首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of the interfacial tension of a lipid bilayer on the pH of the aqueous solution has been studied. A theoretical equation is derived to describe this dependence. Interfacial tension measurements of an egg phosphatidylcholine bilayer were carried out. The experimental results agreed with those derived from the theoretical equation obtained close to the isoelectric point within a range of three pH units. A maximum corresponding to the isoelectric point appears both in the theoretical equation and in the experimental data.  相似文献   

2.
The effect of aminophospholipid glycation on lipid order and lipid bilayer hydration was investigated using time-resolved fluorescence spectroscopy. The changes of lipid bilayer hydration were estimated both from its effect on the fluorescence lifetime of The 1-[4-(trimethylammonium)-phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) and 1,6-diphenylhexa-1,3,5-triene (DPH) and using solvatochromic shift studies with 1-anilinonaphthalene-8-sulfonic acid. The head-group and acyl chain order were determined from time-resolved fluorescence anisotropy measurements of the TMA-DPH and DPH. The suspensions of small unilamellar vesicles (with phosphatidylethanolamine/phosphatidylcholine molar ratio 1:2.33) were incubated with glyceraldehyde and it was found that aminophospholipids react with glyceraldehyde to form products with the absorbance and the fluorescence properties typical for protein advanced glycation end products. The lipid glycation was accompanied by the progressive oxidative modification of unsaturated fatty acid residues. It was found that aminophospholipid glycation increased the head-group hydration and lipid order in both regions of the membrane. The lipid oxidation accompanying the lipid glycation affected mainly the lipid order, while the effect on the lipid hydration was small. The increase in the lipid order was presumably the result of two effects: (1) the modification of head-groups of phosphatidylethanolamine by glycation; and (2) the degradation of unsaturated fatty acid residues by oxidation.  相似文献   

3.
The tertiary structure of nucleic acids results from an equilibrium between electrostatic interactions of phosphates, stacking interactions of bases, hydrogen bonds between polar atoms and water molecules. Water interactions with ribonucleic acid play a key role in its structure formation, stabilization and dynamics. We used high hydrostatic pressure and osmotic pressure to analyze changes in RNA hydration. We analyzed the lead catalyzed hydrolysis of tRNAPhe from S. cerevisiae as well as hydrolytic activity of leadzyme. Pb(II) induced hydrolysis of the single phosphodiester bond in tRNAPhe is accompanied by release of 98 water molecules, while other molecule, leadzyme releases 86.  相似文献   

4.
The electro-osmotic velocity is the velocity of a fluid near an interface produced by an electric field parallel to a surface. The velocity adjacent to fixed phospholipid bilayer membranes was measured by observing the velocity of small vesicles suspended in the fluid. The charge densities of the bilayers ranged from 0 to 1 electronic charge per lipid and experiments were performed at temperatures above and below the transition temperature of the phospholipid bilayer in 1, 10 and 100 mM NaCl solutions. The Helmholtz-Smoluchowski equation correctly predicted the electro-osmotic velocity from the known value of zeta potential of the phospholipid bilayer.  相似文献   

5.
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 degrees C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.  相似文献   

6.
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 °C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.  相似文献   

7.
Binary mixtures of helium with nitrogen, xenon or nitrous oxide were applied to suspensions of phosphatidylcholine-cholesterol vesicles to determine those mixtures of lipid soluble gases which would exactly antagonize the membrane rigidifying effect of 100 ATA compression. A previous study has shown that the initial application of 100 ATA compression by gas produces a significant reduction in the fluidity of the phospholipid bilayer. However, as the high pressure gas dissolves into the lipid region it creates disorder and increases fluidity. Fluidity of the bilayer at equilibrium represents the sum of the compression-ordering and dissolved-gas disordering effects and is dependent on the gas/lipid partition coefficient of the particular gas. The beneficial effect of a narcotic gas added to Trimix mixtures to ameliorate HPNS in deep divers may be due to a balance of compression-ordering and solubility-disordering effects achieved within the nerve membrane. It is therefore valuable to determine those gas mixtures which achieve balance of these two effects and result in zero net change in phospholipid bilayer fluidity at an established pressure of 100 ATA. Binary mixtures of helium with 88% nitrogen, 3.8% xenon or 2.8% nitrous oxide resulted in zero net change in bilayer fluidity with our model system at 100 ATA. A graph of the percent of narcotic gas needed to produce zero net effect as a function of pressure, however, was nonlinear. This would suggest the ratio of gases in Trimix must be varied as a function of pressure. While the phosphatidylcholine-cholesterol bilayer is a good model for certain components of the nerve membrane, it does not allow for study of protein-lipid or gas-protein interactions. The data presented thus aid in our understanding of HPNS but are yet incomplete for precise use in predicting diving mixtures.  相似文献   

8.
The amphipathic α-helix is a recognised structural motif that is shared by membrane-associating proteins and peptides of diverse function. The aim of this paper is to determine the orientation of an α-helical amphipathic peptide on the bilayer surface. We use five amphipathic 18-residue peptide analogues of a class A amphipathic peptide that is known to associate with a bilayer surface. Tyrosine and tryptophan are used as spectroscopic probes to sense local environments in the peptide in solution and when bound to the surface of unilamellar phosphatidylcholine vesicles. In a series of peptides, tryptophan is moved progressively along the sequence from the nonpolar face (positions 3, 7, 4) to the polar face of the peptide (positions 2, 12). The local environment of the tryptophan residue at each position is determined using fluorescence spectroscopy employing quantum yield, and the wavelength of the emission maximum as indicators of micropolarity. The exposure of the tryptophan residues at each site is assessed by acrylamide quenching. On association with vesicles, the tryptophan residues at positions 3, 7 and 14 are in nonpolar water-shielded environments, and the tryptophan at position 12 is in an exposed polar environment. The tryptophan at position 2, which is located near the bilayer-water interface, exhibits intermediate behaviour. Analysis of the second-derivative absorption spectrum confirmed that the tyrosine residue at position 7 is in a nonpolar water-shielded environment in the peptide-lipid complex. We conclude that these class A amphipathic peptides lie parallel to the lipid surface and penetrate no deeper than the ester linkages of the phospholipids. Received: 8 April 1998 / Revised version: 6 July 1998 / Accepted: 7 August 1998  相似文献   

9.
Modeling membranes is not just modeling another kind of macromolecule, but modeling an entire environment for a large class of biomolecular processes. Membrane modeling poses quite a different set of technical problems and scientific isues from modeling proteins. This paper reviews some of these issues and suggests approaches that seem promising for resolving them based on work in our laboratories and that of others.  相似文献   

10.
A general effect by dissolved electrolytes to destabilize the curvature of bilayer tubules prepared from the diacetylenic phospholipid, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine is not found. This observation discounts the role of an electrostatic interaction between polarization charges on the edges of a ferroelectric bilayer as a means by which the cylindrical curvature may be stabilized in these structures (de Gennes, P. G. 1987. C. R. Acad. Sci. Paris. 304:259-263). The solution-mediated ionic interactions of electrolytes with this phospholipid appear not to influence significantly the relative stability of the crystalline state of the tubule, but at high levels of a few salts, may affect the nucleation and growth of the crystalline bilayer. Curvature of the bilayer in these tubular structures apparently derives from an interaction that is not very sensitive to the presence of electrolytes. Cylindrical curvature may alternatively arise from a bending force within the bilayer that is intrinsic to the anisotropic packing of the lipid molecules (Helfrich, W., and J. Prost. 1988. Phys. Rev. A38:3065-3068; Chappell, J. S., and P. Yager. 1991. Chem. Phys. Lipids. In press), and may therefore be largely determined by the packing interactions within the hydrophobic region of the tubular bilayer.  相似文献   

11.
Summary A novel flat-coil solid-state NMR probe capable of controlling the hydration of oriented phospholipid bilayers in the course of long-term experiments, is described. Perfect hydration control for at least five days of intense radio-frequency pulsing is demonstrated using 31P NMR of oriented dimyristoylphospha-tidylcholine bilayers. The probe design will be of particular importance for studies of peptides and proteins oriented in lipid bilayers.  相似文献   

12.
Molecular dynamics simulations of 500 ps were performed on a system consisting of a bilayer of 64 molecules of the lipid dipalmitoylphosphatidylcholine and 23 water molecules per lipid at an isotropic pressure of 1 atm and 50 degrees C. Special attention was devoted to reproduce the correct density of the lipid, because this quantity is known experimentally with a precision better than 1%. For this purpose, the Lennard-Jones parameters of the hydrocarbon chains were adjusted by simulating a system consisting of 128 pentadecane molecules and varying the Lennard-Jones parameters until the experimental density and heat of vaporization were obtained. With these parameters the lipid density resulted in perfect agreement with the experimental density. The orientational order parameter of the hydrocarbon chains agreed perfectly well with the experimental values, which, because of its correlation with the area per lipid, makes it possible to give a proper estimate of the area per lipid of 0.61 +/- 0.01 nm2.  相似文献   

13.
Summary The cyclic polyether XXXII, a neutral, lipid soluble molecule, produces large increases in the conductance of bilayer membranes formed from a variety of lipids. The conductance increases linearly with the concentration of alkali metal cation but with the square, and at higher concentrations the cube, of the polyether concentration. This implies that two or three polyether molecules combine with a single cation to carry it across the membrane. In the presence of XXXII the bilayer is permeable solely to cations and the membrane potential is described by an equation of the Goldman-Hodgkin-Katz type. The permeability ratios determined from potential measurements are independent of salt concentration, decrease in the sequence Cs>Rb>K>NH4>Na>Li(1.0,0.25, 0.15, 0.075, 0.007, 0.0013) and are equal to the conductance ratios at low (e.g. 10–3 m) salt concentration. At higher salt concentrations, the permeability and conductance ratios are not equal and maxima in the conductancevs. salt concentration curves are observed. Both these phenomena are postulated to be caused by the formation of relatively impermeant 11 polyether cation complexes in the aqueous phase. The 11 aqueous association constants deduced from bilayer measurements decrease in the sequence K>Rb>Na>NH4>Cs>Li (120, 34, 26, 19, 12, 4 liters per mole) and agree quantitatively with the literature values for the more water soluble polyether XXXI, which lacks only thet-butyl groups of XXXII.  相似文献   

14.
In this paper we report on the molecular dynamics simulation of a fluid phase hydrated dimyristoylphosphatidylcholine bilayer. The initial configuration of the lipid was the x-ray crystal structure. A distinctive feature of this simulation is that, upon heating the system, the fluid phase emerged from parameters, initial conditions, and boundary conditions determined independently of the collective properties of the fluid phase. The initial conditions did not include chain disorder characteristic of the fluid phase. The partial charges on the lipids were determined by ab initio self-consistent field calculations and required no adjustment to produce a fluid phase. The boundary conditions were constant pressure and temperature. Thus the membrane was not explicitly required to assume an area/phospholipid molecule thought to be characteristic of the fluid phase, as is the case in constant volume simulations. Normal to the membrane plane, the pressure was 1 atmosphere, corresponding to the normal laboratory situation. Parallel to the membrane plane a negative pressure of -100 atmospheres was applied, derived from the measured surface tension of a monolayer at an air-water interface. The measured features of the computed membrane are generally in close agreement with experiment. Our results confirm the concept that, for appropriately matched temperature and surface pressure, a monolayer is a close approximation to one-half of a bilayer. Our results suggest that the surface area per phospholipid molecule for fluid phosphatidylcholine bilayer membranes is smaller than has generally been assumed in computational studies at constant volume. Our results confirm that the basis of the measured dipole potential is primarily water orientations and also suggest the presence of potential barriers for the movement of positive charges across the water-headgroup interfacial region of the phospholipid.  相似文献   

15.
The effect of pH of an electrolyte solution on the interfacial tension of lipid membrane formed from phosphatidylcholine (PC) or phosphatidylserine (PS) was studied. The relationships were well described by an equation presented earlier based on the Gibbs isotherm but only in the proximity of the isoelectric point. Therefore, in this work models have been derived to describe the adsorption of the H+ and OH ions at lipid surfaces formed from PC or PS, which would reproduce changes in interfacial tension more correctly, particularly in the ranges distant from the isoelectric point. In one model, the surface is continuous with uniformly distributed functional groups constituting the centres of H+ and OH ion adsorption while in the other the surface is built of lipid molecules, free or with attached H+ and OH ions. In both models, the contributions of the individual lipid molecule forms to the interfacial tension of the bilayer were assumed to be additive.  相似文献   

16.
The effect of pH of an electrolyte solution on the interfacial tension of lipid membrane formed from phosphatidylcholine (PC) or phosphatidylserine (PS) was studied. The relationships were well described by an equation presented earlier based on the Gibbs isotherm but only in the proximity of the isoelectric point. Therefore, in this work models have been derived to describe the adsorption of the H(+) and OH(-) ions at lipid surfaces formed from PC or PS, which would reproduce changes in interfacial tension more correctly, particularly in the ranges distant from the isoelectric point. In one model, the surface is continuous with uniformly distributed functional groups constituting the centres of H(+) and OH(-) ion adsorption while in the other the surface is built of lipid molecules, free or with attached H(+) and OH(-) ions. In both models, the contributions of the individual lipid molecule forms to the interfacial tension of the bilayer were assumed to be additive.  相似文献   

17.
A 15-ns molecular dynamics simulation of the fully hydrated liquid-crystalline dimyristoylphosphatidylcholine-cholesterol (DMPC-Chol) bilayer containing approximately 22 mol% Chol was carried out. The generated trajectory was analysed to investigate the mechanism of the Chol condensing effect on DMPC hydrocarbon chains and the influence of Chol on the chain packing in the membrane. Chol was found to induce stronger van der Waals interactions among the chains, whereas its interactions with the chains were weak. In the DMPC-Chol bilayer, as in the DMPC bilayer, DMPC chains were regularly packed around a chosen chain but around a Chol molecule they were not. DMPC gamma chains made closer contacts with Chol than the beta chains.  相似文献   

18.
Measurements have been made of gramicidin single-channel lifetimes in monoacylglycerol bilayers chosen so that their thickness ranged from above to below the length of the gramicidin channel. Contact angles, electrical capacities and bulk-phase interfacial tensions have also been determined for these systems. The mean channel lifetime decreased with the hydrocarbon thickness of the membrane until the latter reached 2.2 nm, after which the lifetime was relatively constant. A theoretical model has been proposed which relates the mean channel lifetime (or dissociation constant) to both the thickness and the tension of the bilayers. The analysis of the present results and of those of previous studies has led to the idea that aggregates of water molecules may play an important r?le in the dissociation of the gramicidin channel.  相似文献   

19.
The two-dimensional connectivity is examined for mixed bilayers of dimyristoyl phosphatidylcholine (DMPC) and distearoyl phosphatidylcholine (DSPC) as a function of composition and temperature at constant pressure using the fluorescence recovery after photobleaching (FRAP) method. These phospholipid mixtures exhibit peritectic behavior with a large region in which both gel and liquid crystalline phases coexist. Dilauroyl phosphatidylethanolamine covalently linked through the amino function in its head group to the fluorescent nitrobenzodiazolyl group (NBD-DLPE) was used as the fluorescent probe in this study, because it was found to partition almost exclusively in the liquid crystalline phase. The results of these studies show the line of connectivity to be close to the liquidus line on the phase diagram over a rather broad range of concentrations. In this range, a gel phase comprising approximately 20% of the system disconnects a liquid crystalline phase comprising 80% of the system. The implications of this result are discussed for domain shape and the organization of biological membrane components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号