首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A homologue of the ABI3 gene was isolated from the conifer species, Chamaecyparis nootkatensis. The deduced protein of 794 amino acids exhibited sequence similarity to other VP1/ABI3 proteins within four regions. Expression occurs exclusively in seeds, with no detectable mRNA in leaves and roots. Unlike the homologues of angiosperms, CnABI3 may be encoded by more than one gene.  相似文献   

2.
Mature yellow cedar (Chamaecyparis nootkatensis (D. Don) Spach) embroys were exposed to a range of N6-benzyladenine concentrations in a variety of culture media generally used for conifer caulogenesis. All seven media supported the induction of adventitious shoots but Schenk & Hildebrandt medium was the best. The best cytokinin level of N6-benzyladenine was 0.35 mg 1-1. This resulted in an average of 4–5 large adventitious shoots per explant. Shoots arose primarily from the cotyledons regardless of whether they were in contact with the medium or not. Embryos from seeds stratified four weeks at 21°C and eight weeks at 5°C were more caulogenic than unstratified controls. An additional four weeks at 5°C caused a change in the pattern of shoot induction in that shoots arose from the hypocotyl as well as the cotyledons. Shoots elongated on basal Schenk & Hildebrandt medium. The best rooting response was obtained under non-sterile greenhouse conditions where approximately 60% of the shoots formed roots. Over a 12-month period the average shoot height ranged between 10–13.9 cm with a stem diameter of 2.29–2.68 mm. These propagules are still being grown under forest nursery conditions.  相似文献   

3.
4.
Development of yellow cedar seeds is completed by about 17-21 months after pollination. Following dispersal from the parent plant, the seeds exhibit a low capacity for germination and typically require an additional year to meet their moist chilling requirements and break dormancy. Biochemical analyses were undertaken in order to address whether seed dormancy is imposed and maintained because the embryo or megagametophyte is immature at the time of seed shedding and hence requires time to complete developmental events before dormancy can be terminated. Major protein reserves of the embryo and megagametophyte are the buffer-insoluble crystalloid (legumin) storage proteins and the water-soluble albumin proteins. SDS-PAGE, fluorography of in vivo synthesized proteins and Western blot analyses showed that the greatest increase in protein reserve synthesis and accumulation occurred between the first and second years of development; deposition of soluble and insoluble storage protein was largely completed in seeds of second-year cones by August, 2-3 months prior to seed dispersal. The period associated with greatest accumulation of storage proteins was accompanied by an increased accumulation of two ER-resident proteins associated with post-translational maturation of storage proteins (binding protein and protein disulphide isomerase). Accumulation of proteins implicated in the acquisition of desiccation tolerance (dehydrins and the tonoplast intrinsic protein, -TiP) occurred between the first and second years of development. Several heat-stable proteins and some of the proteins associated with late development continued to be synthesized after seed shedding and in 13 d moist-chilled mature seeds. However, this did not include the major dehydrin-like protein of yellow cedar seeds. Further, the continued synthesis of heat-stable proteins does not appear to be a factor preventing the germination of yellow cedar seeds following dispersal from the parent plant; rather, the mechanism of dormancy is primarily coat-imposed.  相似文献   

5.
Yellow cedar seeds are dormant at maturity. The abscisic acid (ABA) content of the embryo (but not the megagametophyte) decreased approximately 2-fold following exposure of seeds to a dormancy-breaking treatment; this process was also accompanied by a 10-fold lowered sensitivity of the embryo to S:-(+)-ABA. A decline in ABA within the seed is not sufficient for dormancy breakage; reduced embryo sensitivity to ABA is also required.  相似文献   

6.
Asexual reproduction has the potential to promote population structuring through matings between clones as well as through limited dispersal of related progeny. Here we present an application of three-gene identity coefficients that tests whether clonal reproduction promotes inbreeding and spatial relatedness within populations. With this method, the first two genes are sampled to estimate pairwise relatedness or inbreeding, whereas the third gene is sampled from either a clone or a sexually derived individual. If three-gene coefficients are significantly greater for clones than nonclones, then clonality contributes excessively to genetic structure. First, we describe an estimator of three-gene identity and briefly evaluate its properties. We then use this estimator to test the effect of clonality on the genetic structure within populations of yellow-cedar (Callitropsis nootkatensis) using a molecular marker survey. Five microsatellite loci were genotyped for 485 trees sampled from nine populations. Our three-gene analyses show that clonal ramets promote inbreeding and spatial structure in most populations. Among-population correlations between clonal extent and genetic structure generally support these trends, yet with less statistical significance. Clones appear to contribute to genetic structure through the limited dispersal of offspring from replicated ramets of the same clonal genet, whereas this structure is likely maintained by mating among these relatives.  相似文献   

7.
Yellow cedar (Chamaecyparis nootkatensis) seeds exhibit prolonged dormancy following their dispersal from the parent plant. Embryos excised fully from their enclosing seed tissues exhibit 100% germination, indicating that the seed tissues enclosing the embryo (the testa, remnants of the nucellus and the megagametophyte) play an inhibitory role and prevent radicle emergence. As part of an assessment of the role of seed tissues in the dormancy mechanism of yellow cedar seeds, light microscopy was used to examine changes within the major structures of the seed following a 90 d war (26C)/cold (4C) moist treatment ('stratification') and during germination. In the micropylar tip of the seed, the nucellus forms a hard nucellar cap covering the radicle. The nucellar cap is composed primarily of degenerated cells; histological staining with ruthenium red revealed a predominance of pectins. There were no obvious cellular or morphological differences (detected by light microscopy) between mature seeds subjected to a 3 d soak and seeds subjected to a 3 d soak and the 90 d dormancy-breaking treatment. However, just prior to germination there was an outward projection of the nucellar cap through the micropyle, which appeared to be caused by the extension of highly folded proteinaceous strands lying immediately in front of the radicle. When the testa was removed, the embryo enclosed within the intact megagametophyte was incapable of germination. If, however, the megagametophyte surrounding the embryo was slit or the embryo surrounded by an intact megagametophyte was subjected to a 3d rinse in water, some germination occurred, perhaps as a result of an enhanced release of inhibitors from the megagametophyte. After stratification, dormancy of yellow cedar seeds is broken; concurrent with dormancy breakage, there was a mechanical weakening of the megagametophyte. The embryo also underwent changes that included an increase in turgor and a reduced sensitivity to highly negative osmotic potential. It is concluded that coat-imposed dormancy of yellow cedar seeds is enforced by mechanical restraint of the megagametophyte as well as a leachable chemical inhibitor (most probably ABA).  相似文献   

8.
To investigate whether differential herbivore browsing reflects genetic variation in plant defense expression, variation in needle terpenes and damage caused by black-tailed deer (Odocoileus hemionus) was analyzed on yellow-cedar (Chamaecyparis nootkatensis) and western redcedar (Thuja plicata). In a 100-genet yellow-cedar population, three genets that were heavily browsed and had extremely low levels of monoterpenes (0-0.36% dry matter), sesquiterpenes, and diterpenes were compared to unbrowsed genets (0.85-3.83% monoterpenes in dry matter). These differences were maintained in individuals protected from browsing, suggesting genetically based variation in constitutive terpene production. In western redcedar, heavily browsed trees had significantly lower total monoterpene concentrations (1.69% dry matter) than lightly browsed trees (3.32% dry matter). One heavily browsed tree expressed no monoterpenes. No differences were found for diterpenes. In both species, the genotypes with extremely low monoterpene concentrations came from the same open-pollinated families.  相似文献   

9.
At harvest, barley seeds are dormant because their germination is difficult above 20 degrees C. Incubation of primary dormant seeds at 30 degrees C, a temperature at which they do not germinate, results in a loss of their ability to germinate at 20 degrees C. This phenomenon which corresponds to an induction of a secondary dormancy is already observed after a pre-treatment at 30 degrees C as short as 4-6 h, and is optimal after 24-48 h. It is associated with maintenance of a high level of embryo ABA content during seed incubation at 30 degrees C, and after seed transfer at 20 degrees C, while ABA content decreases rapidly in embryos of primary dormant seeds placed directly at 20 degrees C. Induction of secondary dormancy also results in an increase in embryo responsiveness to ABA at 20 degrees C. Application of ABA during seed treatment at 30 degrees C has no significant additive effect on the further germination at 20 degrees C. In contrast, incubation of primary dormant seeds at 20 degrees C for 48 and 72 h in the presence of ABA inhibits further germination on water similarly to 24-48 h incubation at 30 degrees C. However fluridone, an inhibitor of ABA synthesis, applied during incubation of the grains at 30 degrees C has only a slight effect on ABA content and secondary dormancy. Expression of genes involved in ABA metabolism (HvABA8'OH-1, HvNCED1 and HvNCED2) was studied in relation to the expression of primary and secondary dormancies. The results presented suggest a specific role for HvNCED1 and HvNCED2 in regulation of ABA synthesis in secondary seed dormancy.  相似文献   

10.
11.
Chamaecyparis nootkatensis is an ecologically and economically important conifer of the north Pacific coastal forests. To aid in studies of clonal structure and genetic differentiation of this and related species, we isolated and characterized microsatellites from C. nootkatensis. A microsatellite-enriched library yielded 75 repeat-containing sequences for which primer pairs were designed. Only five showed reliable amplification and polymorphism, with an average of 13.7 alleles/locus and a mean expected heterozygosity of 0.592. In progeny tests with four families, few null alleles were directly detected and loci segregated according to Mendelian expectations. However, in one primer pair, high heterozygote deficiency was observed, suggesting the presence of a null allele. The ability of primer pairs to cross amplify was tested on 18 species of the Cupressaceae sensu lato; three primer pairs yielded polymorphic loci in Cupressus and Juniperus species, but not in other Chamaecyparis species. This also supports recent findings of a closer affinity of C. nootkatensis with Cupressus over other Chamaecyparis species.  相似文献   

12.
Allium wakegi plants exposed to long days (LD, 14 h-photoperiod) developed bulbs, which were dormant from the 30th to the 125th day of LD, but those grown under natural short days (SD) did not develop bulbs. The contents of abscisic acid (ABA) in both whole bulbs and buds of the bulbs increased in LD, reaching a maximum at the 60th day of LD and decreasing thereafter, but those in basal leaf sheaths (this part corresponds to a bulb after bulb development) and buds did not increase in SD. The ABA content was related to the depth of bulb dormancy. Application of 500 M ABA to bulbs for 24 h significantly delayed sprouting, but that of 5 or 50 M ABA had little or no effect. Application of 25 or 125 M fluridone to the soil just before exposure to LD bleached new expanding leaves and reduced bulb size, but had no effect on the development of bulb scales that characterize bulb formation. The bulbs formed under such conditions sprouted earlier than those of control plants. The levels of endogenous ABA in bulbs, buds of the bulbs, leaf blades, and roots were reduced by fluridone application. These results indicate that ABA plays an important role in bulb dormancy of Allium wakegi.  相似文献   

13.
The length of potato tuber dormancy depends on both the genotype and the environmental conditions during growth and storage. Abscisic acid (ABA) has been shown to play a critical role in tuber dormancy control but the mechanisms regulating ABA content during dormancy, as well as the sites of ABA synthesis, and catabolism are unknown. Recently, a temporal correlation between changes in ABA content and certain ABA biosynthetic and catabolic genes has been reported in stored field tubers during physiological dormancy progression. However, the protracted length of natural dormancy progression complicated interpretation of these data. To address this issue, in this study the synthetic dormancy-terminating agent bromoethane (BE) was used to induce rapid and highly synchronous sprouting of dormant tubers. The endogenous ABA content of tuber meristems increased 2-fold 24 h after BE treatment and then declined dramatically. By 7 d post-treatment, meristem ABA content had declined by >80%. Exogenous [(3)H]ABA was readily metabolized by isolated meristems to phaseic and dihydrophaseic acids. BE treatment resulted in an almost 2-fold increase in the rate of ABA metabolism. A differential expression of both the StNCED and StCYP707A gene family members in meristems of BE-treated tubers is consistent with a regulatory role for StNCED2 and the StCYP707A1 and StCYP707A2 genes. The present results show that the changes in ABA content observed during tuber dormancy progression are the result of a dynamic equilibrium of ABA biosynthesis and degradation that increasingly favours catabolism as dormancy progresses.  相似文献   

14.
The level of grain dormancy and sensitivity to ABA of the embryo, a key factor in grain dormancy, were examined in developing grains of a white-grained wheat line, Novosibirskaya 67 (NS-67), and its red-grained near-isogenic lines (ANK-1A to -1D); a red-grained line, AUS 1490, and its white-grained mutant line (EMS-AUS). ANK lines showed higher levels of grain dormancy than NS-67 at harvest maturity. AUS 1490 grain also showed higher dormancy than EMS-AUS grain. These results suggest that the R gene for grain colour can enhance grain dormancy. However, the dormancy effect conferred by the R gene was not large, suggesting that it plays a minor role in the development of grain dormancy. Water extracts of AUS 1490 and EMS-AUS bran contained germination inhibitors equivalent to 1-10 microM ABA, although there was no difference in the amount of inhibitors between AUS 1490 and EMS-AUS. Thus, the grain colour gene of AUS 1490 did not appear to enhance the level of grain dormancy by accumulating germination inhibitors in its bran. Sensitivity to ABA of embryos was higher in grains collected around harvest-maturity for ANK lines and AUS 1490, compared with NS-67 and EMS-AUS. The R gene might enhance grain dormancy by increasing the sensitivity of embryos to ABA.  相似文献   

15.
Abstract Seeds of Brachiaria humidicola were subjected, on a thermogradienl plate, to a wide range of alternating-temperature cycles (24 h) and constant temperatures with intermittent exposure to diffuse laboratory light, in the presence and absence of 10 mol m?3 KNOV The optimum regime for maximum percentage germination was alternating temperatures of 35°C for 4hd?1 and 13°C for 20 hd?1. Almost no germination occurred at any constant temperature. Thermoperiods in which the warmer temperature was applied for the longer part of the 24 h cycle were much less stimulatory; in the presence of KNO3, however, the germination under such regimes was much improved, although there was little effect on seeds experiencing near-optimum alternating-temperature regimes. This investigation is the first step in identifying which of 10 attributes of alternating temperatures are stimulatory, in order to predict the efficacy of different temperature regimes and to identify the stimulatory characteristics that must ultimately be explained by cellular physiology. The work shows that amplitude, thermoperiod and mean temperature must all be incorporated in a quantitative model.  相似文献   

16.
17.
We measured ABA content and sensitivity in bulblels of Lilium speciosum Thunb , regenerating from scale explants in vitro at temperatures (15, 20 or 25°C) that allowed the development of various levels of dormancy (very low, intermediate or high, respectively). The one-step purification and the accuracy of the immunoassay were confirmed by HPLC and by liquid chromatography/mass spectrometry. ABA content was not correlated with dormancy development. Sensitivity to ABA was determined as the difference in sprouting performance of excised bulblets on medium with and without ABA. In bulblets regenerating at 20 or 25°C. ABA sensitivity was high during the period of dormancy establishment and decreased thereafter. Dormant hulblets were almost completely insensitive to ABA. The changes in sensitivity to ABA were confirmed by measuring the level of ABA in bulblets at the time of sprouting. This level was, as expected, highest in bulhlels with low ABA-sensitivity. Briefly cold-treated bulblets, in which dormancy may he re-established by culture at 20°C, again became sensitive to ABA. ABA sensitivity decreased with increasing temperature bulblets that regenerated at I5°C and hardly developed any dormancy, were very sensitive to ABA. It was concluded that in addition to ABA sensitivity another, still unknown, factor played a key role in dormancy development.  相似文献   

18.
The main aims of the present work were to investigate whether a chilling treatment which breaks dormancy of Douglas fir ( Pseudotsuga menziesii (Mirb.) Franco) seeds induces changes in the sensitivity of seeds to exogenous ABA or in ABA levels in the embryo and the megagametophyte, and whether these changes are related to the breaking of dormancy. Dormant seeds germinated very slowly within a narrow range of temperatures (20–30°C), the thermal optimum being approximately 25°C. The seeds were also very sensitive to oxygen deprivation. Treatment of dormant seeds at 5°C improved further germination, and resulted in a widening of the temperature range within which germination occurred and in better germination in low oxygen concentrations. In dry dormant seeds the embryo contained about one-third of the ABA in the megagametophyte. ABA content of both organs increased during the first 4 weeks of chilling. It then decreased sharply in the megagametophyte to the level in the embryo after 7–15 weeks of chilling. At 15°C, a temperature at which dormancy was expressed, the ABA level increased in the embryo and the megagametophyte of dormant unchilled seeds whereas it decreased in the organs of chilled seeds. The longer the chilling treatment, the faster the decrease in ABA after the transfer of seeds from 5°C to higher temperatures, and the decrease was faster at 25 than at 15°C. These results suggest that the breaking of dormancy by cold was associated with a lower capacity of ABA biosynthesis and/or a higher ABA catabolism in the seeds subsequently placed at 15 or 25°C. Moreover, the chilling treatment resulted in a progressive decrease in the sensitivity of seeds to exogenous ABA. However, seeds remained more sensitive to ABA at 15 than at 25°C. The possible involvement of ABA synthesis and of responsiveness of seeds to ABA in the breaking of dormancy by cold treatment is discussed.  相似文献   

19.
Dormancy-breaking and seed germination studies in genus Lilium reveal that the majority of Lilium spp. studied have an underdeveloped embryo at maturity, which grows inside the seed before the radicle emerges. Additionally, the embryo, radicle or cotyledon has a physiological component of dormancy; thus, Lilium seeds have morphophysiological dormancy (MPD). A previous study suggested that seeds of Lilium polyphyllum have MPD but the study did not investigate the development of the embryo, which is one of the main criteria to determine MPD in seeds. To test this hypothesis, we investigated embryo growth and emergence of radicles and epicotyls in seeds over a range of temperatures. At maturity, seeds had underdeveloped embryos which developed fully at warm temperature within 6 weeks. Immediately after embryo growth, radicles also emerged at warm temperatures. However, epicotyls failed to emerge soon after radicle emergence. Epicotyls emerged from >90% seeds with an emerged radicle only after they were subjected to 2 weeks of cold moist stratification. The overall temperature requirements for dormancy-breaking and seed germination indicate a non-deep simple epicotyl MPD in L. polyphyllum.  相似文献   

20.
Euonymus alatus (Thunb.) Sieb. is a popular landscape plant in the United States due to its brilliant red fall foliage. It is also an important ornamental plant in many other areas of the world such as China, Japan and Europe. However, E. alatus is considered as a highly invasive plant species in the US. Mutation breeding can be used to create sterile, non-invasive cultivars. Seeds are the most commonly used explants for mutagen treatments, but E. alatus mature seeds possess prolonged dormancy and only a low percentage of them germinate even after 18?months of cold stratification. Here we report an immature embryo culture method for E. alatus ??Compactus?? to circumvent the seed dormancy problem. Also, we have found that activated charcoal, gibberellic acid (GA3) and 6-benzyladenine (BA) can reduce the dormancy of isolated embryos, which suggests that abscisic acid (ABA) might play a role in controlling seed dormancy. We have further demonstrated that exogenous ABA enhances dormancy of isolated E. alatus embryos while fluridone, an inhibitor for ABA biosynthesis, can effectively break their dormancy. These results, particularly the effect of fluridone, suggest that continuous ABA biosynthesis plays an important role in controlling the dormancy of E. alatus seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号