首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Carbon dioxide induces increases in guard cell cytosolic free calcium   总被引:10,自引:0,他引:10  
The hypothesis that increases in cytosolic free calcium ([Ca2+]i) are a component of the CO2 signal transduction pathway in stomatal guard cells of Commelina communis has been investigated. This hypothesis was tested using fura-2 fluorescence ratio photometry to measure changes in guard cell [Ca2+]i in response to challenge with 700 µl l−1 CO2. Elevated CO2 induced increases in guard cell [Ca2+]i which were similar to those previously reported in response to abscisic acid. [Ca2+]i returned to resting values following removal of the CO2 and further application of CO2 resulted in a second increase in [Ca2+]i. This demonstrated that the CO2-induced increases in [Ca2+]i were stimulus dependent. Removal of extracellular calcium both prevented the CO2-induced increase in [Ca2+]i and inhibited the associated reduction in stomatal aperture. These data suggest that Ca2+ acts as a second messenger in the CO2 signal transduction pathway and that an increase in [Ca2+]i may be a requirement for the stomatal response to CO2.  相似文献   

2.
The cellular basis of guard cell sensing of rising CO2   总被引:5,自引:1,他引:4  
Numerous studies conducted on both whole plants and isolated epidermes have documented stomatal sensitivity to CO2. In general, CO2 concentrations below ambient stimulate stomatal opening, or an inhibition of stomatal closure, while CO2 concentrations above ambient have the opposite effect. The rise in atmospheric CO2 concentrations which has occurred since the industrial revolution, and which is predicted to continue, will therefore alter rates of transpirational water loss and CO2 uptake in terrestrial plants. An understanding of the cellular basis for guard cell CO2 sensing could allow us to better predict, and perhaps ultimately to manipulate, such vegetation responses to climate change. However, the mechanisms by which guard cells sense and respond to the CO2 signal remain unknown. It has been hypothesized that cytosolic pH and malate levels, cytosolic Ca2+ levels, chloroplastic zeaxanthin levels, or plasma-membrane anion channel regulation by apoplastic malate are involved in guard cell perception and response to CO2. In this review, these hypotheses are discussed, and the evidence for guard cell acclimation to prevailing CO2 concentrations is also considered.  相似文献   

3.
The responses of individual stomata to CO2 concentrations ranging from 0 to 900 μmol mol−1 air were analysed in Ipomoea pes-caprae L. Sweet (Convolvulaceae). The stomata were directly observed using a measurement system that permitted continuous observation of stomatal movement under controlled light and CO2 conditions. A CO2 concentration of 350 μmol mol−1 or higher induced stomatal closure, whereas concentrations below 350 μmol mol−1 did not. The time lag before stomatal closure decreased with increasing CO2 concentration, as did the steady-state aperture of the stomata after a change in CO2 concentration. However, the rate of stomatal closure increased with increasing CO2 concentration. Therefore, not only the stomatal closure rate but also the time from the CO2 concentration change to the beginning of stomatal closure changed with increasing CO2 concentration. These results suggest that atmospheric CO2 may be the stimulus for the closure of guard cells. No significant differences were observed between adaxial and abaxial stomata in terms of their responses to CO2. However, heterogeneous responses were detected between neighbouring stomata on each leaf surface.  相似文献   

4.
1. Increasing carbon dioxide concentration (E: 680 μl CO2 litre–1 vs ambient, A: 355 μl CO2 litre–1) around late-successional Alpine sedge communities of the Swiss Central Alps (2450 m) for four growing seasons (1992–1995) had no detectable effect on symbiotic N2 fixation in Trifolium alpinum —the sole N2-fixing plant species in these communities (74 ± 30 mg N m–2 year–1, A and E plots pooled).
2. This result is based on data collected in the fourth growing season showing that elevated CO2 had no effect on Trifolium above-ground biomass (4·4 ± 1·7 g m–2, A and E plots pooled, n = 24) or N content per unit land area (124 ± 51 mg N m–2, A and E pooled), or on the percentage of N Trifolium derived from the atmosphere through symbiotic N2 fixation (%Ndfa: 61·0 ± 4·1 across A and E plots) estimated using the 15N dilution method.
3. Thus, it appears that N inputs to this ecosystem via symbiotic N2 fixation will not be dramatically affected in the foreseeable future even as atmospheric CO2 continues to rise.  相似文献   

5.
The oxygen requirement for stomatal opening in maize plants ( Zea mays L. hybrid INRA 508) was studied at different CO2 concentrations and light intensities. In the absence of CO2, stomatal opening always required O2, but this requirement decreased with increasing light intensity. In darkness, the lowest O2 partial pressure needed to obtain a weak stomatal movement was about 50 Pa. This value was lowered to ca 10 Pa in light (320 μmol m−2 s−1).
On the other hand. in the absence of O2, CO2enabled stomatal opening to occur in the light, presumably due to the evolved photosynthetic O2. Thus, CO2, which generally reduced stomatal aperture, could induce stomatal movement in anoxia and light. The effect of CO2 on stomatal opening was closely dependent on O2 concentration and light intensity. Stomatal aperture appeared CO2-independent at an O2 partial pressure which was dependent on light intensity and was about 25 Pa at 320 umol m−2 s−1.
The presence of a plasmalemma oxidase, in addition to mitochondrial oxidase, might explain the differences in the O2 requirement at various light intensities. The possible involvement of such a system in relation to the effect of CO2 is discussed.  相似文献   

6.
The effects of elevated concentrations of atmospheric carbon dioxide and ozone on diurnal patterns of photosynthesis have been investigated in field-grown spring wheat ( Triticum aestivum ). Plants cultivated under realistic agronomic conditions, in open-top chambers, were exposed from emergence to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at ambient (380 μmol mol−1, seasonal mean) or elevated (692 μmol mol−1) levels, [O3] at ambient (27 nmol mol−1, 7 hr seasonal mean) or elevated (61 nmol mol−1) levels. After anthesis, diurnal measurements were made of flag-leaf gas-exchange and in vitro Rubisco activity and content. Elevated [CO2] resulted in an increase in photoassimilation rate and a loss of excess Rubisco activity. Elevated [O3] caused a loss of Rubisco and a decline in photoassimilation rate late in flag-leaf development. Elevated [CO2] ameliorated O3 damage. The mechanisms of amelioration included a protective stomatal restriction of O3 flux to the mesophyll, and a compensatory effect of increased substrate on photoassimilation and photosynthetic control. However, the degree of protection and compensation appeared to be affected by the natural seasonal and diurnal variations in light, temperature and water status.  相似文献   

7.
In situ responses to elevated CO2 in tropical forest understorey plants   总被引:3,自引:1,他引:2  
1. Plants growing in deep shade and high temperature, such as in the understorey of humid tropical forests, have been predicted to be particularly sensitive to rising atmospheric CO2. We tested this hypothesis in five species whose microhabitat quantum flux density (QFD) was documented as a covariable. After 7 (tree seedlings of Tachigalia versicolor and Beilschmiedia pendula ) and 18 months (shrubs Piper cordulatum and Psychotria limonensis, and grass Pharus latifolius ) of elevated CO2 treatment ( c. 700 μl litre–1) under mean QFD of less than 11 μmol m–2 s–1, all species produced more biomass (25–76%) under elevated CO2.
2. Total plant biomass tended to increase with microhabitat QFD (daytime means varying from 5 to 11μmol m–2 s–1) but the relative stimulation by elevated CO2 was higher at low QFD except in Pharus .
3. Non-structural carbohydrate concentrations in leaves increased significantly in Pharus (+ 27%) and Tachigalia (+ 40%).
4. The data support the hypothesis that tropical plants growing near the photosynthetic light compensation point are responsive to elevated CO2. An improved plant carbon balance in deep shade is likely to influence understorey plant recruitment and competition as atmospheric CO2 continues to rise.  相似文献   

8.
We investigated the relationship between stomatal frequency and a range of atmospheric CO2 concentrations ([CO2]atm) in Betula pubescens and Pinus sylvestris , two important boreal trees in Scandinavia. If strong relationships exist, they can be used to reconstruct past [CO2]atm from stomatal frequency of fossil Betula and Pinus leaves. Responses of epidermal characters (stomatal density (SD), epidermal cell density (ED), stomatal index (SI)) to different CO2 concentrations were investigated utilising (1) the lower partial pressure of CO2 at increasing altitudes for B. pubescens , and in herbarium specimens of B. pubescens and P. sylvestris collected during the post-industrial rise of [CO2]atm from c. 280 ppmv to c. 360 ppmv in 1997 and (2) concentrations (560 ppmv) and temperatures (3° summer) above present day in the CLIMEX greenhouse experiment. All the results show no clear relationship between SD or SI and [CO2] atm for either B. pubescens or P. sylvestris. Most likely there are stronger genetically and environmentally induced factors that affect the development of the leaves. Problems with collecting representative samples from herbarium specimens are discussed. Since the effects of changes in [CO2]atm cannot be statistically modelled, B. pubescens and P. sylvestris are not suitable for reconstructing past atmospheric CO2 concentrations from fossil leaves using stomatal density or stomatal index  相似文献   

9.
Polyunsaturated fatty acids induce stomatal opening (Y. Lee, H. Lee, R. C. Crain, A. Lee and S. J. Korn. 1994. Cell Signal. 6: 181–186), but it is not known whether they function as second messengers in guard cells exposed to signals that open stomata. To test the hypothesis that phospholipase A2 (PLA2), which produces fatty acids and lysophospholipids, is involved in light signal transduction in guard cells, we treated epidermal peels of Commelina communis L. with PLA2 inhibitors and followed the changes in stomatal apertures in response to light. Stomatal opening by white, blue, or red light was inhibited by 2–3 different PLA2 inhibitors in concentration ranges that have been reported to inhibit PLA2 activity. However, the PLA2 inhibitors could not block stomatal opening induced by a polyunsaturated fatty acid. These results suggest that PLA2 functions as a signal transducer for both blue and red light in guard cells.  相似文献   

10.
Sugar-beet plants ( Beta vulgaris L. cv. Monohill) were cultivated for 4 weeks in a complete nutrient solution. Indirect effects of cadmium were studied by adding 5, 10 or 20 μ M CdCl2 to the culture medium while direct effects were determined by adding 1, 5, 20, 50 or 2 000 μ M CdCl2 to the assay media. The photosynthetic properties were characterized by measurement of CO2 fixation in intact plants, fluorescence emission by intact leaves and isolated chloroplasts, photosystem (PS) I and PSII mediated electron transport of isolated chloroplasts, and CO2-dependent O2 evolution by protoplasts. When directly applied to isolated leaves, protoplasts and chloroplasts. Cd2+ impeded CO2 fixation without affecting the rates of electron transport of PSI or PSII or the rate of dark respiration. When Cd2+ was applied through the culture medium the capacity for, and the maximal quantum yield of CO2 assimilation by intact plants both decreased. This was associated with: (1) decreased total as well as effective chlorophyll content (PSII antennae size), (2) decreased coupling of electron transport in isolated chloroplasts, (3) perturbed carbon reduction cycle as indicated by fluorescence measurements. Also, protoplasts isolated from leaves of Cd2+-cultivated plants showed an increased rate of dark respiration.  相似文献   

11.
Global climatic change scenarios predict a significant increase in future tropospheric ozone (O3) concentrations. The present investigation was done to assess the effects of elevated O3 (70 and 100 ppb) on electron transport, carbon fixation, stomatal conductance and pigment concentrations in two tropical soybean ( Glycine max L.) varieties, PK 472 and Bragg. Plants were exposed to O3 for 4 h·day−1 from 10:00 to 14:00 from germination to maturity. Photosynthesis of both varieties were adversely affected, but the reduction was higher in PK 472 than Bragg. A comparison of chlorophyll a fluorescence kinetics with carbon fixation suggested greater sensitivity of dark reactions than light reactions of photosynthesis to O3 stress. The O3-induced uncoupling between photosynthesis and stomatal conductance in PK 472 suggests the reduction in photosynthesis may be attributed to a factor other than reduced stomatal conductance. An increase in internal CO2 concentration in both O3-treated soybean varieties compared suggests that the reduction in photosynthesis was due to damage to the photosynthetic apparatus, leading to accumulation of internal CO2 and stomatal closure. The adverse impact of O3 stress increased at higher O3 concentrations in both soybean varieties leading to large reductions in photosynthesis. This study suggests that O3-induced reductions in photosynthesis in tropical and temperate varieties are similar.  相似文献   

12.
Guard cell responses to light are mediated by guard cell chlorophyll and by a specific blue light photoreceptor. Gas exchange and epidermal peel techniques were employed to investigate these responses in the facultative Crassulacean acid metabolism (CAM) species, Portulacaria afra (L.) Jacq. In P. afra individuals performing C3 metabolism, red light stimulated an increase in leaf conductance in intact leaves and stomatal opening in isolated epidermal peels, indicating the presence in guard cells of the chlorophyll-mediated response to light. Under a background of continuous red illumination, conductance exhibited transient increases following pulses of blue but not red light, indicating that the specific stomatal response to blue light was also operative. In contrast, in CAM individuals, conductance in gas exchange experiments and stomatal opening in epidermal peel experiments were not stimulated by red light. In CAM plants, conductance did not increase following blue light pulses administered over a range of temperatures, vapor pressure differences (VPD), ambient CO2 concentrations and background red light intensities. These results indicate that P. afra does possess typical guard cell responses to light when performing C3 metabolism. The metabolic pathways mediating these responses are either lost or inhibited when CAM is induced.  相似文献   

13.
Effects of CO2 on stomatal movements of Commelina communis L. were studied with plants, epidermal strips and guard cell protoplasts. With plants, the stomatal response induced by a blue light pulse was studied for different ambient CO2 concentration ranging from CO2-deprived air to 100 Pa in darkness or under red light. It was observed that the blue light response could be obtained not only under a red light background but also in darkness and CO2-free air, the two responses being quite similar.
With epidermal strips, the effect of CO2 on ferricyanide reductase activity at the guard cell plasmalemma was studied by transmission electron microscopy. In the presence of ferric ions, reduced ferricyanide gives an electron dense precipitate of Prussian Blue. In darkness and air, no precipitate was observed. In darkness and CO2-free air as well as under light and normal air, a precipitate was found along the plasmalemma of the guard cells, indicating a ferricyanide reductase activity. With guard cell protoplasts suspended in a medium either in equilibrium with air or in a CO2-free medium the H+ extrusion induced by a blue light pulse added to a red light background was measured. A low CO2 content was obtained by adding photosynthetic algae to the suspension of guard cell protoplasts. In a CO2-free medium the rate of H+ extrusion was enhanced.
The results are discussed on the basis of a possible competition for reducing power between CO2 fixation and a putative blue light dependent redox chain located on the plasma membrane.  相似文献   

14.
The objective of this investigation was to examine the effect of an elevated atmospheric CO2 partial pressure ( p CO2) on the N-sink strength and performance of symbiotic N2 fixation in Trifolium repens L. cv. Milkanova. After initial growth under ambient p CO2 in a nitrogen-free nutrient solution, T. repens in the exponential growth stage was exposed to ambient and elevated p CO2 (35 and 60 Pa) and two levels of mineral N (N-free and 7·5 mol m–3 N) for 36 d in single pots filled with silica sand in growth chambers. Elevated p CO2 evoked a significant increase in biomass production from day 12 after the start of CO2 enrichment. For plants supplied with 7·5 mol m–3 N, the relative contribution of symbiotically fixed N (%Nsym) as opposed to N assimilated from mineral sources (15N-isotope-dilution method), dropped to 40%. However, in the presence of this high level of mineral N, %Nsym was unaffected by atmospheric p CO2 over the entire experimental period. In plants fully dependent on N2 fixation, the increase in N yield reflects a stimulation of symbiotic N2 fixation that was the result of the formation of more nodules rather than of higher specific N2 fixation. These results are discussed with regard to physiological processes governing symbiotic N2 fixation and to the response of symbiotic N2 fixation to elevated p CO2 in field-grown T. repens .  相似文献   

15.
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata , which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in p CO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low p CO2. Stomata did not respond to a decreased p CO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal p CO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to p CO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low p CO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.  相似文献   

16.
Abstract: A continuous dual 13CO2 and 15NH415NO3 labelling experiment was undertaken to determine the effects of ambient (350μmol mol-1) or elevated (700μmol mol-1) atmospheric CO2 concentrations on C and N uptake and allocation within 3-year-old beech ( Fagus sylvatica L.) during leafing. After six weeks of growth, total carbon uptake was increased by 63 % (calculated on total C content) under elevated CO2 but the carbon partitioning was not altered. 56 % of the new carbon was found in the leaves. On a dry weight basis was the content of structural biomass in leaves 10 % lower and the lignin content remained unaffected under elevated as compared to ambient [CO2]. Under ambient [CO2] 37 %, and under elevated [CO2] 51 %, of the lignin C of the leaves derived from new assimilates. For both treatments, internal N pools provided more than 90 % of the nitrogen used for leaf-growth and the partitioning of nitrogen was not altered under elevated [CO2]. The C/N ratio was unaffected by elevated [CO2] at the whole plant level, but the C/N ratio of the new C and N uptake was increased by 32 % under elevated [CO2].  相似文献   

17.
Soil-buried seeds of barnyardgrass ( Echinochloa crus-galli var. crus-galli ) germinated from April to June in three intermittent flushes. The later two flushes of germination occurred after heavy rainfall. Carbon dioxide concentration in soil air transiently increased to 30 dm3 m–3 after the rainfall, probably due to the increase in soil temperature and water potential. Germination of exhumed seeds was stimulated by exposure to CO2 at 30 dm3 m–3. Fluctuating temperature, light, water, ethylene, and nitrate are known to promote seed germination in many species. However, of these environmental factors, within ranges found in the field, only CO2 was effective in enhancing the germination of barnyardgrass seeds. We conclude that soil CO2 is responsible for causing intermittent flushes of germination. Detection of vegetation gaps may be explained by the responsiveness of buried seeds to CO2.  相似文献   

18.
Two Italian CO2 springs allowed us to study the long-term effect of a 350–2600 μ mol mol–1 increase in CO2 concentrations on the surface structures of leaves of Quercus ilex L. Carbon dioxide increased the quantity of cuticular waxes, above an apparent threshold of 750 μ mol mol–1 CO2. Leaf wettability was not modified by CO2 concentrations. Reduction in stomatal frequency was observable up to 750 μ mol mol–1 CO2, the slope being almost the same as that estimated for the increase in CO2 concentration from pre-industrial times to the present. At higher concentrations, CO2 seemed to exert no more impact on stomatal frequency.  相似文献   

19.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

20.
The effects of K+ concentration, light intensity and CO2 levels on the volume of Commelina communis L. guard cell protoplasts were studied. Two degrees of swelling response were observed, both dependent on an external supply of K+, but not necessarily on the supply of a permeant anion. The presence of K+ itself, independent of light or CO2 level, stimulated swelling at a relatively slow rate. When K+, light and low CO2 conditions were supplied together, the swelling was relatively rapid and of high magnitude. The rapid swelling was specific for K+ and Rb+ giving a half maximal effect after 2 h at a KCl concentration of about 18 mmol m−3. The addition of CaCl2 at 1 mol m−3 inhibited K+-dependent swelling under all conditions tested. The response to light and low CO2 levels by Commelina guard cell protoplasts is thought to reflect a high degree of physiological integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号