首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.  相似文献   

2.
Increasing evidence reveals a large dependency of epithelial cancer cells on oxidative phosphorylation (OXPHOS) for energy production. In this study we tested the potential of epigallocatechin-3-gallate (EGCG), a natural polyphenol known to target mitochondria, in inducing OXPHOS impairment and cell energy deficit in human epitheliod (REN cells) and biphasic (MSTO-211H cells) malignant pleural mesothelioma (MMe), a rare but highly aggressive tumor with high unmet need for treatment. Due to EGCG instability that causes H2O2 formation in culture medium, the drug was added to MMe cells in the presence of exogenous superoxide dismutase and catalase, already proved to stabilize the EGCG molecule and prevent EGCG-dependent reactive oxygen species formation. We show that under these experimental conditions, EGCG causes the selective arrest of MMe cell growth with respect to normal mesothelial cells and the induction of mitochondria-mediated apoptosis, as revealed by early mitochondrial ultrastructure modification, swelling and cytochrome c release. We disclose a novel mechanism by which EGCG induces apoptosis through the impairment of mitochondrial respiratory chain complexes, particularly of complex I, II and ATP synthase. This induces a strong reduction in ATP production by OXPHOS, that is not adequately counterbalanced by glycolytic shift, resulting in cell energy deficit, cell cycle arrest and apoptosis. The EGCG-dependent negative modulation of mitochondrial energy metabolism, selective for cancer cells, gives an important input for the development of novel pharmacological strategies for MMe.  相似文献   

3.
This review focuses on the different mechanisms involved in the adjustment of mitochondrial ATP production to cellular energy demand. The oxidative phosphorylation steady state at constant mitochondrial enzyme content can vary in response to energy demand. However, such an adaptation is tightly linked to a modification in both oxidative phosphorylation yield and phosphate potential and is obviously very limited in eukaryotic cells. We describe the three main mechanisms involved in mitochondrial response to energy demand. In heart cells, a short-term adjustment can be reached mainly through metabolic signaling via phosphotransfer networks by the compartmentalized energy transfer and signal transmission. In such a complex regulatory mechanism, Ca2+ signaling participates in activation of matricial dehydrogenases as well as mitochondrial ATP synthase. These processes allow a large increase in ATP production rate without an important modification in thermodynamic forces. For a long-term adaptation, two main mechanisms are involved: modulation of the mitochondrial enzyme content as a function of energy demand and/or kinetic regulation by covalent modifications (phosphorylations) of some respiratory chain complex subunits. Regardless of the mechanism involved (kinetic regulation by covalent modification or adjustment of mitochondrial enzyme content), the cAMP signaling pathway plays a major role in molecular signaling, leading to the mitochondrial response. We discuss the energetic advantages of these mechanisms. yeast; C6 glioma cells; muscle; kinetic regulation  相似文献   

4.
DS (Down's syndrome) is the most common human aneuploidy associated with mental retardation and early neurodegeneration. Mitochondrial dysfunction has emerged as a crucial factor in the pathogenesis of numerous neurological disorders including DS, but the cause of mitochondrial damage remains elusive. In the present study, we identified new molecular events involved in mitochondrial dysfunction which could play a role in DS pathogenesis. We analysed mitochondrial respiratory chain function in DS-HSFs (Down's syndrome human foetal skin fibroblasts; human foetal skin fibroblasts with chromosome 21 trisomy) and found a selective deficit in the catalytic efficiency of mitochondrial complex I. The complex I deficit was associated with a decrease in cAMP-dependent phosphorylation of the 18 kDa subunit of the complex, due to a decrease in PKA (protein kinase A) activity related to reduced basal levels of cAMP. Consistently, exposure of DS-HSFs to db-cAMP (dibutyryl-cAMP), a membrane-permeable cAMP analogue, stimulated PKA activity and consequently rescued the deficit of both the cAMP-dependent phosphorylation and the catalytic activity of complex I; conversely H89, a specific PKA inhibitor, suppressed these cAMP-dependent activations. Furthermore, in the present paper we report a 3-fold increase in cellular levels of ROS (reactive oxygen species), in particular superoxide anion, mainly produced by DS-HSF mitochondria. ROS accumulation was prevented by db-cAMP-dependent activation of complex I, suggesting its involvement in ROS production. Taken together, the results of the present study suggest that the drastic decrease in basal cAMP levels observed in DS-HSFs participates in the complex I deficit and overproduction of ROS by DS-HSF mitochondria.  相似文献   

5.
The energy metabolism of rat C6 glioma cells was investigated as a function of the growth phases. Three-dimensional cultures of C6 cells exhibited diminished respiration and respiratory capacity during the early growth phase, before reaching confluence. This decrease in respiration was neither due to changes in the respiratory complex content nor in the mitochondrial mass per se. Nevertheless, a quantitative correlation was found between cellular respiration and the rotenone-sensitive NADH ubiquinone oxidoreductase (i.e. complex I) activity. Immunoblot analysis showed that phosphorylation of the 18 kDa-subunit of this complex was associated with the growth-phase dependent modulation of complex I and respiratory activity in C6 cells. In addition, by using forskolin or dibutyryl cAMP, short-term activation of protein kinases A of C6 cells correlated with increased phosphorylation of the 18-kDa subunit of complex I, activated NADH ubiquinone oxidoreductase activity and stimulated cellular respiration. These findings suggest that complex I of C6 glioma cells is a key regulating step that modulates the oxidative phosphorylation capacity during growth phase transitions.  相似文献   

6.
Structural changes and abnormal function of mitochondria have been documented in Down's syndrome (DS) cells, patients, and animal models. DS cells in culture exhibit a wide array of functional mitochondrial abnormalities including reduced mitochondrial membrane potential, reduced ATP production, and decreased oxido-reductase activity. New research has also brought to central stage the prominent role of oxidative stress in this condition. This review focuses on recent advances in the field with a particular emphasis on novel translational approaches involving the utilization of coenzyme Q(10) (CoQ(10) ) to treat a variety of clinical phenotypes associated with DS that are linked to increased oxidative stress and energy deficits. CoQ(10) has already provided promising results in several different conditions associated with altered energy metabolism and oxidative stress in the CNS. Two studies conducted in Ancona investigated the effect of CoQ(10) treatment on DNA damage in DS patients. Although the effect of CoQ(10) was evidenced only at single cell level, the treatment affected the distribution of cells according to their content in oxidized bases. In fact, it produced a strong negative correlation linking cellular CoQ(10) content and the amount of oxidized purines. Results suggest that the effect of CoQ(10) treatment in DS not only reflects antioxidant efficacy, but likely modulates DNA repair mechanisms.  相似文献   

7.
8.
Chronic mitochondrial dysfunction, in particular of complex I, has been strongly implicated in the dopaminergic neurodegeneration in Parkinson's disease. To elucidate the mechanisms of chronic complex I disruption-induced neurodegeneration, we induced differentiation of immortalized midbrain dopaminergic (MN9D) and non-dopaminergic (MN9X) neuronal cells, to maintain them in culture without significant cell proliferation and compared their survivals following chronic exposure to nanomolar rotenone, an irreversible complex I inhibitor. Rotenone killed more dopaminergic MN9D cells than non-dopaminergic MN9X cells. Oxidative stress played an important role in rotenone-induced neurodegeneration of MN9X cells, but not MN9D cells: rotenone oxidatively modified proteins more in MN9X cells than in MN9D cells and antioxidants decreased rotenone toxicity only in MN9X cells. MN9X cells were also more sensitive to exogenous oxidants than MN9D cells. In contrast, disruption of bioenergetics played a more important role in MN9D cells: rotenone decreased mitochondrial membrane protential and ATP levels in MN9D cells more than in MN9X cells. Supplementation of cellular energy with a ketone body, D-beta-hydroxybutyrate, decreased rotenone toxicity in MN9D cells, but not in MN9X cells. MN9D cells were also more susceptible to disruption of oxidative phosphorylation or glycolysis than MN9X cells. These findings indicate that, during chronic rotenone exposure, MN9D cells die primarily through mitochondrial energy disruption, whereas MN9X cells die primarily via oxidative stress. Thus, intrinsic properties of individual cell types play important roles in determining the predominant mechanism of complex I inhibition-induced neurodegeneration.  相似文献   

9.
A study of the relationship between cAMP/PKA-dependent phosphorylation and oxidative damage of subunits of complex I of the mitochondrial respiratory chain is presented. It is shown that, in fibroblast cultures, PKA-mediated phosphorylation of the NDUFS4 subunit of complex I rescues the activity of the oxidatively damaged complex. Evidence is presented showing that this effect is mediated by phosphorylation-dependent exchange of carbonylated NDUFS4 subunit in the assembled complex with the de novo synthesized subunit. These results indicate a potential use for β-adrenoceptor agonists in preventing/reversing the detrimental effects of oxidative stress in the mitochondrial respiratory system.  相似文献   

10.
The mitochondrial phospholipid cardiolipin (CL) has been implicated with mitochondrial morphology, function and, more recently, with cellular proliferation. Tafazzin, an acyltransferase with key functions in CL remodeling determining actual CL composition, affects mitochondrial oxidative phosphorylation. Here, we show that the CRISPR-Cas9 mediated knock-out of tafazzin (Taz) is associated with substantial alterations of various mitochondrial and cellular characteristics in C6 glioma cells. The knock-out of tafazzin substantially changed the profile of fatty acids incorporated in CL and the distribution of molecular CL species. Taz knock-out was further associated with decreased capacity of oxidative phosphorylation that mainly originates from impaired complex I associated energy metabolism in C6 glioma cells. The lack of tafazzin switched energy metabolism from oxidative phosphorylation to glycolysis indicated by lower respiration rates, membrane potential and higher levels of mitochondria-derived reactive oxygen species but keeping the cellular ATP content unchanged. The impact of tafazzin on mitochondria was also indicated by altered morphology and arrangement in tafazzin deficient C6 glioma cells. In the cells we observed tafazzin-dependent changes in the distribution of cellular fatty acids as an indication of altered lipid metabolism as well as in stability/morphology. Most impressive is the dramatic reduction in cell proliferation in tafazzin deficient C6 glioma cells that is not mediated by reactive oxygen species. Our data clearly indicate that defects in CL phospholipid remodeling trigger a cascade of events including modifications in CL linked to subsequent alterations in mitochondrial and cellular functions.  相似文献   

11.
Nucleotide-binding oligomerization domain protein-2 (NOD2) activation in skeletal muscle cells has been associated with insulin resistance, but the underlying mechanisms are not yet clear. Here we demonstrate the implication of oxidative stress in the development of mitochondrial dysfunction and insulin resistance in response to NOD2 activation in skeletal muscle cells. Treatment with the selective NOD2 ligand muramyl dipeptide (MDP) increased mitochondrial reactive oxygen species (ROS) generation in L6 myotubes. MDP-induced ROS production was associated with increased levels of protein carbonyls and reduction in citrate synthase activity, cellular ATP level, and mitochondrial membrane potential, as well as altered expression of genes involved in mitochondrial function and metabolism. Antioxidant treatment attenuated MDP-induced ROS production and restored mitochondrial functions. In addition, the presence of antioxidant prevented NOD2-mediated activation of MAPK kinases and the inflammatory response. This was associated with reduced serine phosphorylation of insulin receptor substrate-1 (IRS-1) and improved insulin-stimulated tyrosine phosphorylation of IRS-1 and downstream activation of Akt phosphorylation. These data indicate that oxidative stress plays a role in NOD2 activation-induced inflammatory response and that MDP-induced oxidative stress correlates with impairment of mitochondrial functions and induction of insulin resistance in skeletal muscle cells.  相似文献   

12.
The tyrosine kinase Src is upregulated in several cancer cells. In such cells, there is a metabolic reprogramming elevating aerobic glycolysis that seems partly dependent on Src activation. Src kinase was recently shown to be targeted to mitochondria where it modulates mitochondrial bioenergetics in non-proliferative tissues and cells. The main goal of our study was to determine if increased Src kinase activity could also influence mitochondrial metabolism in cancer cells (143B and DU145 cells). We have shown that 143B and DU145 cells produce most of the ATP through glycolysis but also that the inhibition of OXPHOS led to a significant decrease in proliferation which was not due to a decrease in the total ATP levels. These results indicate that a more important role for mitochondria in cancer cells could be ensuring mitochondrial functions other than ATP production. This study is the first to show a putative influence of intramitochondrial Src kinase on oxidative phosphorylation in cancer cells. Indeed, we have shown that Src kinase inhibition led to a decrease in mitochondrial respiration via a specific decrease in complex I activities (NADH-ubiquinone oxidoreductase). This decrease is associated with a lower phosphorylation of the complex I subunit NDUFB10. These results suggest that the preservation of complex I function by mitochondrial Src kinase could be important in the development of the overall phenotype of cancer.  相似文献   

13.
Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress.  相似文献   

14.
《BBA》2022,1863(8):148915
Although the development of chemoresistance is multifactorial, active chemotherapeutic efflux driven by upregulations in ATP binding cassette (ABC) transporters are commonplace. Chemotherapeutic efflux pumps, like ABCB1, couple drug efflux to ATP hydrolysis and thus potentially elevate cellular demand for ATP resynthesis. Elevations in both mitochondrial content and cellular respiration are common phenotypes accompanying many models of cancer cell chemoresistance, including those dependent on ABCB1. The present study set out to characterize potential mitochondrial remodeling commensurate with ABCB1-dependent chemoresistance, as well as investigate the impact of ABCB1 activity on mitochondrial respiratory kinetics. To do this, comprehensive bioenergetic phenotyping was performed across ABCB1-dependent chemoresistant cell models and compared to chemosensitive controls. In doxorubicin (DOX) resistant ovarian cancer cells, the combination of both increased mitochondrial content and enhanced respiratory complex I (CI) boosted intrinsic oxidative phosphorylation (OXPHOS) power output. With respect to ABCB1, acute ABCB1 inhibition partially normalized intact basal mitochondrial respiration between chemosensitive and chemoresistant cells, suggesting that active ABCB1 contributes to mitochondrial remodeling in favor of enhanced OXPHOS. Interestingly, while enhanced OXPHOS power output supported ABCB1 drug efflux when DOX was present, in the absence of chemotherapeutic stress, enhanced OXPHOS power output was associated with reduced tumorigenicity.  相似文献   

15.
Unilateral injection into the right substantia nigra of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) produces extensive loss of dopaminergic cells ('hemi-parkinsonian rat'). The pineal hormone melatonin, which is a potent antioxidant against different reactive oxygen species and has been reported to be neuroprotective in vivo and in vitro, was evaluated for potential anti-Parkinson effects in this model. Imbalance in dopaminergic innervation between the striata produced by intranigral administration of 6-OHDA results in a postural asymmetry causing rotation away from the nonlesioned side. Melatonin given systemically prevented apomorphine-induced circling behavior in 6-OHDA-lesioned rats. Reduced activity of mitochondrial oxidative phosphorylation enzymes has been suggested in some neurodegenerative diseases; in particular, selective decrease in complex I activity is observed in the substantia nigra of Parkinson's disease patients. Analysis of mitochondrial oxidative phosphorylation enzyme activities in nigral tissue from 6-OHDA-lesioned rats by a novel BN-PAGE histochemical procedure revealed a clear loss of complex I activity, which was protected against in melatonin-treated animals. A good correlation between behavioral parameters and enzymatic (complex I) analysis was observed independent of melatonin administration. A deficit in mitochondrial complex I could conceivably contribute to cell death in parkinsonism via free radical mechanisms, both directly via reactive oxygen species production and by decreased ATP synthesis and energy failure. Melatonin may have potential utility in the treatment of neurodegenerative disorders where oxidative stress is a participant.  相似文献   

16.
Normal cells of aerobic organisms synthesize the energy they require in the form of ATP via the process of oxidative phosphorylation. This complex system resides in the mitochondria of cells and utilizes oxygen to produce a majority of cellular ATP. However, in most tumors, especially those with elevated cholesterogenesis, there is an increased reliance on glycolysis for energy, even in conditions where oxygen is available. This aerobic glycolysis (the Warburg effect) has far reaching ramifications on the tumor itself and the cells that surround it. In this brief review, we will discuss how abnormally high membrane cholesterol levels can result in a subsequent deficiency of oxidative energy production in mitochondria from cultured Morris hepatoma cells (MH-7777). We have identified the voltage dependent anion channel (VDAC) as a necessary component of a protein complex involved in mitochondrial membrane cholesterol distribution and transport. Work in our laboratory demonstrates that the ability of VDAC to influence mitochondrial membrane cholesterol distribution may have implications on mitochondrial characteristics such as oxidative phosphorylation and induction of apoptosis, as well as the propensity of cancer cells to exhibit a glycolytic phenotype.  相似文献   

17.
A study is presented on cyclic adenosine monophosphate- (cAMP-) dependent phosphorylation of mammalian mitochondrial proteins. Immunodetection with specific antibodies reveals the presence of the catalytic and the regulatory subunits of cAMP-dependent protein kinase (PKA) in the inner membrane and matrix of bovine heart mitochondria. The mitochondrial cAMP-dependent protein kinase phosphorylates mitochondrial proteins of 29, 18, and 6.5 kDa. With added histone as substrate, PKA exhibits affinities for ATP and cAMP and pH optimum comparable to those of the cytosolic PKA. Among the mitochondrial proteins phosphorylated by PKA, one is the nuclear-encoded (NDUFS4 gene) 18 kDa subunit of complex I, which has phosphorylation consensus sites in the C terminus and in the presequence. cAMP promotes phosphorylation of the 18 kDa subunit of complex I in myoblasts in culture and in their isolated mitoplast fraction. In both cases cAMP-dependent phosphorylation of the 18 kDa subunit of complex I is accompanied by enhancement of the activity of the complex. These results, and the finding of mutations in the NDUFS4 gene in patients with complex I deficiency, provide evidence showing that cAMP-dependent phosphorylation of the 18 kDa subunit of complex I plays a major role in the control of the mitochondrial respiratory activity.  相似文献   

18.
Mitochondrial electron transport inhibitors induced two distinct pathways for acute cell death: lipid peroxidation-dependent and -independent in isolated rat hepatocytes. The toxic effects of mitochondrial complex I and II inhibitors, rotenone (ROT) and thenoyltrifluoroacetone (TTFA), respectively, were dependent on oxidative stress and lipid peroxidation, while cell death induced by inhibitors of complexes III and IV, antimycin A (AA) and cyanide (CN), respectively, was caused by MMP collapse and loss of cellular ATP. Accordingly, cellular and mitochondrial antioxidant depletion or supplementation, in general, resulted in a dramatic potentiation or prevention, respectively, of toxic injury induced by complex I and II inhibitors, with little or no effect on complex III and IV inhibitor-induced toxicity. ROT-induced oxidative stress was prevented by the addition of d-alpha-tocopheryl succinate (TS) but surprisingly TS did not afford hepatocytes protection against TTFA-induced oxidative damage. TS treatment prevented ROT-induced mitochondrial lipid hydroperoxide formation but had no effect on the loss of mitochondrial GSH or cellular ATP, suggesting a mitochondrial lipid peroxidation-mediated mechanism for ROT-induced acute cell death. In contrast, only fructose treatment provided excellent cytoprotection against AA- and CN-induced toxicity. Our findings indicate that complex III and IV inhibitors cause a rapid and severe depletion of cellular ATP content resulting in acute cell death that is dependent on cellular energy impairment but not lipid peroxidation. In contrast, inhibitors of mitochondrial complex I or II moderately deplete cellular ATP levels and thus cause acute cell death via a lipid peroxidation pathway.  相似文献   

19.
Energy metabolism in gastrobiopsy specimens of the antral and corpus mucosa, treated with saponin to permeabilize the cells, was studied in patients with gastric diseases. The results show twice lower oxidative capacity in the antral mucosa than in the corpus mucosa and the relative deficiency of antral mitochondria in complex I. The mucosal cells expressed mitochondrial and cytosolic isoforms of creatine kinase and adenylate kinase (AK). Creatine (20 mM) and AMP (2 mM) markedly stimulated mitochondrial respiration in the presence of submaximal ADP or ATP concentrations, and creatine reduced apparent Km for ADP in stimulation of respiration, which indicates the functional coupling of mitochondrial kinases to oxidative phosphorylation. Addition of exogenous cytochrome c increased ADP-dependent respiration, and the large-scale cytochrome c effect (>or=20%) was associated with suppressed stimulation of respiration by creatine and AMP in the mucosal preparations. These results point to the impaired mitochondrial outer membrane, probably attributed to the pathogenic effects of Helicobacter pylori. Compared with the corpus mucosa, the antral mucosa exhibited greater sensitivity to such type of injury as the prevalence of the large-scale cytochrome c effect was twice higher among the latter specimens. Active chronic gastritis was associated with decreased respiratory capacity of the corpus mucosa but with its increase in the antral mucosa. In conclusion, human gastric mucosal cells express the mitochondrial and cytosolic isoforms of CK and AK participating in intracellular energy transfer systems. Gastric mucosa disease is associated with the altered functions of these systems and oxidative phosphorylation.  相似文献   

20.
Leber's hereditary optic neuropathy (LHON) was the first maternally inherited disease to be associated with point mutations in mitochondrial DNA and is now considered the most prevalent mitochondrial disorder. The pathology is characterized by selective loss of ganglion cells in the retina leading to central vision loss and optic atrophy, prevalently in young males. The pathogenic mtDNA point mutations for LHON affect complex I with the double effect of lowering the ATP synthesis driven by complex I substrates and increasing oxidative stress chronically. In this review, we first consider the biochemical changes associated with the proton-translocating NADH-quinone oxidoreductase of mitochondria in cybrid cells carrying the most common LHON mutations. However, the LHON cybrid bioenergetic dysfunction is essentially compensated under normal conditions, i.e. in glucose medium, but is unrevealed by stressful conditions such as growing cybrids in glucose free/galactose medium, which forces cells to rely only on respiratory chain for ATP synthesis. In fact, the second part of this review deals with the investigation of LHON cybrid death pathway in galactose medium. The parallel marked changes in antioxidant enzymes, during the time-course of galactose experiments, also reveal a relevant role played by oxidative stress. The LHON cybrid model sheds light on the complex interplay amongst the different levels of biochemical consequences deriving from complex I mutations in determining neurodegeneration in LHON, and suggests an unsuspected role of bioenergetics in shaping cell death pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号