首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β- -galactopyranoside (4) gave a fully acetylated (1→6)-β- -galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α- -galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β- -galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β- -galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β- -galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β- -galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β- -galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

2.
Sequential tritylation, benzoylation, and detritylation of methyl 3-deoxy-3-fluoro-β- -galactopyranoside gave crystalline methyl 2,4-di-O-benzoyl-3-deoxy-3-fluoro-β- -galactopyranoside (9), which was used as the initial nucleophile in the synthesis of the target oligosaccharide (16). Treatment of 9 with 2,3,4-tri-O-benzoyl-6-O-bromoacetyl-α- -galactopyranosyl bromide gave the corresponding disaccharide derivative 13, having a selectively removable blocking group at O-6′. Debromoacetylation of 13 afforded the disaccharide nucleophile 14 which, when treated with 2,4,6-tri-O-benzoyl-3-deoxy-3-fluoro-α- -galactopyranosyl bromide, gave the fully protected trisaccharide 15. Debenzoylation of 15 gave the title glycoside 16. Condensation reactions were performed with silver trifluoromethane-sulfonate as a promoter in the presence of sym-collidine under base-deficient conditions, and gave excellent yields of the desired β-(trans)-products. Analyses of the 1H- and 13C-n.m.r. spectra, as well as determination of the JCF and JHF coupling constants, were made by using various one- and two-dimensional n.m.r. techniques.  相似文献   

3.
Ammonium 2,6-anhydro-3-deoy- -glycero- -talo-octonate (1), a potent inhibitor of the enzyme CMP-KDO synthetase, its C-2 epimer 2, and the methyl β-(3) and α-glycoside (4) of KDO were studied by 1H- and 13C-n.m.r. spectroscopy. Compound 1 was also analysed by X-ray crystallography. Each compound adopted a 5C2 chair conformation with the side chain equatorial. The preponderant side-chain conformation of 1 in solution was the same as that in the crystal and was stabilised by an intramolecular hydrogen bond from HO-8 to the carboxylate group. This hydrogen bond appeared to be present also in 3. However, the side-chain conformation of 2 and 4 was different from that in 1 and 3. The metal-ion-binding properties, determined on the basis of the line-broadening effects of Mn2+ on the 13C-n.m.r. signals, showed that the carboxylate group was involved in the binding with O-8 in 1 and 3 and with O-6 and O-8 in 2 and 4.  相似文献   

4.
De-etherification of 6,6′-di-O-tritylsucrose hexa-acetate (2) with boiling, aqueous acetic acid caused 4→6 acetyl migration and gave a syrupy hexa-acetate 14, characterised as the 4,6′-dimethanesulphonate 15. Reaction of 2,3,3′4′,6-penta-O-acetylsucrose (5) with trityl chloride in pyridine gave a mixture containing the 1′,6′-diether 6 the 6′-ether 9, confirming the lower reactivity of HO-1′ to tritylation. Subsequent mesylation, detritylation, acetylation afforded the corresponding 4-methanesulphonate 8 1′,4-dimethanesulphonate 11. Reaction of these sulphonates with benzoate, azide, bromide, and chloride anions afforded derivatives of β- -fructofuranosyl α- -galactopyranoside (29) by inversion of configuration at C-4. Treatment of the 4,6′-diol 14 the 1,′4,6′-triol 5, the 4-hydroxy 1′,6′-diether 6 with sulphuryl chloride effected replacement of the free hydroxyl groups and gave the corresponding, crystalline chlorodeoxy derivatives. The same 4-chloro-4-deoxy derivative was isolated when the 4-hydroxy-1′,6′-diether 6 was treated with mesyl chloride in N,N-dimethylformamide.  相似文献   

5.
O-α- -Rhamnopyranosyl-(1→3)- -rhamnopyranose (19) and O-α- -rhamnopyranosyl-(1→2)- -rhamnopyranose were obtained by reaction of benzyl 2,4- (7) and 3,4-di-O-benzyl-α- -rhamnopyranoside (8) with 2,3,4-tri-O-acetyl-α- -rhamnopyranosyl bromide, followed by deprotection. The per-O-acetyl α-bromide (18) of 19 yielded, by reaction with 8 and 7, the protected derivatives of the title trisaccharides (25 and 23, respectively), from which 25 and 23 were obtained by Zemplén deacetylation and catalytic hydrogenolysis, With benzyl 2,3,4-tri-O-benzyl-β- -galactopyranoside, compound 18 gave an ≈3:2 mixture of benzyl 2,3,4-tri-O-benzyl-6-O-[2,4-di-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-α- -rhamnopyranosyl]-β- -galactopyranoside and 4-O-acetyl-3-O-(2,3,4-tri-O-acetyl-α- -rhamnopyranosyl)-β- -rhamnopyranose 1,2-(1,2,3,4-tetra-O-benzyl-β- -galactopyranose-6-yl (orthoacetate). The downfield shift at the α-carbon atom induced by α- -rhamnopyranosylation at HO-2 or -3 of a free α- -rhamnopyranose is 7.4-8.2 p.p.m., ≈1 p.p.m. higher than when the (reducing-end) rhamnose residue is benzyl-protected (6.6-6.9 p.p.m.). α- -Rhamnopyranosylation of HO-6 of gb- -galactopyranose deshields the C-6 atom by 5.7 p.p.m. The 1 2-orthoester ring structure [O2,C(me)OR] gives characteristic resonances at 24.5 ±0.2 p.p.m. for the methyl, and at 124.0 ±0.5 p.p.m. for the quaternary, carbon atom.  相似文献   

6.
Our recent studies with 2-(3′-hydroxypropylidene) analogs of 1α,25-dihydroxy-19-norvitamin D3 showed that this 2-substituent creates compounds with very potent biological activity. In the continuing search for vitamin D compounds with selective activity profiles, we prepared a series of 1α-hydroxy-19-norvitamin D analogs characterized by the presence of a 3′-hydroxypropylidene substituent at C-2 and a truncated side chain. These vitamin D compounds were efficiently prepared using convergent syntheses. The C,D-fragments, namely the Grundmann ketones 19, 20, 27, 36 and 37 were synthesized from the known 8β-benzoyloxy-22-aldehydes 12 and 29. These hydrindanones were subjected to Lythgoe type Wittig–Horner coupling with phosphine oxide 21, prepared by us previously, and after hydroxyl deprotection the set of 19-norvitamins 711 was successfully obtained. According to our expectations, all analogs (with an exception of the 20R-compound 7) have pronounced in vitro activity. When compared to the natural hormone 1α,25-(OH)2D3 (1), they show the same or only slightly reduced affinity for the vitamin D receptor while being similarly effective as 1 in differentiation of HL-60 cells into monocytes.  相似文献   

7.
An α- -fucosidase from porcine liver produced α- -Fuc-(1→2)-β- -Gal-(1→4)- -GlcNAc (2′-O-α- -fucosyl-N-acetyllactosamine, 1) together with its isomers α- -Fuc-(1→3)-β- -Gal-(1→4)- -GlcNAc (2) and α- -Fuc-(1→6)-β- -Gal-(1→4)- -GlcNAc (3) through a transglycosylation reaction from p-nitrophenyl α- -fucopyranoside and β- -Gal-(1→4)- -GlcNAc. The enzyme formed the trisaccharides 13 in 13% overall yield based on the donor, and in the ratio of 40:37:23. In contrast, transglycosylation by Alcaligenes sp. α- -fucosidase led to the regioselective synthesis of trisaccharides containing a (1→3)-linked α- -fucosyl residue. When β- -Gal-(1→4)- -GlcNAc and lactose were acceptors, the enzyme formed regioselectively compound 2 and α- -Fuc-(1→3)-β- -Gal-(1→4)- -Glc (3′-O-α- -fucosyllactose, 4), respectively, in 54 and 34% yields, based on the donor.  相似文献   

8.
The reaction between the redox-active diphosphine ligand 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) and the dirhenium compound Re2(CO)8(μ-H)(μ-η12-C CPh) in CH2Cl2 at room temperature proceeds by CO loss to give the dirhenium complex Re2(CO)7(bpcd)(μ-H)(η1-C CPh) (1). This new complex was characterized in solution by IR and NMR (1H and 31P) spectroscopy and in the solid state by X-ray diffraction analysis. Re2(CO)7(bpcd)(μ-H)(η1-C CPh) crystallizes in the triclinic space group

γ = 69.240(6)°, V = 2024.9(3) Å3, Z = 2, dcalc = 1.862 g cm−3 R = 0.0221, Rw = 0.243 for 4066 observed reflections. The bpcd ligand in 1 adopts a chelating mode with a linear phenylacetylide ligand being located on the adjacent rhenium center cis to the bpcd ligand. This complex represents the first structurally characterized example of a hydrido-bridged dirhenium complex possessing both a linear acetylide ligand and a chelating diphosphine ligand.  相似文献   

9.
Type 3 17β-hydroxysteroid dehydrogenase (17β-HSD), a key steroidogenic enzyme, transforms 4-androstene-3,17-dione (Δ4-dione) into testosterone. In order to produce potential inhibitors, we performed solid-phase synthesis of model libraries of 3β-peptido-3α-hydroxy-5α-androstan-17-ones with 1, 2, or 3 levels of molecular diversity, obtaining good overall yields (23–58%) and a high average purity (86%, without any purification steps) using the Leznoff's acetal linker. The libraries were rapidly synthesized in a parallel format and the generated compounds were tested as inhibitors of type 3 17β-HSD. Potent inhibitors were identified from these model libraries, especially six members of the level 3 library having at least one phenyl group. One of them, the 3β-(N-heptanoyl- -phenylalanine- -leucine-aminomethyl)-3α-hydroxy-5α-androstan-17-one (42) inhibited the enzyme with an IC50 value of 227 nM, which is twice as potent as the natural substrate Δ4-dione when used itself as an inhibitor. Using the proliferation of androgen-sensitive (AR+) Shionogi cells as model of androgenicity, the compound 42 induced only a slight proliferation at 1 μM (less than previously reported type 3 17β-HSD inhibitors) and, interestingly, no proliferation at 0.1 μM.  相似文献   

10.
(Methyl 2-acetamidoacrylate)tricarbonyliron(0) (3) reacts with 2 equivalents of methyllithium to give methyl N-acetylalaninate (4) and 2-acetamido-4-oxopentanoate (5) when the reaction is quenched with trifluoroacetic acid. Production of methyl N-acetylalaninate is dependent only on the presence of trifluoroacetic acid, and the ratio of 4 to 5 generated in these reactions is related to the quantity of trifluoroacetic acid used to quench them. Addition of two equivalents of methyllithium followed by tertiary haloalkanes gives protected β,β,β-trialkyl α-amino acids which may be hydrolysed to give tert-leucine (13) and the new α-amino acids 2-amino-3,3-dimethylpentanoic acid (14) and 2-amino-3,3-dimethylhexanoic acid (15).  相似文献   

11.
Methyl 2,4-di-O-acetyl-3-deoxy-3-fluoro-β- -galactopyranoside was synthesized by sequential tritylation, acetylation, and detritylation of methyl 3-deoxy-3-fluoro-β- -galactopyranoside, and used as the initial nucleophile in the synthesis of methyl β-glycosides of (1→6)-β- -galacto-biose, -triose (20), and -tetraose (22) having a 3-deoxy-3-fluoro-β- -galactopyranoside end-residue. The extension of the oligosaccharide chais, to form the internal units in 20 and 22, was achieved by use of 2,3,4-tri-O-acetyl-6-O-bromoacetyl-α- -galactopyranosyl bromide as a glycosyl donor, and mercuric cyanide or silver triflate as the promotor. While fewer by-products were formed in the reactions involving mercuric cyanide, the reactions catalyzed by silver triflate were stereospecific and yielded only the desired β (trans) products.  相似文献   

12.
In order to prepare 3-aminopropyl glycosides of Neu5Ac-α-(2→6′)-lactosamine trisaccharide 1, and its N-glycolyl containing analogue Neu5Gc-α-(2→6′)-lactosamine 2, a series of lactosamine acceptors with two, three, and four free OH groups in the galactose residue was studied in glycosylations with a conventional sialyl donor phenyl [methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (3) and a new donor phenyl [methyl 4,7,8,9-tetra-O-acetyl-5-(N-tert-butoxycarbonylacetamido)-3,5-dideoxy-2-thio- -glycero-α- and β- -galacto-2-nonulopyranosid]onates (4), respectively. The lactosamine 4′,6′-diol acceptor was found to be the most efficient in glycosylation with both 3 and 4, while imide-type donor 4 gave slightly higher yields with all acceptors, and isolation of the reaction products was more convenient. In the trisaccharides, obtained by glycosylation with donor 4, the 5-(N-tert-butoxycarbonylacetamido) moiety in the neuraminic acid could be efficiently transformed into the desired N-glycolyl fragment, indicating that such protected oligosaccharide derivatives are valuable precursors of sialo-oligosaccharides containing N-modified analogues of Neu5Ac.  相似文献   

13.
The syntheses are described of 2,3-di-O-glycosyl derivatives of methyl α- and β- -glucopyranoside having α- -manno-, β- -galacto-, α- -rhamno-, α- -fuco-, and β- -fuco-pyranosyl substitutents at O-2 and O-3. The syntheses involved glycoslation of methyl 4,6-O-(benzylidene-α- (24) and β- -glucopyranoside (21), and substituted derivatives of 21 bearing 2-O-(2,3,4,6-tetra-O-benzyl-α- -mannopyranosyl)-, -(2,3,4,6-tetra-O-acetyl-β- -galactopyranosyl)-, -(2,3,4-tri-O-benzyol-α- -rhamnopyranosyl)-, and-(2,3,4-tri-O-benzoyl-β- -fucopyranosyl) groups.  相似文献   

14.
Reactions of [CpCo(PPh3)2](Cp=η5-cyclopentadienyl) with conjugated diacetylenes were investigated in terms of the synthesis of π-conjugated organometallic polymers. The reaction of an α,β-diyne, PhCC---CCPh, gave three geometric isomers of dialkynylcobaltacyclopentadienes, 1a-c, and an insoluble polymeric product, 1d. A 2,4-dialkynyl complex, 2, and a 2,5-dialkynyl complex, 3, were obtained solely from Me3SiCC---CCSiMe3 and MeCC---CCMe, respectively. 1,1′-Bis(trimethylsilylethynyl)-4,4′-biphenyl afforded two isomers of 1,3-dialkynylcyclobutadiene complexes, 4a and 4b. The stability of the one-electron oxidized forms of the cobalacyclopentadiene and cyclobutadiene complexes was examined by cyclic voltammetry.  相似文献   

15.
The reaction of 2,3-di-O-acetyl-4-O-benzyl-α,β-d-xylopyranosyl bromide (2) with methyl 2,3-di-O-acetyl-β-d-xylopyranoside gave methyl O-(2,3-di-O-acetyl-4-O-benzyl-β-d-xylopyranosyl)-(1→4)-2,3-di-O-acetyl-β-d-xylopyranoside (22). Catalytic hydrogenolysis of 22 exposed HO-4′ which was then condensed with 2. This sequence of reactions was repeated three more times to afford, after complete removal of protecting groups, a homologous series of methyl β-glycosides of (1→4)-β-d-xylo-oligosaccharides. 13C-N.m.r. spectra of the synthetic methyl β-glycosides (di- to hexa-saccharide) are presented together with data for six other, variously substituted, homologous series of (1→4)-d-xylo-oligosaccharides.  相似文献   

16.
The synthesis and pharmacology of 15 1-deoxy-Δ8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-Δ8-THC (5), 1-deoxy-Δ8-THC (6), 1-deoxy-3-butyl-Δ8-THC (7), 1-deoxy-3-hexyl-Δ8-THC (8) and a series of 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=0–4, 6, 7, where n=the number of carbon atoms in the side chain−2). Three derivatives (1719) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1′,1′-dimethylalkyl)-1-deoxy-Δ8-THC analogues (2, n=1–5) have high affinity (Ki=<20 nM) for the CB2 receptor. Four of them (2, n=1–4) also have little affinity for the CB1 receptor (Ki=>295 nM). 3-(1′,1′-Dimethylbutyl)-1-deoxy-Δ8-THC (2, n=2) has very high affinity for the CB2 receptor (Ki=3.4±1.0 nM) and little affinity for the CB1 receptor (Ki=677±132 nM).
Scheme 3. (a) (C6H5)3PCH3+ Br, n-BuLi/THF, 65°C; (b) LiAlH4/THF, 25°C; (c) KBH(sec-Bu)3/THF, −78 to 25°C then H2O2/NaOH.  相似文献   

17.
In recent years several 15β-hydroxysteroids have emerged pathognomonic of adrenal disorders in human neonates of which 3α,15β,17α-trihydroxy-5β-pregnan-20-one (2) was the first to be identified in the urine of newborn infants affected with congenital adrenal hyperplasia. In this investigation we report the synthesis of the three remaining 3ξ,5ξ-isomers, namely 3α,15β,17α-trihydroxy-5α-pregnan-20-one (3), 3β,15β,17α-trihydroxy-5α-pregnan-20-one (7) and 3β,15β,17α-trihydroxy-5β-pregnan-20-one (8) for their definitive identification in pathological conditions in human neonates. 3β,15β-Diacetoxy-17α-hydroxy-5-pregnen-20-one (11), a product of chemical synthesis was converted to the isomeric 3 and 7, while conversion of 15β,17α-dihydroxy-4-pregnen-3,20-dione (4), a product of microbiological transformation, resulted in the preparation of 8. In brief, selective acetate hydrolysis of 11 gave 15β-acetoxy-3β,17α-dihydroxy-5-pregnen-20-one (12) which on catalytic hydrogenation gave 15β-acetoxy-3β,17α-dihydroxy-5α-pregnan-20-one (13) a common intermediate for the synthesis of the 3β(and α),5α-isomers. Hydrolysis of the 15β-acetate gave 7, whereas oxidation with pyridinium chlorochromate gave 15β-acetoxy-17α-hydroxy-5α-pregnan-3,20-dione (14) which on reduction with -Selectride and hydrolysis of the 15β-acetate gave 3. Finally, hydrogenation of 4 gave 15β,17α-dihydroxy-5β-pregnan-3,20-dione (10) which on reduction with -Selectride gave 8.  相似文献   

18.
Complexes [M(η12-C8H12OMe)((2,6-(R)2---C6H3)N=C(R′)---C(R′)=N((2,6-(R)2---C6H3))]PF6 (where M=Pd, R=H and R′2=Me2 (1), M=Pd, R=Me and R′2=Me2 (2), M=Pd, R=Et and R′2=Me2 (3), M=Pd, R=iPr and R′2=Me2 (4), M=Pd, R=iPr and R′2=An (5), M=Pt, R=iPr and R′2=An (6)) were synthesized by the reaction of [M(η12-C8H12OMe)Cl]2 with the appropriate α-diimine ligand in the presence of NH4PF6. Their ion pair structure in solution was investigated by detecting dipolar interactions between protons belonging to the cation and fluorine nuclei of the anion (interionic contacts) in the 19F, 1H-HOESY NMR spectra. In complexes 14, the anion in solution is located close to the peripheral protons of the α-diimine ligand and it interacts with the R′ protons and with the R protons that point toward the R′ groups. The steric protection of apical position exerted by the R substituents is clearly illustrated by the absence of interionic contacts between any protons of the cycloctenylmethoxy-moiety and the anion for R≥Me in 14. In complexes 5 and 6 the interactions between the anion and the peripheral N,N protons also predominate but other anion–cation orientations are significantly present and, consequently, the interionic structure is less specific.  相似文献   

19.
Cycloaddition reactions with α,β-unsaturated carbene complexes of the Fischer-type bearing the carbene carbon atom and the double bond incorporated in the same ring are described. Pentacarbonyl(2H-benzopyran-2- ylidene)chromium(0) complexes (2a-c) and pentacarbonyl(4-methoxy-3,3-dimethyl-2-oxacyclopentylidene)- chromium(0) (3) show a rather low reactivity towards 1,3-dipoles and 1,3-dienes. The reactions with diazomethane are regioselective but not chemoselective; compounds 2 and 3 show two sites of attack: the α,β carbon-carbon and the carbon-metal double bond. The crystal and molecular structures of 2a and 3 have been elucidated by single crystal X-ray analysis. Crystals of 2a are monoclinic, space group P21/c, a=7.614(3), b=14.033(3), c=12.766(3) Å, β=95.24°, V=1358.3(7) Å Z=4; crystals of 3 are triclinic, space group P , a=6.553(1), b=9.408(1), c=10.620(1) Å α=92.70(1), β=92.30(1), γ=92.12(1)°, V=653.0(1), Å3, Z=2. Final agreement indices for 2a and 3 are R=0.034 and 0.033, respectively. Vibrational properties of the Cr(CO)5 moiety were interpreted by FT-IR and FT-Raman spectroscopy. Electronic spectra and π electron distribution were interpreted by resonance Raman spectroscopy.  相似文献   

20.
The compound (HOCH2CH2S) ) (1) has been prepared by the reaction of antimony(III) isopropoxide and 2-mercaptoethanol in a 1:2 molar ratio. Reaction of 1 with MOCH3 (where M = Li, Na and K) yields bimetallic products of the type, M[(OCH2CH2S) )]. All these derivatives have been characterized by elemental analysis, IR, NMR (1H and 13C) spectra and molar conductivity measurements. Crystals of 1 are triclinic, space group P , with a = 6.449(2), b = 10.285(2), c = 13.494(1) Å, α = 78.08(1), β = 75.99(1), γ = 71.54(2)°, V = 815.48 Å3, Z = 4, Dcalc = 2.239 g cm−3, (Mo Kα) λ = 0.7107 Å, μ = 3.55 mm−1, F(000) = 528, T = 295 K, final R = 0.0189 for 2344 reflections. One of the two mercaptoethanol moieties in 1 forms a five-membered chelate ring with antimony, Sb(1)---O(11) = 2.023(2) Å and Sb(1)---S(11) = 2.434(1) Å, while the other is bonded through the S atom only, Sb(1)---S(12) = 2.434(1) Å. The angles between these primary bonds with a mean value of 90.2° suggest a basically pyramidal, or pseudo tetrahedral structure if the stereochemically active lone pair is included in the coordination sphere. Two molecules are linked by intermolecular hydrogen bridges. The presence of weak intermolecular secondary bonding, Sb(1)---O(12) = 2.567(3) Å, in the complex indicates that the overall coordination polyhedron is best described in terms of a distorted trigonal bipyramidal arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号