首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
《Aquatic Botany》2009,90(4):357-364
Plant growth, biomass allocation and autofragmentation were investigated in response to root and shoot competition in the submersed macrophyte Myriophyllum spicatum L. growing in two sediment environments. Biomass accumulation and allocation were significantly affected by sediment fertility, with a higher total biomass observed in fertile sediment (average: 4.69 g per plant vs. 1.12 g per plant in infertile sediment). Root-to-shoot ratios were 0.34 and 0.06 in the infertile and fertile sediments, respectively, reflecting the high investment placed on roots under infertile conditions. In the presence of root, shoot, and full competition, whole plant biomass decreased by 18%, 12% and 24% in the infertile sediments, and 23%, 25% and 33% in the fertile sediments, respectively. Root weight ratios (RWRs) increased with root competition by 38% (P < 0.001) and 12% (P = 0.002), while leaf weight ratios (LWRs) decreased with shoot competition by 6% (P = 0.042) and 5% (P = 0.001) in the infertile and fertile sediments, respectively. A total of 406 autofragments were harvested in the fertile sediments, but none were obtained from the infertile sediments. In the control, autofragment number and biomass was 166% and 175% higher compared to the competition treatment. Root and shoot competition resulted in a 21% (P = 0.043) and 18% (P = 0.098) decrease in the autofragment biomass, respectively. These results indicated that M. spicatum responds to different sediment fertility by changing its allocation patterns. Moreover, both root and shoot competition influenced plant growth and autofragmentation, while sediment nutrient availability played an important role in M. spicatum autofragmentation.  相似文献   

2.
This study aimed to characterize eight accessions of Vicia narbonensis L. originated from different Mediterranean countries. The cytology of these species is rarely known despite the fact of its great socio-economical and ecological interest in these arid and semi-arid zones. This work aimed mainly to characterize the karyotype, morphological pod and seed traits of the species. Karyotypes of all accessions were similar to a diploid number of 2n = 2x = 14. All the accessions have submetacentric chromosomes with a secondary constriction attached to the long arm of pair VII close to the centromere. Variation in chromosome size was observed; it ranged from 5.86 μm to 7.62 μm. Indices of karyotype asymmetry were calculated as the total form percentage (TF%) and symmetric indices (Syi) which ranged from 33.75% to 35.42% and from 51.01% to 54.85%, respectively. The predominance of submetacentric chromosomes indicated that the karyotype is symmetrical and can be considered as primitive. However, the analysis of quantitative parameters measured on pods and seeds showed a significant variation between accessions. A relationship between centromeric index and the pod beak length was found. Estimation of phenotypic diversity using the Shannon diversity index (H′) showed that the length, the seed color and the number of seeds per pod are the most polymorphic traits with respectively, H = 0.92, 0.80 and 0.83. Cluster analysis of karyological, pod and seed traits showed four groups of accessions. This clustering is partially due to the geographical origin of the studied accessions. The variation in chromosome size, pod and seed traits could offer potentially valuable genetic resources for the improvement of V. narbonensis which is considered as neglected and underutilized crop species (NUCS).  相似文献   

3.
Most nutrient solution studies on the interactions between silicon (Si) and cadmium (Cd) are short term. Here we reported a long-term experiment in which rice (Oryza sativa L.) was cultured for 105 days and harvested at four different growth stages to measure biomass accumulation and Cd uptake and distribution in shoots and roots. Exogenous Si increased shoot biomass by 61–238% and root biomass by 48–173% when the culture solution was free of Cd. When 2 μmol L?1 Cd was added, Si supply increased shoot and root biomass by 125–171% and by 100–106% compared to the zero-Si treatment. Increasing the Cd concentration to 4 μmol L?1 decreased the beneficial effects of Si on root and shoot biomass. Silicon supply decreased shoot Cd concentrations by 30–50% and Cd distribution ratio in shoot by 25.3–46%, compared to the treatment without Si supply. Additionally, lower Si supply or more serious Cd stress would lead to roots with bigger biomass and higher Si concentration. Energy-dispersive X-ray microanalysis showed that both Si and Cd accumulated synchronously in the border and middle of phytoliths of the shoots. We conclude that Si enhances plant growth and decreases Cd accumulation in shoots and thereby helps to lower the potential risks of food contamination.  相似文献   

4.
《Aquatic Botany》2007,86(1):9-13
Plant growth, biomass allocation and root distribution were investigated in the submerged macrophyte Vallisneria natans growing in heterogeneous sediments. Experimentally heterogeneous sediment environments were constructed by randomly placing 4 cm of clay or sandy loam into the top (0–4 cm) or bottom (4–8 cm) layer within an experimental tray, providing two homogeneous and two heterogeneous treatments. Biomass accumulation was significantly affected by the experimental treatments: higher in the homogeneous sediment of clay (32 mg per plant) and the two heterogeneous treatments (about 27 mg per plant), but lower in the homogeneous sediment of sandy loam (15 mg per plant). Root: shoot ratio was also different among the four treatments. Compared with the treatments of clay in the top layer, plants allocated more biomass to roots at the treatments of sandy loam in the top layer. Heterogeneous sediments significantly affected root distribution pattern. Compared with the treatments of sandy loam in the bottom layer, root number (7–8 versus 13–14) and total root length (3.6–4.0 cm versus 29.5–40.0 cm) in the bottom layer were significantly higher in the treatments with clay in the bottom layer. These results indicate that both sediment structure and nutrient availability influence growth and root system distribution of V. natans.  相似文献   

5.
Soil phosphorus (P) availability commonly limits crop growth and forage production. Furthermore, there is a concern about the use of fertilizers, both because of the risk of environmental degradation and P being a non-renewable resource. Some experimental evidence would indicate that certain cultivars of tall fescue of Mediterranean origin would have a higher root:shoot ratio than temperate ones. This characteristic could improve P efficiency. Since P fertilization is a crucial issue in forage production, enabling grass crops to use the soil resources more efficiently represents an important agronomical goal. The objective of the present work was to compare the response of two tall fescues of different origin to low P availability and to analyze the interactions between morphological traits, P uptake efficiency and P use efficiency. Two cultivars of tall fescue (Schedonorus phoenix (Scop.) Holub (formerly Festuca arundinacea (Schreb.)), one of temperate origin, Palenque Plus INTA (PP), and the other of Mediterranean origin, Fraydo (F), subjected to three different P treatments (P1, P2 and P3 obtained by adding 0; 10 or 100 mg P kg−1 soil–sand mixture 1:1 by weight) were studied in a glasshouse experiment. Four destructive harvests were performed from 24 to 54 days after emergence (dae) and the following determinations were performed: root and shoot components dry matter (DM), leaf area, tiller production, root length and diameter, root and shoot components P concentration. Tissue turnover measurements were performed from 19 to 53 dae. In general, responses to low P availability were in agreement with the literature (e.g. low DM accumulation, higher root:shoot ratio, low leaf elongation rate, low tiller production). Conversely to what was expected, PP had a higher root:shoot ratio than F under low P availability and tended to show higher values of P uptake during the whole experimental period. However, the P uptake efficiency per unit of root length was higher in F than in PP. By the end of the experimental period PP accumulated a higher amount of total biomass than F under P2 and P3. Under moderate P deficiency (P2), shoot growth was less reduced in PP than in F. Under the experimental conditions of the present study PP showed a higher growth potential and a more plastic response to P availability. Experiments at lower temperatures that would favor Mediterranean cultivars growth should be performed to study possible effects of P-temperature interactions on these cultivars.  相似文献   

6.
《Aquatic Botany》2007,86(1):30-36
Shoots of the Mediterranean seagrass Posidonia oceanica (L.) Delile can be overgrown with a thick encrustation of the bryozoan Calpensia nobilis (Esper) (Chelostomida) particularly under high hydrodynamic conditions. We compared shoots with and without this encrustation and assessed whether it affected shoot morphology and production, and incidence of polychaete borers. The borers collected were represented by three species of polychaete Eunicidae (Lysidice ninetta, Lysidice collaris and Nematonereis unicornis). Shoots affected by overgrowth of C. nobilis showed a significantly lower borer frequency (17% versus 49%), lower values of both yearly biomass of the rhizome (mean 6.3 mg/year in shoot with C. nobilis versus 8.3 mg/year in shoot without) and biomass/elongation (B/E) ratio, and lower mean sheath thickness (0.25 mm versus 0.30 mm), while the mean width of the leaves was slightly higher (1.0 mm versus 0.7 mm). Significant Spearman coefficient's values were estimated between carbonate mass of C. nobilis and rhizome length, muff length and rhizome length, and maximum thickness of the muff and rhizome length. Plant and bryozoan morphometrics allowed to estimate between 5 and 10 years the colonization age of C. nobilis on the living shoots studied.  相似文献   

7.
Our understanding of plant growth in response to nitrogen (N) supply is mainly based on studies of mutants and transformants. This study explored the natural variability of Arabidopsis thaliana first to find out its global response to N availability and secondly to characterize the plasticity for growth and N metabolism among 23 genetically distant accessions under normal (N+), limited (N-), and starved (N0) N supplies. Plant growth was estimated by eight morphological traits characterizing shoot and root growth and 10 metabolic parameters that represented N and carbon metabolism. Most of the studied traits showed a large variation linked to genotype and nutrition. Furthermore, Arabidopsis growth was coordinated by master traits such as the shoot to root ratio of nitrate content in N+, root fresh matter and root amino acids in N-, and shoot fresh matter together with root thickness in N0. The 23 accessions could be gathered into four different groups, according to their growth in N+, N-, and N0. Phenotypic profiling characterized four different adaptative responses to N- and N0. Class 1 tolerated N limitation with the smallest decrease in shoot and root biomass compared with N+, while class 2 presented the highest resistance to N starvation by preferential increased root growth, huge starch accumulation, and high shoot nitrate content. In contrast, class 3 plants could tolerate neither N limitation nor N starvation. Small plants of class 4 were different, with shoot biomass barely affected in N- and root biomass unaffected in N0.  相似文献   

8.
《Journal of plant physiology》2014,171(3-4):260-268
Barley (Hordeum vulgare cv. Bojos) plants cultured in low nitrogen (N) containing Hoagland solution (20 mg/l) were exposed to N deficiency (−N) over 15 days. Plants revealed relatively high tolerance to total N deficit because shoot length was not altered and dry biomass was depleted by ca. 30% while root length increased by ca. 50% and dry biomass remained unaffected. Soluble proteins and free amino acids decreased more pronouncedly in the roots. Antioxidants (glutathione and ascorbic acid) decreased in the shoots but increased or were not affected in the roots. Ascorbate peroxidase and glutathione reductase activities were depleted in shoots and/or roots while guaiacol peroxidase activity was stimulated in the shoots. In accordance, fluorescence signal of reactive oxygen species (ROS) and nitric oxide was elevated in shoots but no extensive changes were observed in roots if +N and −N treatments are compared. At the level of phenolic metabolites, slight increase in soluble phenols and some phenolic acids and strong elevation of flavonoid homoorientin was found in the shoots but not in the roots. Fluorescence microscopy in terms of detection of phenols is also discussed. We also briefly discussed accuracy of quantification of some parameters owing to discrepancies in the literature. It is concluded that N deficiency induces increase in shoot phenolics but also elevates symptoms of oxidative stress while increase in root antioxidants probably contributes to ROS homeostasis aimed to maintain root development.  相似文献   

9.
Lizhi Wang 《农业工程》2013,33(5):282-286
Plant growth, biomass allocation, root distribution and plant nutrient content were investigated in the submerged macrophyte Potamogeton crispus growing in heterogeneous sediments. Three experimental sediments heterogeneous in nutrient content and phosphorus release capacity were used: sandy loam with low nutrient content (A), clay with intermediate nutrient content (B), and clay with high nutrient content (C). Biomass accumulation was significantly affected by the sediment type, and was highest in clay C (1.23 mg per plant dry weight) but lowest in sandy loam (0.69 mg per plant dry weight). The root:shoot ratios in treatments A, B and C were 0.30, 0.14 and 0.09, respectively. P. crispus allocated more biomass to roots in sandy loam compared with the other sediments. The average root numbers in sediments A, B and C were 16, 19 and 20, respectively, and the total root lengths in sediments A, B and C were 238.84, 200.36 and 187.21 cm, respectively. Almost 90% of the root biomass was distributed in the 0–15 cm depth in sediments B and C, compared with 64.53% in sediment A. The rank order of plant nitrogen and phosphorus concentrations in the sediment types was C > B > A. These results indicate that both sediment structure and nutrient availability influence the growth and distribution of the root system of P. crispus.  相似文献   

10.
《Aquatic Botany》2001,69(2-4):325-339
This study examined the mass loss, fungal biomass, and nutrient dynamics of standing Phragmites australis leaf blades during senescence and early decay in littoral reed stands of two hardwater lakes. Green living leaves were tagged at defined canopy heights in early autumn (late August or early September) and periodically collected until all leaf blades had fallen off the parent shoot. Samples were analysed for leaf dry mass remaining, fungal biomass associated with leaves (ergosterol concentrations), and nitrogen and phosphorus concentrations. Considerable mass loss of leaves occurred in the standing position (up to 28%). Nitrogen and phosphorus concentrations of leaves decreased substantially with time (by 39–77%), indicating that a major portion of these nutrients was translocated to the rhizome during senescence. Fungal biomass associated with leaves increased during the study period, reaching an estimated maximum of about 40 mg g−1 of leaf dry mass. Fungal biomass was negatively correlated with leaf N and P concentrations. The observed patterns of leaf mass loss, nutrient dynamics, and fungal biomass were consistent with the successive senescence and death of leaves from the shoot base to its tip. The results of this study point to a notable mass loss of P. australis leaf blades in the standing position, which appears to be mediated by both plant and microbial processes. Nutrient dynamics, in contrast, appear to be largely governed by plant processes.  相似文献   

11.
《Aquatic Botany》2007,86(2):191-196
The effect of nutrient addition on the growth of E. najas was evaluated in a dose response experiment using sand amended with phosphorus (P) and nitrogen (N), and in enrichment trials with N and P amendments to natural sediments. Plants, water and sediment came from lagoons of the Upper Paraná River Floodplain and from Itaipu Reservoir (Brazil). Relative growth rates (RGRs) of E. najas shoots, based on dry mass (DM), varied from 0.03 to 0.060 d−1 for both nutrients. Root:shoot biomass ratios were related to sediment exchangeable P (r = −0.419; P = 0.03) and N (r = −0.54; P = 0.006), however root RGR was not related to sediment nutrient concentrations. When natural sediments were amended with N and P, neither shoot nor root RGRs differed among treatments for substrata from either the reservoir or the floodplain lagoons (P > 0.05). Comparison of nutrient concentrations measured in natural sediments collected from several sites in both the Upper Paraná River Floodplain (range 49–213 μg P g−1 DM; 36–373 μg N g−1 DM) and Itaipu Reservoir (range 43–402 μg P g−1 DM; 7.9–238 μg N g−1 DM) showed that sediment N and P from these systems usually exceeded minimum requirements necessary for E. najas growth, as measured in the dose response experiment. Together, these results indicate that E. najas, at least in early stages of development, responds to sediment nutrient amendments and relies upon bottom sediments to meet its N and P requirements and that for at least two Brazilian ecosystems, growth of this species is not limited by insufficient sediment N or P. Thus, reducing N and P in water is not enough to control E. najas growth in short time periods in these ecosystems.  相似文献   

12.
A laboratory bioassay was conducted to determine the allelopathic potentials of aqueous extracts from either roots or leaves of seventeen sweet potato [Ipomoea batatas L. (Lam)] cultivars (SP0, SP1, SP2, SP3, SP4, SP5, SP6, SP7, SP9, SP10, SP11, SP13, SP14, SP15, SP16, SP18, and SP19). Most inhibitory rates on Lactuca sativa calculated for leaf or root extracts from the seventeen sweet potato cultivars exhibited positive values and significantly increased with increasing concentration. Germination was totally inhibited at a concentration of 0.05 g·mL?1 for leaf water extracts of SP13, SP15, SP18 and at a concentration of 0.05 g·mL?1 for both leaf and root water extracts of SP19. Inhibition of root length was clearly greater than inhibition of shoot length for both leaf and root water extracts. Biomass inhibition increased with increasing concentration, but some cultivars showed stimulatory effects at low concentrations, and inhibition was generally more pronounced for root water extracts than for leaf water extracts. Moreover, most synthetical inhibitory rates for both leaf and root water extracts from the seventeen cultivars exhibited positive values and significantly increased with increasing concentration. Comparing the synthetical inhibitory rates for both leaf and root water extracts among the seventeen cultivars, SP19, SP6, SP11, and SP7 had the highest allelopathic inhibition. The inhibitory activity on germination index was the greatest, followed by germination rate, root length, biomass, and shoot length in all bioassays. Inhibition by leaf water extracts was generally greater than inhibition by root water extracts, except in the case of shoot length or biomass. Overall, we conclude that all seventeen sweet potato cultivars have strong inhibitory effects on L. sativa, but that these effects vary with cultivar and plant part, with SP19, SP6, SP11, and SP7 exhibiting the highest rates of allelopathic inhibition.  相似文献   

13.
Xu L J  Wang B  Yu Z  Sun Q Z 《农业工程》2009,29(3):166-170
Without a robust and healthy root system, establishment, productivity, and persistence are compromised. Consequently, research on alfalfa root morphology and health is very important in development of technology for efficient improvement and production of alfalfa. The objectives of this study were to evaluate the root morphology and health of three alfalfa varieties, Algonquin, Golden Queen, and Yellow Flower and to determine relationships among root morphology traits and root health. Yields from these varieties ranged from 5.83 to 43.93 t/ha, total root length ranged from 215.17 to 708.89 mm, root surface area from 124.95 to 468.37 cm2, volume from 3.24 to 57.72 cm3, and forks from 1.25 × 103 to 10.54 × 103, and tips from 0.65 × 103 to 3.17 × 103. Root infestation score was negatively correlated with yield (r = ?0.997, P < 0.01), and was positively correlated with all root morphology traits (r = 0.466–0.997, P < 0.01), and yield was negatively associated with root morphology traits (r = ?0.755 to ?0.998, p < 0.01) with the exception of root tips (r = 0.448, P < 0.01). Results from these analyses indicated that root infestation score was the lowest averaged over age of alfalfa stand in Algonquin. Yield in 2-year old stands was greater in Golden Queen compared to the other two cultivars.  相似文献   

14.
15.
Nitrogen (N) and phosphorus (P) deficiency are primary constraints for plant productivity, and root system architecture (RSA) plays a vital role in the acquisition of these nutrients. The genetic determinants of RSA are poorly understood, primarily owing to the complexity of crop genomes and the lack of sufficient RSA phenotyping methods. The objective of this study was to characterize the RSA of two Brachypodium distachyon accessions under different nutrient availability. To do so, we used a high-throughput plant growth and imaging platform, and developed software that quantified 19 different RSA traits. We found significant differences in RSA between two Brachypodium accessions grown on nutrient-rich, low-N and low-P conditions. More specifically, one accession maintained axile root growth under low N, while the other accession maintained lateral root growth under low P. These traits resemble the RSA of crops adapted to low-N and -P conditions, respectively. Furthermore, we found that a number of these traits were highly heritable. This work lays the foundation for future identification of important genetic components of RSA traits under nutrient limitation using a mapping population derived from these two accessions.  相似文献   

16.
Theoretical plant growth models postulate that the relative rates of shoot and root growth are largely modulated by signals related to carbon and nitrogen status of the plant. To test this experimentally, 6-week-old vegetative cuttings of grapevine (Vitis vinifera L. cv Merlot) were grown aeroponically in different controlled conditions of irradiance (13.8, 8.4 and 5.3 mol PAR m−2 day−1) and/or nitrogen nutrition (0.15, 1.20 and 7.11 mM N). Total non-structural carbohydrates (TNC) and amino acids (FAA) in leaves and roots were analysed 0, 6 and 28 days after treatment initiation. Both whole-plant biomass accumulation as well as C and N contents were highly responsive to light and N availability. At day 28, plant dry weight was significantly reduced in shaded vines (−35% of that of the control plants) and stimulated under the high irradiance environment (+30%). Deprivation of N enhanced root growth (+51%) at the expense of above-ground growth, whereas leaf dry weight was significantly greater in the high-N treatment than in the control. Vines grown under low-N and high irradiance conditions had the highest root-to-shoot ratios and those grown under low light and high N the lowest. Finally, redistribution of biomass among vegetative vine parts was significantly related to different indicators of the vine C:N status measured either at the whole-plant (N concentration) or at the organ level (TNC:FAA ratio), suggesting that root-to-shoot biomass partitioning was controlled by some aspect of plant C:N balance. Such relationships will be useful to improve allocation rules in a process-based growth model of grapevine.  相似文献   

17.
Plant biomass is a key parameter for estimating terrestrial ecosystem carbon (C) stocks, which varies greatly as a result of specific environmental conditions. Here, we tested environmental driving factors affecting plant biomass in natural grassland in the Loess Plateau, China. We found that above-ground biomass (AGB) and below-ground biomass (BGB) had a similar change trend in the order of Stipa bungeana > Leymus secalinus > Artemisia sacrorum > Artemisia scoparia, whereas shoot ratio (R/S) displayed an opposite change trend. There was a significantly positive linear relationship between the AGB and BGB, regardless of plant species (p < 0.05). Furthermore, more than 50% of the AGB were found in 20–50 cm of plant height in Compositae plants (A. sacrorum, A. scoparia), whereas over 60% of the AGB were found in 20–80 cm of plant height in Gramineae plants (S. bungeana, L. secalinus). For each plant species, more than 75% of the BGB was distributed in 0–10 cm soil depth, and 20% was distributed in 10–20 cm soil depth, while less than 5% was distributed in 20–40 cm soil depth. Further, AGB and BGB were highly affected by environmental driving factors (soil properties, plant traits, topographic properties), which were identified by the structural equation model (SEM) and the generalized additive models (GAMs). In addition, AGB was directly affected by plant traits, and BGB was directly affected by soil properties, and soil properties associated with plant traits that affected AGB and BGB through interactive effects were 9.12% and 3.59%, respectively. However, topographic properties had a weak influence on ABG and BGB (as revealed by the lowest total pathway effect). Besides, soil organic carbon (SOC), soil microbial biomass carbon (MBC), and plant height had a higher relative contribution to AGB and BGB. Our results indicate that environmental driving factors affect plant biomass in natural grassland in the Loess Plateau.  相似文献   

18.
Coleus forskohlii is susceptible to root rot disease that reduces yield of root specific metabolite forskolin. In this communication, we first time reported sustainable management of Macrophomina phaseolina root rot in C. forskohlii via Ultraviolet-C (UVC)-hormesis using tissue culture. Compact calli were developed using 2,4-dichlorophenoxy acetic acid (2.0 mg l⿿1) and tolerance level of UVC exposure was optimized. Calli exhibited 88% viability, 8.4% relative growth in biomass and higher absorbance in 2,3,5-triphenyl tetrazolium chloride analysis subsequent to 10 min of UVC exposure. Pathogenicity of M. phaseolina was reduced in UVC-primed calli-regenerated plants compared with un-primed ones under controlled condition. Plant height, leaf number, shoot and root biomass significantly improved in UVC-primed calli-regenerated plants over un-primed ones when challenged by M. phaseolina in glasshouse. Significant elevation of economically important forskolin via up-regulation of key forskolin biosynthesis genes GGPP synthase, CfTPS2 and CfTPS3 highlighted the potentiality of UVC-priming to boost plant⿿s defence mechanism and protect from drastic economic loss.  相似文献   

19.
硝酸盐供应对玉米侧根生长的影响   总被引:21,自引:0,他引:21  
以两个玉米(Zea mays L.)自交系478和Wu312为研究材料,采用琼脂培养方法,研究不同浓度NO-3对侧根生长的影响.结果表明,在外部浓度0.01~1.0mmol/L范围内,NO-3供应能显著增加侧根的长度及根生物量.但当NO-3供应超过1.0 mmo1/L后,侧根长度开始下降.当NO-3供应分别在超过5.0(Wu312)与10(478)mmol/L后,侧根密度显著下降.在10 mmol/LNO-3下,Wu312的侧根生长几乎完全被抑制.而478在20 mmol/L时,侧根密度仍可达到其最大值的30%(主根)~50%(胚根).植株地上部全氮及硝酸盐含量随NO-3供应的增加而升高,二者与侧根长度、侧根密度及冠根比的数学函数关系相同.  相似文献   

20.
The physiological reasons associated with differential sensitivity of C3 and C4 plant species to soil compaction stress are not well explained and understood. The responses of growth characteristics, changes in leaf water potential and gas exchange in maize and triticale to a different soil compaction were investigated. In the present study seedlings of triticale and maize, representative of C3 and C4 plants were subjected to low (L – 1.10 g cm−3), moderate (M – 1.34 g cm−3) and severe (S – 1.58 g cm−3) soil compaction level. Distinct differences in distribution of roots in the soil profile were observed. Plants of treatments M or S in comparison to treatment L, showed a decrease in leaf number, dry mass of stem, leaves and roots, and an increase in the shoot to root ratio. A drastic decrease in root biomass in M and S treatments in the soil profile on depth from 15 to 40 cm was observed. Any level of soil compaction did not influence the number of seminal and seminal-adventitious roots but decreased their length. The number and total length of nodal roots decreased with compaction. Changes of growth traits in M and S treatments in comparison to the L were greater for maize than for triticale and were accompanied by daily changes in water potential (ψ) and gas exchange parameters (PN, E, gs). Differences between M and S treatments in daily changes in ψ for maize were in most cases statistically insignificant, whereas for triticale, they were statistically significant. Differences in the responses of maize and triticale to soil compaction were found in PN, E and gs in particular for the measurements taken at 12:00 and 16:00. The highest correlation coefficients were obtained for the relationship between leaf water potential and stomatal conductance, both for maize and triticale, which indicates the close association between stomata behavior and changes in leaf water status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号