors) in the functional assay using guinea pig trachea. Furthermore, SAR analysis suggests that steric, electronic, and lipophilic characteristics of substituents in the benzamide region of DNK333 have a crucial effect on both the NK(1) and NK(2) receptor antagonist activities.  相似文献   

9.
Based on the previously reported discovery lead, 3-(cis-4-(4-(1H-indol-4-yl)piperazin-1-yl)cyclohexyl)-5-fluoro-1H-indole (2), a series of related arylpiperazin-4-yl-cyclohexyl indole analogs were synthesized then evaluated as 5-HT transporter inhibitors and 5-HT(1A) receptor antagonists. The investigation of the structure-activity relationships revealed the optimal pharmacophoric elements required for activities in this series. The best example from this study, 5-(piperazin-1-yl)quinoline analog (trans-20), exhibited equal binding affinities at 5-HT transporter (K(i)=4.9nM), 5-HT(1A) receptor (K(i)=6.2nM) and functioned as a 5-HT(1A) receptor antagonist.  相似文献   

10.
2-(2-Chloro-6-fluorophenyl)acetamides having 2,2-difluoro-2-aryl/heteroaryl-ethylamine P3 and oxyguanidine P1 substituents are potent thrombin inhibitors (K(i)=0.9-33.9 nM). 2-(5-Chloro-pyridin-2-yl)-2,2-difluoroethylamine was the best P3 substituent, yielding the most potent inhibitor (K(i)=0.7 nM). Replacing the P3 heteroaryl group with a phenyl ring or replacing the difluoro substitution with dimethyl or cyclopropyl groups in the linker reduced the affinity for thrombin significantly. The aminopyridine P1s also provided an increase in potency.  相似文献   

11.
5-(O-Perbenzoylated-β-D-glucopyranosyl)tetrazole was obtained from O-perbenzoylated-β-D-glucopyranosyl cyanide by Bu(3)SnN(3) or Me(3)SiN(3)-Bu(2)SnO. This tetrazole was transformed into 5-ethynyl- as well as 5-chloromethyl-2-(O-perbenzoylated-β-D-glucopyranosyl)-1,3,4-oxadiazoles by acylation with propiolic acid-DCC or chloroacetyl chloride, respectively. The chloromethyl oxadiazole gave the corresponding azidomethyl derivative on treatment with NaN(3). These compounds were reacted with several alkynes and azides under Cu(I) catalysed cycloaddition conditions to give, after removal of the protecting groups by the Zemplén protocol, β-D-glucopyranosyl-1,3,4-oxadiazolyl-1,2,3-triazole, β-D-glucopyranosyl-1,2,3-triazolyl-1,3,4-oxadiazole, and β-D-glucopyranosyl-1,3,4-oxadiazolylmethyl-1,2,3-triazole type compounds. 5-Phenyltetrazole was also transformed under the above conditions into a series of aryl-1,3,4-oxadiazolyl-1,2,3-triazoles, aryl-1,2,3-triazolyl-1,3,4-oxadiazoles, and aryl-1,3,4-oxadiazolylmethyl-1,2,3-triazoles. The new compounds were assayed against rabbit muscle glycogen phosphorylase b and the best inhibitors had inhibition constants in the upper micromolar range (2-phenyl-5-[1-(β-D-glucopyranosyl)-1,2,3-triazol-4-yl]-1,3,4-oxadiazole 36: K(i)=854μM, 2-(β-D-glucopyranosyl)-5-[1-(naphthalen-2-yl)-1,2,3-triazol-4-yl]-1,3,4-oxadiazole 47: K(i)=745μM).  相似文献   

12.
A series of 4-amino-5-chloro-2-methoxy-N-(piperidin-4-ylmethyl)benzamide derivatives bearing an aralkylamino, alkylamino, benzoyl or phenylsulfonyl group at its side chain part at the 1-position on the piperidine ring was synthesized. They were evaluated for serotonin 4 (5-HT(4)) receptor agonist activity by testing their ability to contract the isolated guinea-pig ascending colon. 4-Amino-5-chloro-2-methoxy-N-[1-[5-(1-methylindol-3-ylcarbonylamino)pentyl]piperidin-4-ylmethyl]benzamide (1a, Y-34959) and its related compounds possessed favorable pharmacological profiles for gastrointestinal motility. Unfortunately, the compound 1a showed low bioavailability when given orally presumably due to its poor intestinal absorption rate. Replacement of the 1-methylindol-3-yl carbonylamino moiety of 1a with an aralkylamino (or alkylamino) group did not improve the intestinal absorption rate. Replacement of the 1-methylindol-3-ylcarbonylamino moiety with a benzoyl or phenylsulfonyl group increased the intestinal absorption rate compared with 1a. These compounds revealed good pharmacological profiles for gastrointestinal motility and were superior to 1a in oral bioavailability.  相似文献   

13.
A series of compounds containing privileged scaffolds of the known histamine H(1) receptor antagonists cetirizine, mianserin, ketotifen, loratadine, and bamipine were synthesized for further optimization as ligands for the related biogenic amine binding dopamine D(3) receptor. A pharmacological screening was carried out at dopamine D(2) and D(3) receptors. In the preliminary testing various ligands have shown moderate to high affinities for dopamine D(3)receptors, for example, N-(4-{4-[benzyl(phenyl)amino]piperidin-1-yl}butylnaphthalen-2-carboxamide (19a) (hD(3)K(i)=0.3 nM; hD(2)K(i)=703 nM), leading to a selectivity ratio of 2343.  相似文献   

14.
New 1-[omega-(2,3-dihydro-1H-inden-1-yl)- and (2,3-dihydro-5-methoxy-1H-inden-1-yl)alkyl]- and 1-[omega-(1,2,3,4-tetrahydronaphthalen-1-yl)- and (6-methoxy- or 6-fluoro-1,2,3,4-tetrahydronaphthalen-1-yl)alkyl] derivatives of 3,3-dimethylpiperidine were synthesized, as homologous compounds of an existing series of sigma ligands, in order to carry out sigma receptor subtypes structure-affinity relationships. The new compounds and some of their related analogues, already reported, were tested in new multireceptorial radioligand binding assays. As reference compounds, the known sigma(1) ligands SA 4503, BD 1008 and NE 100 were also prepared and tested. All reported compounds showed high sigma(1) affinity assayed by (+)-[(3)H]-pentazocine on guinea-pig brain (apparent K(i)=1.75-72.2 nM) and moderate or low sigma(2) affinity by [(3)H]-DTG on rat liver, in contrast with previous results. One tertiary amine function spaced by a five-membered chain from a phenyl group is the structural feature shared by the most active compounds 26 and 43 and some reference sigma(1) ligands. The reported sigma(1) ligands, including reference compounds, also demonstrated a high affinity towards EBP (Delta(8)-Delta(7) sterol isomerase) site (apparent K(i)=0.48-14.8 nM) and some of them (37 and 44) were good ligands at L-type Ca(++) channel. 1-[4-(2,3-Dihydro-1H-inden-1-yl)butyl]-3,3-dimethylpiperidine (26) was the best mixed sigma(1) and EBP ligand (apparent K(i)=1.75 and 1.54 nM, respectively) with a good selectivity versus sigma(2) receptor (138- and 157-fold, respectively).  相似文献   

15.
Based on the structure of N-[(R,R)-(E)-1-(4-chlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (1), attempts to improve the NK(2) affinity have resulted in the discovery of N-[(R,R)-(E)-1-(3,4-dichlorobenzyl)-3-(2-oxoazepan-3-yl)carbamoyl]allyl-N-methyl-3,5-bis(trifluoromethyl)benzamide (9, DNK333) exhibiting a 5-fold improved affinity to the NK(2) receptor in comparison to 1. Simplification of the structure via elimination of a chiral centre led to 3-[N'-3,5-bis(trifluoromethyl)benzoyl-N-(3,4-dichlorobenzyl)-N'-methylhydrazino]-N-[(R)-2-oxo-azepan-3-yl]propionamide (22), a potent and fairly balanced NK(1)/NK(2) antagonist.  相似文献   

16.
The diseases caused by dermatophytes are common among several other infections which cause serious threat to human health. It is evident that enzyme squalene epoxidase is responsible for prolonged dermatophyte infection and it is appealing to note that this enzyme is also responsible for fatty acid synthesis in these groups of fungi. In the present study, terbinafine drug which targets enzyme squalene epoxidase has been explored to design its various novel analogues. The present study suggests that many more prominent drug analogues could be constituted which may be crucial towards designing new drug candidates. In the present study, we have designed a series of such analogues viz. [(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)(naphthalen-1-ylmethyl)amine, N-[8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]-2-(sulfoamino) acetamide, {[4-(dihydroxyamino)-8-({[(2E)-6,6-dimethylhept-2-en-4-yn-1-yl](methyl)amino}methyl)naphthalen-1-yl]sulfanyl}methanol and (R)-{[4-({[(2E,6R)-6,7-dimethyloct-2-en-4-yn-1-yl](methyl)amino}methyl)-5-[(hydroxysulfamoyl)amino]naphthalen-1-yl]amino}sulfinic acid. Moreover, further by molecular docking approach the binding between enzyme and designed analogues was further analysed. The present preliminary report suggested a considerably good docking interaction score of −338.75 kcal/mol between terbinafine and squalene epoxidase from Trichophyton rubrum. This preliminary study implies that few designed candidate ligands can be effectual towards the activity of this enzyme and can play crucial role in pathogenesis control of T. rubrum.  相似文献   

17.
A novel class of potent CCR3 receptor antagonists were designed and synthesized starting from N-{1-[(6-fluoro-2-naphthyl)methyl]piperidin-4-yl}benzamide (1),which was found by subjecting our chemical library to high throughput screening (HTS). The CCR3 inhibitory activity of the synthesized compounds against eotaxin-induced Ca(2+) influx was evaluated using CCR3-expressing preB cells. Systematic chemical modifications of 1 revealed that the 6-fluoro-2-naphthylmethyl moiety was essential for CCR3 inhibitory activity in this new series of CCR3 antagonists. Further structural modifications of the benzamide and piperidine moieties of 1 led to the identification of exo-N-{8-[(6-fluoro-2-naphthyl)methyl]-8-azabicyclo[3.2.1]oct-3- yl}biphenyl-2-carboxamide [corrected] (31) as a potent CCR3 antagonist with an IC(50) value of 0.020 microM.  相似文献   

18.
A series of structurally simple 7-hydroxynaphthalenyl ureas and amides were discovered to be potent ligands of human vanilloid receptor 1 (VR1). 1-(7-Hydroxynaphthalen-1-yl)-3-(4-trifluoromethylbenzyl)urea 5f exhibited nanomolar binding affinity (K(i)=1.0nM) and upon capsaicin challenge, behaved as a potent functional antagonist (IC(50)=4nM). The synthesis and structure-activity relationships (SARs) for the series are described.  相似文献   

19.
An association between α(1)-adrenoceptor affinities, hERG K(+)-antagonistic properties and antiarrhythmic activities for a series of phenylpiperazine derivatives of hydantoin (2a-21a) was investigated. New compounds were synthesized and tested for their affinity for α(1)-adrenoceptors in radioligand binding assay using [(3)H]-prazosin as a selective radioligand. Antiarrhythmic activities in adrenaline- and barium chloride-induced arrhythmia models, an influence of the phenylpiperazine derivatives on the ECG-components and blood pressure were tested in vivo in normotensive rats. The hERG K(+)-antagonistic properties of the most potent antiarrhythmic agents were investigated in silico by the use of program QikProp. The highest α(1)-adrenoceptor affinity (K(i)=4.7 nM) and the strongest antiarrhythmic activity in adrenaline induced arrhythmia (ED(50)=0.1 mg/kg) was found for 1-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-3-methyl-5,5-diphenylimidazolidine-2,4-dione hydrochloride (19a). The results indicated a significant correlation between α(1)-AR affinities (pK(i)) and antiarrhythmic activity (ED(50)) in adrenaline model (R(2)=0.92, p <0.005). Influence of the examined phenylpiperazine hydantoin derivatives on hERG K(+) channel, predicted by means of in silico methods, suggested their hERG K(+)-blocking properties.  相似文献   

20.
A novel series of 4-thiazolylimidazoles was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin receptor-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. N-{[5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazol-2-yl]methyl}butanamide 20, a potent and selective ALK5 inhibitor, exhibited good enzyme inhibitory activity (IC(50)=8.2nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC(50)=32nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号