首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.

Introduction  

Systemic lupus erythematosus (SLE) patients have lower bone mineral density and increased fracture risk when compared with healthy individuals, due to distinct factors and mechanisms. Bone remodeling is a tightly orchestrated process dependent on several factors, including the balance between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG).  相似文献   

5.
Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0–10.0 g/cm2) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of IκBα, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca2+ pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-κB) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt/Ca2+ pathway.  相似文献   

6.
I Volf  T Moeslinger  J Cooper  W Schmid  E Koller 《FEBS letters》1999,449(2-3):141-145
The widely studied macrophage scavenger receptor system is known to bind both acetylated low density lipoprotein and oxidized low density lipoprotein. Although only the latter ligand has been shown to occur in vivo, acetylated low density lipoprotein is often used to evaluate the contribution of scavenger receptors to different (patho)physiologic processes, assuming that all existing subtypes of scavenger receptors recognise both lipoproteins. In the present work, we identify human platelets as the first natural cell type to bind oxidized low density lipoprotein without showing specificity for acetylated low density lipoprotein. Consequently, platelets possess exclusive receptor(s) for oxidized low density lipoprotein distinct from the 'classical' scavenger receptor AI/AII. From the data presented in this work, we conclude that the class B scavenger receptor CD36 (GPIV) is responsible for this exclusive oxidized low density lipoprotein binding.  相似文献   

7.
AimsThis study examined the effects of oxidized low-density lipoprotein (LDL) and its major lipid constituent lysophosphatidylcholine (LPC) on nonselective cation (NSC) current and its inhibitory contribution to LPC-induced cytotoxicity in cultured human umbilical endothelial cells (HUVECs).Main methodsPatch-clamp technique and the resazurin-based cell viability assay were used.Key findingsIn voltage-clamped cells, oxidized LDL or LPC slowly activated NSC current. NSC current was also activated by loading cells with Ca2+ solution buffered at various concentrations using a patch pipette or by applying the sarcoplasmic reticulum Ca2+ pump blocker 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ), the metabolic inhibitor CN? or the hydroperoxide donor tert-butyl hydroperoxide (TBHP). On the contrary, when intracellular Ca2+ was strongly buffered with 12 mM BAPTA or cells were loaded with superoxide dismutase using a patch pipette, LPC or BHQ did not activate NSC current. Furthermore, NSC current activated by LPC, TBHP or CN? was inhibited by the antioxidant tempol or extracellular Ca2+ depletion and NSC current activated by intracellular Ca2+ was further augmented by oxidized LDL or LPC. LPC or oxidized LDL released Ca2+ from intracellular stores and further enhanced store-operated Ca2+ entry. LPC-induced cytotoxicity was augmented by inhibiting Ca2+ influx and NO synthesis.SignificanceOxidized LDL or its main component LPC activated Ca2+-permeable NSC current via releasing Ca2+ from intracellular stores and producing ROS and thereby increased Ca2+ influx. Ca2+ influx through NSC channel might protect endothelial cells by producing NO.  相似文献   

8.
Oxidative modification of lipoproteins may play a crucial role in the pathogenesis of atherosclerosis. This study was designed to examine whether increased lipid peroxides and/or oxidative susceptibility of plasma lipoproteins occur in patients with coronary artery disease. The levels of lipid peroxides, estimated as thiobarbituric acid-reactive substances (TBARS), were significantly greater in the plasma and very low density lipoprotein (VLDL) of symptomatic patients with coronary artery disease than in those of healthy persons, but the TBARS levels of low density lipoprotein (LDL) and high density lipoprotein (HDL) showed insignificant difference between patients and normals. To evaluate the oxidative susceptibility of lipoproteins, we employed in vitro Cu2+ oxidation of lipoproteins monitored by changes in fluorescenece, TBARS level, trinitrobenzene sulfonic acid (TNBS) reactivity, apolipoprotein immunoreactivity and agarose gel electrophoretic mobility. While VLDL and LDL of normal controls were oxidazed at 5–10 μM Cu2+, pooled VLDL and LDL of patients with coronary artery disease were oxidized at 1–2.5 μM Cu2+, i.e., at relatively lowver oxidative stress. At 5 μM Cu2+, VLDL and LDL of patients with coronary artery disease still showed at faster oxidation rate, judged by the rate of fluorescence increase, higher TBARS level, less TNBS reactivity, greater change in apo B immunoreactivity and higher electrophoretic mobility than those of normal controls. However, the difference on the oxidizability of HDL was insignificant for patients vs. normals. In conclusion, we have shown that plasm VLDL and LDL of patients with coronary artery disease are more susceptible to in vitro oxidative modification than those of health persons. The data suggest that enhanced oxidizability of plasma lipoproteins may be important factor influencing the development of coronary artery disease.  相似文献   

9.
Paraoxonase1 (PON1), one of HDL-asssociated antioxidant proteins, is known to be sensitive to oxidative stress. Here, the effect of endogenous reducing compounds on Cu2+-mediated inactivation of PON1 was examined. Cu2+-mediated inactivation of PON1 was enhanced remarkably by catecholamines, but not by uric acid or homocysteine. Furthermore, catecholamines such as 3,4-dihydroxyphenylalanine (DOPA), dopamine or norepinephrine were more effective than caffeic acid or pyrocatechol in promoting Cu2+-mediated inactivation of PON1, suggesting the importance of dihydroxybenzene group as well as amino group. DOPA at relatively low concentrations showed a concentration-dependent inactivation of PON1 in a concert with Cu2+, but not Fe2+. The DOPA/Cu2+-induced inactivation of PON1 was prevented by catalase, but not hydroxyl radical scavengers, consistent with Cu2+-catalyzed oxidation. A similar result was also observed when HDL-associated PON1 (HDL-PON1) was exposed to DOPA/Cu2+. Separately, it was found that DOPA at low concentrations (1-6 μM) acted as a pro-oxidant by enhancing Cu2+-induced oxidation of HDL, while it exhibited an antioxidant action at ≥10 μM. In addition, Cu2+-oxidized HDL lost the antioxidant action against LDL oxidation. Meanwhile, the role of DOPA/Cu2+-oxidized HDL differed according to DOPA concentration; HDL oxidized with Cu2+ in the presence of DOPA (60 or 120 μM) maintained antioxidant activity of native HDL, in contrast to an adverse effect of DOPA at 3 or 6 μM. These data indicate that DOPA at micromolar level may act as a pro-oxidant in Cu2+-induced inactivation of PON1 as well as oxidation of HDL. Also, it is proposed that the oxidative inactivation of HDL-PON1 is independent of HDL oxidation.  相似文献   

10.
Vascular smooth muscle cells respond with an increase in intracellular Ca2+ within seconds after exposure to oxidized low density lipoprotein (oxLDL). This has been suggested to represent a signaling response that may have implications for gene expression. If so, oxLDL may induce increases in nuclear Ca2+ in smooth muscle cells in response to oxLDL. Aortic smooth muscle cells were exposed to 100 μg/ml oxLDL. Large, rapid increases in [Ca2+]i were observed using fluo-3 as an indicator dye to detect intracellular Ca2+ on the stage of a confocal micro-scope. This was also confirmed using ratiometric imaging of indo signals. These elevations appeared to be localized to the nuclear region of the cell. DNA staining of the cells confirmed its localization to the nuclear / perinuclear region of the cell. Our data demonstrate that oxLDL induces a nuclear localized elevation in Ca2+i that may have important implications for nuclear function.  相似文献   

11.
The mechanisms linking fat intake to bone loss remain unclear. By demonstrating the expression of the free fatty acid receptor G-coupled protein receptor 40 (GPR40) in bone cells, we hypothesized that this receptor may play a role in mediating the effects of fatty acids on bone remodeling. Using micro-CT analysis, we showed that GPR40−/− mice exhibit osteoporotic features suggesting a positive role of GPR40 on bone density. In primary cultures of bone marrow, we showed that GW9508, a GRP40 agonist, abolished bone-resorbing cell differentiation. This alteration of the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation occurred via the inhibition of the nuclear factor κB (NF-κB) signaling pathway as demonstrated by decrease in gene reporter activity, inhibitor of κB kinase (IKKα/β) activation, inhibitor of κB (IkBα) phosphorylation, and nuclear factor of activated T cells 1 (NFATc1) expression. The GPR40-dependent effect of GW9508 was confirmed using shRNA interference in osteoclast precursors and GPR40−/− primary cell cultures. In addition, in vivo administration of GW9508 counteracted ovariectomy-induced bone loss in wild-type but not GPR40−/− mice, enlightening the obligatory role of the GPR40 receptor. Then, in a context of growing prevalence of metabolic and age-related bone disorders, our results demonstrate for the first time in translational approaches that GPR40 is a relevant target for the design of new nutritional and therapeutic strategies to counter bone complications.  相似文献   

12.
13.
Dendritic cells (DCs) display the unique ability to activate naive T cells and to initiate primary T cell responses revealed in DC-T cell alloreactions. DCs frequently operate under stress conditions. Oxidative stress enhances the production of inflammatory cytokines by DCs. We performed a proteomic analysis to see which major changes occur, at the protein expression level, during DC differentiation and maturation. Comparative two-dimensional gel analysis of the monocyte, immature DC, and mature DC stages was performed. Manganese superoxide dismutase (Mn-SOD) reached 0.7% of the gel-displayed proteins at the mature DC stage. This important amount of Mn-SOD is a primary antioxidant defense system against superoxide radicals, but its product, H(2)O(2), is also deleterious for cells. Peroxiredoxin (Prx) enzymes play an important role in eliminating such peroxide. Prx1 expression level continuously increased during DC differentiation and maturation, whereas Prx6 continuously decreased, and Prx2 peaked at the immature DC stage. As a consequence, DCs were more resistant than monocytes to apoptosis induced by high amounts of oxidized low density lipoproteins containing toxic organic peroxides and hydrogen peroxide. Furthermore DC-stimulated T cells produced high levels of receptor activator of nuclear factor kappaB ligand, a chemotactic and survival factor for monocytes and DCs. This study provides insights into the original ability of DCs to express very high levels of antioxidant enzymes such as Mn-SOD and Prx1, to detoxify oxidized low density lipoproteins, and to induce high levels of receptor activator of nuclear factor kappaB ligand by the T cells they activate and further emphasizes the role that DCs might play in atherosclerosis, a pathology recognized as a chronic inflammatory disorder.  相似文献   

14.
This study was conducted to examine the role of lectin‐like oxidized low‐density lipoprotein receptor‐1 (LOX‐1) in monocyte adhesion‐induced redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in endothelial cells (ECs). LOX‐1 was blocked by an antibody‐neutralizing LOX‐1 TS92 or small interfering RNA. In cultured human aortic ECs, monocyte adhesion activated Rac1 and p47phox, and increased NADPH oxidase activity and reactive oxygen species (ROS) generation within 30 min and NF‐κB phosphorylation within 1 h, resulting in redox‐sensitive gene expression. Akt and eNOS phosphorylation was induced 15 min after adding monocytes and returned to control level after 30 min, whereas NO production was not altered by monocyte adhesion. Blockade of LOX‐1 blunted the monocyte adhesion‐triggered redox‐sensitive signaling pathway and Akt/eNOS phosphorylation in ECs. Both endothelial intracellular Ca2+ mobilization and Ca2+ influx caused by monocyte attachment were markedly attenuated by pretreatment of ECs with TS92. This suggests that LOX‐1 is involved in redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of oxidized low‐density lipoprotein (ox‐LDL). Furthermore, blockade of Ca2+ inhibited monocyte adhesion‐triggered Rac1 and p47phox activation and ROS generation in ECs, whereas Ca2+ signaling was suppressed by blockade of NADPH oxidase and ROS generation. Finally, TS92 blocked the monocyte adhesion to ECs stimulated with or without tumor necrosis factor‐α or ox‐LDL. We provide evidence that LOX‐1 plays a role in redox‐sensitive, Akt/eNOS and Ca2+ signaling pathways in monocyte adhesion to ECs independent of the ox‐LDL–LOX‐1 axis. J. Cell. Physiol. 220: 706–715, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The mechanism of hypercholesterolemia effect of Cu2+ deficiency was studied in rats. There was increased activity of hepatic hydroxymethylglutaryl-coenzyme A reductase and increased incorporation of labelled acetate into free cholesterol of liver in the Cu2+ deficient rats. Incorporation of label into ester cholesterol was however decreased in the liver. Concentration of bile acids in the liver was not significantly altered. Increase in the incorporation of labelled acetate into serum cholesterol and increase in the concentration of cholesterol and apo B in the low density lipoproteins + very low density lipoproteins fractions were observed. Activity of lipoprotein lipase of the extrahepatic tissues decreased in the Cu2+ deficient rats.  相似文献   

16.
The aim of this study is to evaluate the effect of transient receptor potential vanilloid 4 (TRPV4) on osteoclast differentiation and osteoporosis, and to investigate the underlying mechanism. The results showed that TRPV4 expression and intracellular Ca2+ concentration were significantly upregulated in macrophage colony-stimulating factor (M-CSF)-stimulated and receptor activator of nuclear factor κΒ ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, TRPV4 overexpression further increased the M-CSF- and RANKL-induced number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and expression of osteoclastogenesis-related genes (TRAP, c-Fos, and nuclear factor of activated T cells [NFATc1]), activated the Ca 2+–calcineurin–NFATc1 signaling and increased autophagy-related proteins (light chain [LC] 3II and Beclin-1) during osteoclast differentiation. In contrast, TRPV4 knockdown exerted the opposite effects. Mechanically, inhibition of Ca 2+–calcineurin–NFATc1 signaling by FK506 or 11R-VIVIT abrogated the TRPV4 overexpression-induced osteoclast differentiation and autophagy induction. Moreover, suppression of autophagy by 3-methyladenine attenuated the TRPV4-induced osteoclast differentiation. In addition, short hairpin RNA TRPV4-lentivirus administration significantly diminished the increased levels of several osteoclastogenesis-related genes (RANKL, TRAP, and tumor necrosis factor-α), alleviated the disturbed microarchitecture of lumbar vertebrae, restored the decreased bone mineral density, ratio of bone volume to total tissue volume, trabecular thickness, and trabecular number, and diminished the increased trabecular separation, in ovariectomy (OVX)-induced osteoporosis mice. Consistent with the in vitro data, TRPV4 knockdown significantly decreased the induced number of TRAP-positive osteoclasts, the increased LC3 and NFATc1 expression in the lumbar vertebrae of OVX mice. In conclusion, TRPV4 knockdown suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca 2+–calcineurin–NFATc1 pathway.  相似文献   

17.
18.
19.
Silibinin is a polyphenolic flavonoid compound isolated from milk thistle (Silybum marianum), with known hepatoprotective, anticarcinogenic, and antioxidant effects. Herein, we show that silibinin inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis from RAW264.7 cells as well as from bone marrow-derived monocyte/macrophage cells in a dose-dependent manner. Silibinin has no effect on the expression of RANKL or the soluble RANKL decoy receptor osteoprotegerin (OPG) in osteoblasts. However, we demonstrate that silibinin can block the activation of NF-κB, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein (MAP) kinase, and extracellular signal-regulated kinase (ERK) in osteoclast precursors in response to RANKL. Furthermore, silibinin attenuates the induction of nuclear factor of activated T cells (NFAT) c1 and osteoclast-associated receptor (OSCAR) expression during RANKL-induced osteoclastogenesis. We demonstrate that silibinin can inhibit TNF-α-induced osteoclastogenesis as well as the expression of NFATc1 and OSCAR. Taken together, our results indicate that silibinin has the potential to inhibit osteoclast formation by attenuating the downstream signaling cascades associated with RANKL and TNF-α.  相似文献   

20.
Atherosclerotic plaques result from the excessive deposition of cholesterol esters derived from lipoproteins and lipoprotein fragments. Tissue macrophage within the intimal space of major arterial vessels have been shown to play an important role in this process. We demonstrate in a transfection system using two human cell lines that the macrophage scavenger receptor CD36 selectively elicited lipid uptake from Cu(2+)-oxidized high density lipoprotein (HDL) but not from native HDL or low density lipoprotein (LDL). The uptake of oxHDL displayed morphological and biochemical similarities with the CD36-dependent uptake of oxidized LDL. CD36-mediated uptake of oxidized HDL by macrophage may therefore contribute to atheroma formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号