首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ustilago maydis is an important model fungal organism for diverse studies. Little improvement has been made in the method for its transformation since the PEG-mediated transfection of spheroplasts that was reported more than 20 years ago. We have constructed binary T-DNA vectors carrying Hygromycin and Nourseothricin resistance gene cassettes and have developed a highly efficient method for transformation of this fungus based on Agrobacterium tumefaciens-mediated transformation (ATMT). Through a series of optimization, at least 1 × 104 Hygromycin B resistant colony forming units (CFU) have been achieved on each 90 mm agar plate using 106 sporidia. Optimal pH value for ATMT is approximately 5.6. Approximately 96% Hygromycin B-resistant transformants contain a single-copy T-DNA inserted into the nuclear genome. Analysis of 204 T-DNA flanking sequences showed that 15.2% of them were found in the coding sequences and a further 37.25% within 0.5 kb from the coding sequences at the 5′ UTR or promoter regions. In addition, a method for preparation and preservation of transformation-ready T-DNA donor and receptor cells has been developed allowing gene tagging experiments to be performed on-demand. An initial screening of 5000 mutants resulted in the identification of a putative farnesyl transferase beta subunit and a PRE6 homologue as new players of sexual mating in U. maydis.  相似文献   

2.
Genetic engineering of Halomonas spp. was seldom reported due to the difficulty of genetic manipulation and lack of molecular biology tools. Halomonas TD01 can grow in a continuous and unsterile process without other microbial contaminations. It can be therefore exploited for economic production of chemicals. Here, Halomonas TD01 was metabolically engineered using the gene knockout procedure based on markerless gene replacement stimulated by double-strand breaks in the chromosome. When gene encoding 2-methylcitrate synthase in Halomonas TD01 was deleted, the conversion efficiency of propionic acid to 3-hydroxyvalerate (3HV) monomer fraction in random PHBV copolymers of 3-hydroxybutyrate (3HB) and 3HV was increased from around 10% to almost 100%, as a result, cells were grown to accumulate 70% PHBV in dry weight (CDW) consisting of 12 mol% 3HV from 0.5 g/L propionic acid in glucose mineral medium. Furthermore, successful deletions on three PHA depolymerases eliminate the possible influence of PHA depolymerases on PHA degradation in the complicated industrial fermentation process even though significant enhanced PHA content was not observed. In two 500 L pilot-scale fermentor studies lasting 70 h, the above engineered Halomonas TD01 grew to 112 g/L CDW containing 70 wt% P3HB, and to 80 g/L CDW with 70 wt% P(3HB-co-8 mol% 3HV) in the presence of propionic acid. The cells grown in shake flasks even accumulated close to 92% PHB in CDW with a significant increase of glucose to PHB conversion efficiency from around 30% to 42% after 48 h cultivation when pyridine nucleotide transhydrogenase was overexpressed. Halomonas TD01 was also engineered for producing a PHA regulatory protein PhaR which is a robust biosurfactant.  相似文献   

3.
The lipase secreted by Burkholderia cepacia ATCC 25416 was particularly attractive in detergent and leather industry due to its specific characteristics of high alkaline and thermal stability. The lipase gene (lipA), lipase chaperone gene (lipB), and native promoter upstream of lipA were cloned. The lipA was composed of 1095 bp, corresponding to 364 amino acid residues. The lipB located immediately downstream of lipA was composed of 1035 bp, corresponding to 344 amino acid residues. The lipase operon was inserted into broad host vector pBBRMCS1 and electroporated into original strain. The homologous expression of recombinant strain showed a significant increase in the lipase activity. LipA was purified by three-step procedure of ammonium sulfate precipitation, phenyl-sepharose FF and DEAE-sepharose FF. SDS-PAGE showed the molecular mass of the lipase was 33 kDa. The enzyme optimal temperature and pH were 60 °C and 11.0, respectively. The enzyme was stable at 30–70 °C. After incubated in 70 °C for 1 h, enzyme remained 72% of its maximal activity. The enzyme exhibited a good stability at pH 9.0–11.5. The lipase preferentially hydrolyzed medium-chain fatty acid esters. The enzyme was strongly activated by Mg2+, Ca2+, Cu2+, Zn2+, Co2+, and apparently inhibited by PMSF, EDTA and also DTT with SDS. The enzyme was compatible with various ionic and non-ionic surfactants as well as oxidant H2O2. The enzyme had good stability in the low- and non-polar solvents.  相似文献   

4.
《Microbiological research》2014,169(11):835-843
The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10 μF capacitance, 300 Ω resistance, 4 kV/cm field strength, with 1 μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive–negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum.  相似文献   

5.
Although the lipase of Geotrichum candidum has been extensively reported, little attention has been focused on molecular genetic and biochemical characterizations of Galactomyces geotrichum lipases. A lipase gene from G. geotrichum Y05 was cloned from both genomic DNA and cDNA sources. Nucleotide sequencing revealed that the ggl gene has an ORF of 1692 bp without any introns, encoding a protein of 563 amino acid residues, including a potential signal sequence of 19 amino acid residues. The amino acid sequence of this lipase showed 86% identity to lipase of Trichosporon fermentans WU-C12. The mature lipase gene was subcloned into pPIC9K vector, and overexpressed in methylotrophic Pichia pastoris GS115. Active lipase was accumulated to the level of 100.0 U/ml (0.4 mg/ml) in the shake-flask culture, 10.4-fold higher than the activity of the original strain (9.6 U/ml). This yield dramatically exceeds that previously reported with 23–50 U/ml, 0.06 mg/ml and 0.2 mg/ml. The purified lipase exhibited several properties of significant industrial importance, such as pH and temperature stability, wide organic solvent tolerance and broad hydrolysis on vegetable oils. Such a combination of properties makes it a promising candidate for its application in non-aqueous biocatalysis, such as biodiesel production, selective hydrolysis or esterification for enrichment of PUFAs and oil-contaminated biodegradation, which have been drawn considerable attention currently.  相似文献   

6.
《Process Biochemistry》2010,45(3):346-354
The gene coding for the intracellular organic solvent-tolerant lipase of Pseudomonas aeruginosa strain S5 was isolated from a genomic DNA library and cloned into pRSET. The cloned sequence included two open reading frames (ORF) of 1575 bp for the first ORF (ORF1), and 582 bp for the second ORF (ORF2). The ORF2, known as chaperone, plays an important role in the expression of the S5 gene. The ORF2 is located downstream of lipase gene, and functions as the act gene for ORF1. The conserved pentapeptide, Gly-X-Ser-X-Gly, is located in the ORF1. A sequence coding for a catalytic triad that resembles that of a serine protease, consisting of serine, histidine, and aspartic acid or glutamic acid residues, was present in the lipase gene. Expression of the S5 lipase gene in E. coli resulted in a 100-fold increase in enzyme activity 9 h after induction with 0.75 mM IPTG. The recombinant protein revealed a size of 60 kDa on SDS-PAGE. The Lip S5 gene was stable in the presence of 25% (v/v) n-dodecane and n-tetradecane after 2 h incubation at 37 °C.  相似文献   

7.
《Process Biochemistry》2014,49(8):1324-1331
Immobilized enzymes are preferred over their soluble counterparts due to their robustness in harsh industrial processes; the most stable enzyme derivatives are often produced through multipoint covalent attachment (MCA). However, most enzymes are unable to establish optimal MCA to electrophile-type supports given the heterogeneous distribution and/or low content of primary amino groups on their surfaces; this restricts both the diversity of areas prone to react and the number of attachments to the support. To overcome this we propose combining site-directed immobilization and protein engineering to increase the number of bonds between a specific enzyme surface and a tailor-made support. We applied this novel strategy to engineered mutants of the lipase 2 from Geobacillus thermocatenulatus with one Cys exposed residue, that after genetic amination and/or chemical amination, were immobilized on glyoxyl-disulfide support using a site-directed MCA protocol. Two highly stabilized derivatives of chemically aminated lipase variants, in which site-directed MCA implied the surrounding surface of residues Cys344 or Cys40, were produced: the first one was 2.4-fold more productive than the reference derivative (648 g of hydrolyzed ester); the second derivative was 40% more selective (EPA/DHA molar ratio) and as active (1 μmol g catalyst−1 min−1) as the reference in the production of PUFAs.  相似文献   

8.
In this study, a series of strategies was developed to enhance the expression of an alkaline lipase from Acinetobacter radioresistens (ARL) in Pichia pastoris. Activity of the lipase from recombinant strain carrying a single copy of codon-optimized ARL gene was 65 U/mL in shake flask culture with p-nitrophenyl caprylate as the substrate. The lipase yield was increased to 104 U/mL by introducing a short N-extension spacer peptide coding for the 10 amino acids (EEAEAEAEPK) between α-factor signal peptide and ARL. The N-terminal extension spacer did not affect the pH or temperature properties of the recombinant ARL. After the multi-copy constructs were identified by Q-PCR assay, a higher lipase activity of 180 U/mL was obtained. Further introduction of the spliced HAC1 gene into multi-copy integrants (>6 copies) extensively enhanced the ARL yield by 30–40%. As a result, the ARL yield reached 1.06 × 104 U/mL in a 10-L scaled-up fed-batch fermenter as well as the lipase showed some better properties compared to that wild one from A. radioresistens.  相似文献   

9.
During pyruvate production, ethanol is produced as a by-product, which both decreases the amount of pyruvate and makes the recovery of pyruvate more difficult. Pyruvate decarboxylase (PDC, EC 4.1.1.1), which degrades pyruvate to acetaldehyde and ultimately to ethanol, is a key enzyme in the pyruvate metabolism of yeast. Therefore, to order to increase the yield of pyruvate in Torulopsis glabrata, targeted PDC-disrupted strains were metabolically engineered. First, T. glabrata ura3 strains that were suitable for genetic transformation were isolated and identified through ethyl methansulfonate mutagenesis, 5-fluoroortic acid media selection, and Sacchramyces cerevisiae URA3 complement. Next, the PDC gene in T. glabrata was specifically disrupted through homologous recombinant with the S. cerevisiae URA3 gene as the selective marker. The PDC activity of the disruptants was about 33% that of the parent strain. Targeted PDC gene disruption in T. glabrata was also confirmed by PCR amplification and sequencing of the PDC gene and its mutants, PDC activity staining, and PDC Western blot. The disruptants displayed higher pyruvate accumulation and less ethanol production. Under basal fermentation conditions (see Section 2), the disruptants accumulated about 20 g/L of pyruvate with 4.6 g/L of ethanol, whereas the parental strain (T. glabrata IFO005) only accumulated 7–8 g/L of pyruvate with 7.4 g/L of ethanol. Under favorable conditions in jar fermentation, the disruptants accumulated 82.2 g/L of pyruvate in 52 h.  相似文献   

10.
Lipases are the most attractive enzymes for use in organic chemical processes. In our previous studies, a lipase from Rhizopus chinensis CCTCC M20102 was found to have very high ability of esterification of short-chain fatty acids with ethanol. In this study, we reported the cloning and expression of the lipase gene from R. chinensis in Pichia pastoris and characterization of the recombinant lipase. The lipase gene without its signal sequence were cloned downstream to the alpha-mating factor signal and expressed in P. pastoris GS115 under the control of AOX1 promoter. In the induction phase, two bands of 37 kDa and 30 kDa proteins could be observed. The amino-terminal analysis showed that the 37-kDa protein was the mature lipase (30 kDa) attached with 27 amino acid of the carboxy-terminal part of the prosequence (r27RCL). The pH and temperature optimum of r27RCL and mRCL were pH 8.5 and 40 °C, and pH 8 and 35 °C, respectively. The stability, reaction kinetics and effects of metal ions and other reagents were also determined. The chain length specificity of r27RCL and mRCL showed highest activity toward p-nitrophenyl hexanoate or glyceryl tricaproate (C6) and p-nitrophenyl acetate or glyceryl triacetate (C2), respectively. This property is quite rare among lipases and gives this new lipase great potential for use in the field of biocatalysis.  相似文献   

11.
In this study, combined strategies were employed to heterologously overexpress Candida rugosa lipase Lip1 (CRL1) in a Pichia pastoris system. The LIP1 gene was systematically codon-optimized and synthesized in vitro. The Lip1 activity of a recombinant strain harboring three copies of the codon-optimized LIP1 gene reached 1200 U/mL in a shake flask culture. Higher lipase activity, 1450 U/mL, was obtained using a five copy number construct. Co-expressing one copy of the ERO1p and BiP chaperones with Lip1p, the CRL1 lipase yield further reached 1758 U/mL, which was significantly higher than that achieved by expressing Lip1p alone or only co-expressing one molecular chaperone. When cultivated in a 3 L fermenter under optimal conditions, the recombinant strain GS115/87-ZA-ERO1p-BiP #7, expressing the molecular chaperones Ero1p and BiP, produced 13,490 U/mL of lipase activity at 130 h, which was greater than the 11,400 U/mL of activity for the recombinant strain GS115/pAO815-α-mCRL1 #87, which did not express a molecular chaperone. This study indicates that a strategy of combining codon optimization with co-expression of molecular chaperones has great potential for the industrial-scale production of pure CRL1.  相似文献   

12.
Lipase (EC 3.1.1.3) stands amongst the most important and promising biocatalysts for industrial applications. In this study, in order to realize a high-level expression of the Yarrowia lipolytica lipase gene in Pichia pastoris, we optimized the codon of LIP2 by de novo gene design and synthesis, which significantly improved the lipase expression when compared to the native lip2 gene. We also comparatively analyzed the effects of the promoter types (PAOX1 and PFLD1) and the Pichia expression systems, including the newly developed PichiaPink system, on lipase production and obtained the optimal recombinants. Bench-top scale fermentation studies indicated that the recombinant carrying the codon-optimized lipase gene syn-lip under the control of promoter PAOX1 has a significantly higher lipase production capacity in the fermenter than other types of recombinants. After undergoing methanol inducible expression for 96 h, the wet cell weight of Pichia, the lipase activity and the protein content in the fermentation broth reached their highest values of 262 g/L, 38,500 U/mL and 2.82 g/L, respectively. This study has not only greatly facilitated the bioapplication of lipase in industrial fields but the strategies utilized, such as de novo gene design and synthesis, the comparative analysis among promoters and different generations of Pichia expression systems will also be useful as references for future work in this field.  相似文献   

13.
Diacetyl, a highly valuable product that is extensively used as an ingredient of food, tobacco, and daily chemicals such as perfumes, can be produced from the nonenzymatic oxidative decarboxylation of α-acetolactate during bacterial fermentation and converted to acetoin and 2,3-butanediol by 2,3-butanediol dehydrogenase. In the present study, Bacillus sp. DL01, which gives high acetoin production, was metabolically engineered to improve diacetyl production. After the deletion of α-acetolactate decarboxylase (ALDC)-encoding gene (alsD) by homologous recombination, the engineered strain, named Bacillus sp. DL01-ΔalsD, lost ALDC activity and produced 1.53 g/L diacetyl without acetoin and 2,3-butanediol accumulation. The channeling of carbon flux into diacetyl biosynthetic pathway was amplified by an overexpressed α-acetolactate synthase (ALS)-encoding gene (alsS) in Bacillus sp. DL01-ΔalsD-alsS, which produced 4.02 g/L α-acetolactate and 1.94 g/L diacetyl, and the conversion from α-acetolactate to diacetyl was increased by 1-fold after 20 mM Fe3+ was added to the fermentation medium. A titer of 8.69 g/L diacetyl, the highest reported diacetyl production, was achieved by fed-batch fermentation in optimal conditions using the metabolically engineered strain of Bacillus sp. DL01-ΔalsD-alsS. These results are of great importance as a new method for the efficient production of diacetyl by food-safe bacteria.  相似文献   

14.
Agrobacterium tumefaciens was used to transform Aspergillus fumigatus by either random or site-directed integration of transforming DNA (T-DNA). Random mutagenesis via Agrobacterium tumefaciens-mediated transformation (ATMT) was accomplished with T-DNA containing a hygromycin resistance cassette. Cocultivation of A. fumigatus conidia and Agrobacterium (1:10 ratio) for 48 h at 24°C resulted in high frequencies of transformation (>100 transformants/107 conidia). The majority of transformants harbored a randomly integrated single copy of T-DNA and were mitotically stable. We chose alb1, a polyketide synthase gene, as the target gene for homologous integration because of the clear phenotype difference between the white colonies of Δalb1 mutant strains and the bluish-green colonies of wild-type strains. ATMT with a T-DNA-containing alb1 disruption construct resulted in 66% albino transformants. Southern analysis revealed that 19 of the 20 randomly chosen albino transformants (95%) were disrupted by homologous recombination. These results suggest that ATMT is an efficient tool for transformation, random insertional mutagenesis, and gene disruption in A. fumigatus.  相似文献   

15.
Mesoporous activated carbon (MAC) derived from rice husk is used for the immobilization of acidic lipase (ALIP) produced from Pseudomonas gessardii. The purified acidic lipase had the specific activity and molecular weight of 1473 U/mg and 94 kDa respectively. To determine the optimum conditions for the immobilization of lipase onto MAC, the experiments were carried out by varying the time (10–180 min), pH (2–8), temperature (10–50 °C) and the initial lipase activity (49 × 103, 98 × 103, 147 × 103 and 196 × 103 U/l in acetate buffer). The optimum conditions for immobilization of acidic lipase were found to be: time—120 min; pH 3.5; temperature—30 °C, which resulted in achieving a maximum immobilization of 1834 U/g. The thermal stability of the immobilized lipase was comparatively higher than that in its free form. The free and immobilized enzyme kinetic parameters (Km and Vmax) were found using Michaelis–Menten enzyme kinetics. The Km values for free enzyme and immobilized one were 0.655 and 0.243 mM respectively. The immobilization of acidic lipase onto MAC was confirmed using Fourier Transform-Infrared Spectroscopy, X-ray diffraction analysis and scanning electron microscopy.  相似文献   

16.
To date, there have been reports mostly about research results of the peony root in comparison to the aerial parts. According to our study, the aerial parts of P.lactiflora showed superior anti-oxidative and pancreatic lipase inhibitory activities than its root. Especially, the water extract and the ethyl acetate fraction of the ethanol extract exhibited potent pancreatic lipase inhibitory activity by 53.11 ± 1.22% and 46.16 ± 1.55% at the same dose of orlistat (62.5 ± 1.27%). The ethanol extract exhibited the best anti-oxidative activity with IC50 of 17.08 ± 0.9 μg/mL, and the ethyl acetate fraction 19.75 ± 0.02 μg/mL, respectively, comparing to the positive control rutin (IC50, 22.66 ± 0.29 μg/mL). From the anti-oxidative and pancreatic lipase inhibitory active fractions three new compounds, monplacphloroside (1), monplachydroxyquinoside (2) and herbacetin-7-O-β-d-sophoroside (3) were isolated along with 19 (4-22) known ones.Compounds, PGG (14), 1-O-methyl-2,3,4,6-tetra-O-galloyl-β-d-glucopyranose (17) and ethylgallate (9) were found to be the strongest antioxidants and pancreatic lipase inhibitors. Monoterpenes, albiflorin R2 (19) and albiflorin (20) were determined for the first time as strong pancreatic lipase inhibitors. The presence of the esterified galloyl moiety, with its increasing numbers or the β-lactone cycle within the molecular structure plays an essential role for the enhancement of the pancreatic lipase enzyme inhibitory activity.  相似文献   

17.
Uniform and monodispersed silica nanoparticles were synthesized with a mean diameter of 100 ± 20 nm as analyzed by Transmission Electron Microscopy (TEM). Glutaraldehyde was used as a coupling agent for efficient binding of the lipase onto the silica nanoparticles. For the hydrolysis of pNPP at pH 7.2, the activation energy within 25–40 °C for free and immobilized lipase was 7.8 and 1.25 KJ/mol, respectively. The Vmax and Km of immobilized lipase at 25 °C for pNPP hydrolysis were found to be 212 μmol/min/mg and 0.3 mM, whereas those for free lipase were 26.17 μmol/min and 1.427 mM, respectively. The lower activation energy of immobilized lipase in comparison to free lipase suggests a change in conformation of the enzyme leading to a requirement for lower energy on the surface of the nanoparticles. A better yield (7 fold higher) of ethyl isovalerate was observed using lipase immobilized onto silica nanoparticles in comparison to free lipase.  相似文献   

18.
To facilitate functional genomics in the soybean pathogen Phomopsis longicolla, we developed a robust Agrobacterium tumefaciens-mediated transformation system that yielded 150–250 transformants per 1 × 106 conidia of P. longicolla. This first report of P. longicolla transformation provides a useful tool for insertional mutagenesis in an increasingly important pathogen of soybean.  相似文献   

19.
Burkholderia sp. C20 strain isolated from food wastes produces a lipase with hydrolytic activities towards olive oil. Fermentation strategies for efficient production of this Burkholderia lipase were developed using a 5-L bench top bioreactor. Critical factors affecting the fermentative lipase production were examined, including pH, aeration rate, agitation rate, and incubation time. Adjusting the aeration rate from 0.5 to 2 vvm gave an increase in the overall lipase productivity from 0.057 to 0.076 U/(ml h), which was further improved to 0.09 U/(ml h) by adjusting the agitation speed to 100 rpm. The production of Burkholderia lipase followed mixed growth-associated kinetics with a yield coefficient of 524 U/g-dry-cell-weight. The pH optimum for cell growth and lipase production was different at 7.0 and 6.0, respectively. Furthermore, stepwise addition of carbon substrate (i.e., olive oil) enhanced lipase production in both flask and bioreactor experiments.  相似文献   

20.
A metabolically engineered Escherichia coli has been constructed for the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from unrelated carbon sources. Genes involved in succinate degradation in Clostridium kluyveri and P(3HB) accumulation pathway of Ralstonia eutropha were co-expressed for the synthesis of the above copolyester. E. coli native succinate semialdehyde dehydrogenase genes sad and gabD were both deleted for eliminating succinate formation from succinate semialdehyde, which functioned to enhance the carbon flux to 4HB biosynthesis. The metabolically engineered E. coli produced 9.4 g l?1 cell dry weight containing 65.5% P(3HB-co-11.1 mol% 4HB) using glucose as carbon source in a 48 h shake flask growth. The presence of 1.5–2 g l?1 α-ketoglutarate or 1.0 g l?1 citrate enhanced the 4HB monomer content from 11.1% to more than 20%. In a 6 l fermentor study, a 23.5 g l?1 cell dry weight containing 62.7% P(3HB-co-12.5 mol% 4HB) was obtained after 29 h of cultivation. To the best of our knowledge, this study reports the highest 4HB monomer content in P(3HB-co-4HB) produced from unrelated carbon sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号