首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The effects of elevated CO2 on plant biomass and community structure have been studied for four seasons in a calcareous grassland in northwest Switzerland. This highly diverse, semi-natural plant community is dominated by the perennial grass Bromus erectus and is mown twice a year to maintain species composition. Plots of 1.3 m2 were exposed to ambient or elevated CO2 concentrations (n = 8) using a novel CO2 exposure technique, screen-aided CO2 control (SACC) starting in March 1994. In the 1st year of treatment, the annual harvested biomass (sum of aboveground biomass from mowings in June and October) was not significantly affected by elevated CO2. However, biomass increased significantly at elevated CO2 in the 2nd (+20%, P = 0.05), 3rd (+21%, P = 0.02) and 4th years (+29%, P = 0.02). There were no detectable differences in root biomass in the top 8 cm of soil between CO2 treatments on eight out of nine sampling dates. There were significant differences in CO2 responsiveness between functional groups (legumes, non-leguminous forbs, graminoids) in the 2nd (P = 0.07) and 3rd (P < 0.001) years of the study. The order of CO2 responsiveness among functional groups changed substantially from the 2nd to the 3rd year; for example, non-leguminous forbs had the smallest relative response in the 2nd year and the largest in the 3rd year. By the 3rd year of CO2 exposure, large species-specific differences in CO2 response had developed. For five important species or genera the order of responsiveness was Lotus corniculatus (+271%), Carex flacca (+249%), Bromus erectus (+33%), Sanguisorba minor (no significant CO2 effect), and six Trifolium species (a negative response that was not significant). The positive CO2 responses in Bromus and Carex were most closely related to increases in tiller number. Species richness was not affected by CO2 treatment, but species evenness increased under elevated CO2 (modified Hill ratio; P = 0.03) in June of the 3rd year, resulting in a marginally significant increase in species diversity (Simpson's index; P = 0.09). This and other experiments with calcareous grassland plants show that elevated atmospheric CO2 concentrations can substantially alter the structure of calcareous grassland communities and may increase plant community biomass. Received: 12 July 1997 / Accepted: 14 September 1998  相似文献   

2.
Plant nutrient responses to 4 years of CO2 enrichment were investigated in situ in calcareous grassland. Beginning in year 2, plant aboveground C:N ratios were increased by 9% to 22% at elevated CO2 (P < 0.01), depending on year. Total amounts of N removed in biomass harvests during the first 4 years were not affected by elevated CO2 (19.9 ± 1.3 and 21.1 ± 1.3 g N m−2 at ambient and elevated CO2), indicating that the observed plant biomass increases were solely attained by dilution of nutrients. Total aboveground P and tissue N:P ratios also were not altered by CO2 enrichment (12.5 ± 2 g N g−1 P in both treatments). In contrast to non-legumes (>98% of community aboveground biomass), legume C/N was not reduced at elevated CO2 and legume N:P was slightly increased. We attribute the less reduced N concentration in legumes at elevated CO2 to the fact that virtually all legume N originated from symbiotic N2 fixation (%Ndfa ≈ 90%), and thus legume growth was not limited by soil N. While total plant N was not affected by elevated CO2, microbial N pools increased by +18% under CO2 enrichment (P = 0.04) and plant available soil N decreased. Hence, there was a net increase in the overall biotic N pool, largely due increases in the microbial N pool. In order to assess the effects of legumes for ecosystem CO2 responses and to estimate the degree to which plant growth was P-limited, two greenhouse experiments were conducted, using firstly undisturbed grassland monoliths from the field site, and secondly designed `microcosm' communities on natural soil. Half the microcosms were planted with legumes and half were planted without. Both monoliths and microcosms were exposed to elevated CO2 and P fertilization in a factored design. After two seasons, plant N pools in both unfertilized monoliths and microcosm communities were unaffected by CO2 enrichment, similar to what was found in the field. However, when P was added total plant N pools increased at elevated CO2. This community-level effect originated almost solely from legume stimulation. The results suggest a complex interaction between atmospheric CO2 concentrations, N and P supply. Overall ecosystem productivity is N-limited, whereas CO2 effects on legume growth and their N2 fixation are limited by P. Received: 12 July 1997 / Accepted: 15 April 1998  相似文献   

3.
[CO2]- and density-dependent competition between grassland species   总被引:1,自引:1,他引:0  
The predicted ongoing increase of atmospheric carbon dioxide levels is considered to be one of the main threats to biodiversity due to potential changes in biotic interactions. We tested whether effects of intra‐ and interspecific planting density of the calcareous grassland perennials Bromus erectus and Carex flacca change in response to elevated [CO2] (600 ppm) by using factorial combinations of seven densities (0, 1, 2, 4, 8, 16, 24 tillers per 8 × 8 cm2 cell) of both species in plots with and without CO2 enrichment. Although aboveground biomass of C. flacca was increased by 54% under elevated [CO2], the combined aboveground biomass of the whole stand was not significantly increased. C. flacca tended to produce more tillers under elevated [CO2] while B. erectus produced less tillers. The positive effect of [CO2] on the number of tillers of C. flacca was strongest at high intraspecific densities. On the other hand, the negative effect of [CO2] on the number of tillers of B. erectus was not present at intermediate intraspecific planting densities. Seed production of C. flacca was more than doubled under elevated [CO2], while seed production of B. erectus was not affected. Moreover, the mass per seed of C. flacca was increased by elevated [CO2] at intermediate interspecific planting densities while the mass per seed of B. erectus was decreased by elevated [CO2] at high interspecific planting densities. Our results show that the responses of C. flacca and B. erectus to elevated [CO2] depend in a complex way on initial planting densities of both species. In other words, competition between these two model species is both [CO2]‐ and density dependent. On average, however, the effects of [CO2] on the individual species indicate that the composition of calcareous grasslands is likely to change under elevated [CO2] in favor of C. flacca.  相似文献   

4.
Seed production and seed quality in a calcareous grassland in elevated CO2   总被引:2,自引:1,他引:1  
In diverse plant communities the relative contribution of species to community biomass may change considerably in response to elevated CO2. Along with species‐specific biomass responses, reproduction is likely to change as well with increasing CO2 and might further accelerate shifts in species composition. Here, we ask if, after 5 years of CO2 exposure, seed production and seed quality in natural nutrient‐poor calcareous grassland are affected by elevated CO2 (650 μ L L?1 vs 360 μ L L?1) and how this might affect long‐term community dynamics. The effect of elevated CO2 on the number of flowering shoots (+ 24%, P < 0.01) and seeds (+ 29%, P = 0.06) at the community level was similar to above ground biomass responses in this year, suggesting that the overall allocation to sexual reproduction remained unchanged. Compared among functional groups of species we found a 42% increase in seed number (P < 0.01) of graminoids, a 33% increase (P = 0.07) in forbs, and no significant change in legumes (? 38%, n.s.) under elevated CO2. Large responses particularly of two graminoid species and smaller responses of many forb species summed up to the significant or marginally significant increase in seed number of graminoids and forbs, respectively. In several species the increase in seed number resulted both from an increase in flowering shoots and an increase in inflorescence size. In most species, seeds tended to be heavier (+ 12%, P < 0.01), and N‐concentration of seeds was significantly reduced in eight out of 13 species. The fraction of germinating seeds did not differ between seeds produced in ambient and elevated CO2, but time to germination was significantly shortened in two species and prolonged in one species when seeds had been produced in elevated CO2. Results suggest that species specific increases in seed number and changes in seed quality will exert substantial cumulative effects on community composition in the long run.  相似文献   

5.
Surprisingly little research has been published on the responses to elevated [CO2] at the community level, where herbivores can select their preferred food. We investigated the combined effects of atmospheric [CO2] and herbivory on synthesised plant communities growing on soils of different fertility. Factorial combinations of two [CO2] (350 or 700 l l−1), two fertility (fertilised or non-fertilised), and two herbivory (herbivores present or absent) treatments were applied to a standard mixture of seven fast- and eight slow-growing plants in outdoor microcosms. The herbivores used were the grain aphid (Sitobion avenae) and the garden snail (Helix aspersa). We measured plant biomass, foliar nitrogen and soluble tannin concentration, aphid fecundity, and snail growth, fecundity, and feeding preferences over one growing season. Elevated [CO2] did not have a significant impact on (1) the combined biomass of fast-growing or slow-growing plants, (2) herbivore feeding preferences, or (3) herbivore fitness. There was, however, a significant biomass increase of Carex flacca (which represented in all cases less than 5% of total live biomass), and some chemical changes in unpalatable plants under elevated [CO2]. The herbivory treatment significantly increased the biomass of slow-growing plants over fast-growing plants, whereas fertilisation significantly increased the abundance of fast-growing plants over slow-growing plants. Predictions on the effects of elevated [CO2] based on published single-species experiments were not supported by the results of this microcosm study. Received: 30 November 1997 / Accepted: 24 July 1998  相似文献   

6.
Strengbom J  Reich PB 《Oecologia》2006,149(3):519-525
To evaluate whether leaf spot disease and related effects on photosynthesis are influenced by increased nitrogen (N) input and elevated atmospheric CO2 concentration ([CO2]), we examined disease incidence and photosynthetic rate of Solidago rigida grown in monoculture under ambient or elevated (560 μmol mol−1) [CO2] and ambient or elevated (+4 g N m−2 year−1) N conditions in a field experiment in Minnesota, USA. Disease incidence was lower in plots with either elevated [CO2] or enriched N (−57 and −37%, respectively) than in plots with ambient conditions. Elevated [CO2] had no significant effect on total plant biomass, or on photosynthetic rate, but reduced tissue%N by 13%. In contrast, N fertilization increased both biomass and total plant N by 70%, and as a consequence tissue%N was unaffected and photosynthetic rate was lower on N fertilized plants than on unfertilized plants. Regardless of treatment, photosynthetic rate was reduced on leaves with disease symptoms. On average across all treatments, asymptomatic leaf tissue on diseased leaves had 53% lower photosynthetic rate than non-diseased leaves, indicating that the negative effect from the disease extended beyond the visual lesion area. Our results show that, in this instance, indirect effects from elevated [CO2], i.e., lower disease incidence, had a stronger effect on realized photosynthetic rate than the direct effect of higher [CO2].  相似文献   

7.
Earthworms make up the dominant fraction of the biomass of soil animals in most temperate grasslands and have important effects on the structure and function of these ecosystems. We hypothesized that the effects of elevated atmospheric CO2 on soil moisture and plant biomass production would increase earthworm activity, expressed as surface cast production. Using a screen-aided CO2 control facility (open top and open bottom rings), eight 1.2-m2 grassland plots in Switzerland have been maintained since March 1994 at ambient CO2 concentrations (350 μl CO2 l−1) and eight at elevated CO2 (610 μl CO2 l−1). Cumulative earthworm surface cast production measured 40 times over 1 year (April 1995–April 1996) in plots treated with elevated CO2 (2206 g dry mass m−2 year−1) was 35% greater (P<0.05) than that measured in plant communities maintained at ambient CO2 (1633 g dry mass m−2 year−1). At these rates of surface cast production, worms would require about 100 years to egest the equivalent of the amount of soil now found in the Ah horizon (top 15 cm) under current ambient CO2 concentrations, and 75 years under elevated CO2. Elevated atmospheric CO2 had no influence on the seasonality of earthworm activity. Cumulative surface cast production measured over the 7-week period immediately following the 6-week summer dry period in 1995 (no surface casting) was positively correlated (P<0.05) with the mean soil water content calculated over this dry and subsequent wetter period, when viewed across all treatments. However, no correlations were observed with soil temperature or with annual aboveground plant biomass productivity. No CO2-related differences were observed in total nitrogen (Ntot) and organic carbon (Corg) concentration of surface casts, although concentrations of both elements varied seasonally. The CO2-induced increase in earthworm surface casting activity corresponded to a 30% increase of the amount of Ntot (8.9 mg N m−2 vs. 6.9 mg N m−2) and Corg (126 mg C m−2 vs. 94 mg C m−2) egested by the worms in one year. Thus, our results demonstrate an important indirect stimulatory effect of elevated atmospheric CO2 on earthworm activity which may have profound effects on ecosystem function and plant community structure in the long term. Received: 3 November 1996 / Accepted: 11 January 1997  相似文献   

8.
Accelerating invasion of grasslands by woody species is a widespread global phenomenon. The native shrub Baccharis pilularis has recently increased in abundance in some California grasslands, with large local community and ecosystem effects. I investigated potential contributions of (1) future global climate and atmospheric changes and (2) variation in moisture and nutrient availability to increased Baccharis germination and early establishment rates. I examined responses of Baccharis seeds and seedlings to simulated warming (+ 1−2 °C) and elevated CO2 (+ 300 ppm) in a 2-year field experiment. Warming and CO2 treatments were applied at ambient and increased water and nitrogen levels chosen to simulate future increases in precipitation (+ 50%) and N deposition (+ 7 gN m−2 y−1). Elevated CO2 and water addition each increased or accelerated germination. Herbivory strongly reduced seedling populations during the winter wet season; drought further reduced seedling survival in the spring. Overall Baccharis survivorship was extremely low (<0.1%) across all treatments, complicating the interpretation of global change effects.  相似文献   

9.
Ecosystem-level experiments on the effects of atmospheric CO2 enrichment and N deposition on forest trees are urgently needed. Here we present data for nine model ecosystems of spruce (Picea abies) on natural nutrient-poor montane forest soil (0.7 m2 of ground and 350 kg weight). Each system was composed of six 7-year-old (at harvest) trees each representing a different genotype, and a herbaceous understory layer (three species). The model ecosystems were exposed to three different CO2 concentrations (280, 420, 560 μl l−1) and three different rates of wet N deposition (0, 30, 90 kg ha−1 year−1) in a simulated annual course of Swiss montane climate for 3 years. The total ecosystem biomass was not affected by CO2 concentration, but increased with increasing N deposition. However, biomass allocation to roots increased with increasing CO2 leading to significantly lower leaf mass ratios (LMRs) and leaf area ratios (LARs) in trees grown at elevated CO2. In contrast to CO2 enrichment, N deposition increased biomass allocation to the aboveground plant parts, and thus LMR and LAR were higher with increasing N deposition. We observed no CO2 ×  N interactions on growth, biomass production, or allocation, and there were also no genotype × treatment interactions. The final leaf area index (LAI) of the spruce canopies was 19% smaller at 420 and 27% smaller at 560 than that measured at 280 μl CO2 l−1, but was not significantly altered by increasing N deposition. Lower LAIs at elevated CO2 largely resulted from shorter branches (less needles per individual tree) and partially from increased needle litterfall. Independently of N deposition, total aboveground N content in the spruce communities declined with increasing CO2 (−18% at 420 and −31% at 560 compared to 280 μl CO2 l−1). N deposition had the opposite effect on total above ground N content (+18% at 30 and +52% at 90 compared to 0 kg N ha−1 year−1). Our results suggest that under competitive conditions on natural forest soil, atmospheric CO2 enrichment may not lead to higher ecosystem biomass production, but N deposition is likely to do so. The reduction in LAI under elevated CO2 suggests allometric down-regulation of photosynthetic carbon uptake at the canopy level. The strong decline in the tree nitrogen mass per unit ground area in response to elevated CO2 may indicate CO2-induced reductions of soil N availability. Received: 11 May 1997 / Accepted: 4 August 1997  相似文献   

10.
Ponderosa Pine Responses to Elevated CO2and Nitrogen Fertilization   总被引:1,自引:1,他引:0  
The effects of elevated CO2 (ambient, +175, and +350 μl l−1) and nitrogen fertilization (0, 100, and 200 kg N ha−1 yr−1 as ammonium sulfate) on C and N accumulations in biomass and soils planted with ponderosa pine (Pinus ponderosa Laws) over a 6-year study period are reported. Both nitrogen fertilization and elevated CO2 caused increases in C and N contents of vegetation over the study period. The pattern of responses varied over time. Responses to CO2 decreased in the +175 μl l−1 and increased in the +350 μl l−1 after the first year, whereas responses to N decreased after the first year and became non-significant by year six. Foliar N concentrations were lower and tree C:N ratios were higher with elevated CO2 in the early years, but this was offset by the increases in biomass, resulting in substantial increases in N uptake with elevated CO2. Nitrogen budget estimates showed that the major source of the N for unfertilized trees, with or without elevated CO2, was likely the soil organic N pool. There were no effects of elevated CO2 on soil C, but a significant decrease in soil N and an increase in soil C:N ratio in year six. Nitrogen fertilization had no significant effect on tree C:N ratios, foliar N concentrations, soil C content, soil N content, or soil C:N ratios. There were no significant interactions between CO2 and N treatments, indicating that N fertilization had no effect on responses to CO2 and that CO2 treatments had no effect on responses to N fertilization. These results illustrate the importance of long-term studies involving more than one level of treatment to assess the effects of elevated CO2.  相似文献   

11.
Atmospheric changes could strongly influence how terrestrial ecosystems function by altering nutrient cycling. We examined how the dynamics of nutrient release from leaf litter responded to two important atmospheric changes: rising atmospheric CO2 and tropospheric O3. We evaluated the independent and combined effects of these gases on foliar litter nutrient dynamics in aspen (Populus tremuloides Michx) and birch (Betula papyrifera Marsh)/aspen communities at the Aspen FACE Project in Rhinelander, WI. Naturally senesced leaf litter was incubated in litter bags in the field for 735 days. Decomposing litter was sampled six times during incubation and was analyzed for carbon, and both macro (N, P, K, S, Ca, and Mg) and micro (Mn, B, Zn and Cu) nutrient concentrations. Elevated CO2 significantly decreased the initial litter concentrations of N (−10.7%) and B (−14.4%), and increased the concentrations of K (+23.7%) and P (+19.7%), with no change in the other elements. Elevated O3 significantly decreased the initial litter concentrations of P (−11.2%), S (−8.1%), Ca (−12.1%), and Zn (−19.5%), with no change in the other elements. Pairing concentration data with litterfall data, we estimated that elevated CO2 significantly increased the fluxes to soil of all nutrients: N (+12.5%), P (+61.0%), K (+67.1%), S (+28.0%), and Mg (+40.7%), Ca (+44.0%), Cu (+38.9%), Mn (+62.8%), and Zn (+33.1%). Elevated O3 had the opposite effect: N (−22.4%), P (−25.4%), K (−27.2%), S (−23.6%), Ca (−27.6%), Mg (−21.7%), B (−16.2%), Cu (−20.8%), and Zn (−31.6%). The relative release rates of the nine elements during the incubation was: K ≥ P ≥ mass ≥ Mg ≥ B ≥ Ca ≥ S ≥ N ≥ Mn ≥ Cu ≥ Zn. Atmospheric changes had little effect on nutrient release rates, except for decreasing Ca and B release under elevated CO2 and decreasing N and Ca release under elevated O3. We conclude that elevated CO2 and elevated O3 will alter nutrient cycling more through effects on litter production, rather than litter nutrient concentrations or release rates.  相似文献   

12.
Monoliths of a fertile, N limited, C3 grassland community were subjected (or not) to an atmospheric CO2 enrichment (600 µmol mol‐‐1) using a Mini‐FACE system, from August 1998 to June 2001 and were subjected to two contrasting cutting frequencies (3 and 6 cuts per year). We report here the effects of the CO2 and cutting frequency factors on the plant community structure and its diversity. Species‐specific responses to elevated CO2 and cutting frequency were observed, which resulted in significant changes in the botanical composition of the grassland monoliths. Elevated CO2 significantly increased the proportion of dicotyledones (forbs + legumes) and reduced that of the monocotyledones (grasses). Management differentiated this response as elevated CO2 increased the proportion of forbs when infrequently and of legumes when frequently defoliated. However, among the two dominant forbs species only one was significantly enhanced by elevated CO2. Moreover, not all grass species responded negatively to high CO2. At a low cutting frequency, the observed decline under ambient CO2 in species diversity (Shannon‐Weaver index) and in forb species number was partly alleviated by elevated CO2. This experiment shows that the botanical composition of temperate grasslands is likely to be affected by the current rise (+ 0.5% per year) in the atmospheric CO2 concentration, and that grassland management guidelines may need to be adapted to a future high CO2 world.  相似文献   

13.
We conducted an experiment on responses of weedy species from an orchard ecosystem to elevated CO2 (700–800 μmol mol−1) under low phosphorus (P) soil in an environment-controlled growth chamber. Twelve local weedy species, Poa annua L., Lolium perenne L., Avena fatua L., Vicia cracca L., Medicago lupulina L., Kummerowia striata (Thunb.) Schindl., Veronica didyma Ten., Plantago virginica L., Gnaphalium affine D.Don., Echinochloa crusgalli var. mitis (L.) Beauv., Eleusine indica (L.) Gaertn. and Setaria glauca (L.) P. Beauv., grouped into four functional groups (C3 grass, C3 forb, legume and C4 grass), were used in the experiment. The total plant biomass, P uptake, and mycorrhizal colonization were measured. The results showed that the total biomass of the 12 weedy species tended to increase under elevated CO2. But changes in the total biomass under elevated CO2 significantly differed among functional groups: legumes showed the greatest increase in the total biomass of all functional groups, following the order C3 forbs > C4 grasses > C3 grasses. Elevated CO2 significantly increased mycorrhizal colonization and P uptake of legumes, C3 forbs and C4 grasses but did not change C3 grasses. Positive correlations between mycorrhizal colonization and shoot P concentration, and between total P uptake and total biomass were found under elevated CO2. The results suggested that the interspecific difference in CO2 response at low P availability was caused by the difference in CO2 response in mycorrhizae and P uptake. These differences among species imply that plant interaction in orchard ecosystems may change under future CO2 enrichment.  相似文献   

14.
Anthropogenic nitrogen (N) loading has the potential to affect plant community structure and function, and the carbon dioxide (CO2) sink of peatlands. Our aim is to study how vegetation changes, induced by nutrient input, affect the CO2 exchange of a nutrient-limited bog. We conducted 9- and 4-year fertilization experiments at Mer Bleue bog, where we applied N addition levels of 1.6, 3.2, and 6.4 g N m−2 a−1, upon a background deposition of about 0.8 g N m−2 a−1, with or without phosphorus and potassium (PK). Only the treatments 3.2 and 6.4 g N m−2 a−1 with PK significantly affected CO2 fluxes. These treatments shifted the Sphagnum moss and dwarf shrub community to taller dwarf shrub thickets without moss, and the CO2 responses depended on the phase of vegetation transition. Overall, compared to the large observed changes in the vegetation, the changes in CO2 fluxes were small. Following Sphagnum loss after 5 years, maximum ecosystem photosynthesis (Pgmax) and net CO2 exchange (NEEmax) were lowered (−19 and −46%, respectively) in the highest NPK treatment. In the following years, while shrub height increased, the vascular foliar biomass did not fully compensate for the loss of moss biomass; yet, by year 8 there were no significant differences in Pgmax and NEEmax between the nutrient and the control treatments. At the same time, an increase (24–32%) in ecosystem respiration (ER) became evident. Trends in the N-only experiment resembled those in the older NPK experiment by the fourth year. The increasing ER with increasing vascular plant and decreasing Sphagnum moss biomass across the experimental plots suggest that high N deposition may lessen the CO2 sink of a bog.  相似文献   

15.
Long-term exposure of native vegetation to elevated atmospheric CO2 concentrations is expected to increase C inputs to the soil and, in ecosystems with seasonally dry periods, to increase soil moisture. We tested the hypothesis that these indirect effects of elevated CO2 (600 μl l−1 vs 350 μl l−1) would improve conditions for microbial activity and stimulate emissions of nitrous oxide (N2O), a very potent and long-lived greenhouse gas. After two growing seasons, the mean N2O efflux from monoliths of calcareous grassland maintained at elevated CO2 was twice as high as that measured from monoliths maintained at current ambient CO2 (70 ± 9 vs 37 ± 4 μg N2O m−2 h−1 in October, 27 ± 5 vs 13 ± 3 μg N2O m−2 h−1 in November after aboveground harvest). The higher N2O emission rates at elevated CO2 were associated with increases in soil moisture, soil heterotrophic respiration, and plant biomass production, but appear to be mainly attributable to higher soil moisture. Our results suggest that rising atmospheric CO2 may contribute more to the total greenhouse effect than is currently estimated because of its plant-mediated effects on soil processes which may ultimately lead to increased N2O emissions from native grasslands. Received: 11 September 1997 / Accepted: 20 March 1998  相似文献   

16.
Quantitative integration of the literature on the effect of elevated CO2 on woody plants is important to aid our understanding of forest health in coming decades and to better predict terrestrial feedbacks on the global carbon cycle. We used meta-analytic methods to summarize and interpret more than 500 reports of effects of elevated CO2 on woody plant biomass accumulation and partitioning, gas exchange, and leaf nitrogen and starch content. The CO2 effect size metric we used was the log-transformed ratio of elevated compared to ambient response means weighted by the inverse of the variance of the log ratio. Variation in effect size among studies was partitioned according to the presence of interacting stress factors, length of CO2 exposure, functional group status, pot size, and type of CO2 exposure facility. Both total biomass (W T) and net CO2 assimilation (A) increased significantly at about twice ambient CO2, regardless of growth conditions. Low soil nutrient availability reduced the CO2 stimulation of W T by half, from +31% under optimal conditions to +16%, while low light increased the response to +52%. We found no significant shifts in biomass allocation under high CO2. Interacting stress factors had no effect on the magnitude of responses of A to CO2, although plants grown in growth chambers had significantly lower responses (+19%) than those grown in greenhouses or in open-top chambers (+54%). We found no consistent evidence for photosynthetic acclimation to CO2 enrichment except in trees grown in pots <0.5 l (−36%) and no significant CO2 effect on stomatal conductance. Both leaf dark respiration and leaf nitrogen were significantly reduced under elevated CO2 (−18% and −16% respectively, data expressed on a leaf mass basis), while leaf starch content increased significantly except in low nutrient grown gymnosperms. Our results provide robust, statistically defensible estimates of elevated CO2 effect sizes against which new results may be compared or for use in forest and climate model parameterization. Received: 16 May 1997 / Accepted: 9 September 1997  相似文献   

17.
Elevated concentrations of atmospheric CO2 and tropospheric O3 will profoundly influence future forest productivity, but our understanding of these influences over the long-term is poor. Leaves are key indicators of productivity and we measured the mass, area, and nitrogen concentration of leaves collected in litter traps from 2002 to 2008 in three young northern temperate forest communities exposed to elevated CO2 and/or elevated O3 since 1998. On average, the overall effect of elevated CO2 (+CO2 and +CO2+O3 versus ambient and +O3) was to increase leaf mass by 36% whereas the overall effect of elevated O3 was to decrease leaf mass by 13%, with similar effects on stand leaf area. However, there were important CO2 × O3 × year interactions wherein some treatment effects on leaf mass changed dramatically relative to ambient from 2002 to 2008. For example, stimulation by the +CO2 treatment decreased (from +52 to +25%), whereas the deleterious effects of the +O3 treatment increased (from −5 to −18%). In comparison, leaf mass in the +CO2+O3 treatment was similar to ambient throughout the study. Forest composition influenced these responses: effects of the +O3 treatment on community-level leaf mass ranged from +2 to −19%. These findings are evidence that community composition, stand development processes, CO2, and O3 strongly interact. Changes in leaf nitrogen concentration were inconsistent, but leaf nitrogen mass (g m−2) was increased by elevated CO2 (+30%) and reduced by elevated O3 (−16%), consistent with observations that nitrogen cycling is accelerated by elevated CO2 but retarded by elevated O3.  相似文献   

18.
The effects of elevated atmospheric CO2 and increased wet N deposition on leaf quality and insect herbivory were evaluated in nine model ecosystems composed of 7-year-old spruce trees (Picea abies) and three understorey species established on natural forest soil. Each model ecosystem was grown in a simulated montane climate, and was exposed to one of three CO2 concentrations (280, 420, and 560 μl l−1), and to one of three levels of N deposition (0, 30, and 90 kg ha−1 year−1) for 3 years. In the 3rd year of the experiment second to third instars of the nun moth (Lymantria monacha) were allowed to feed directly on current-year needles of top canopy branches of each tree for 12 days. Specific leaf area (SLA), water content, and N concentration decreased in needles exposed to elevated CO2, whereas the concentrations of starch, condensed tannins, and total phenolics increased. Increased N deposition had no significant effect on SLA, and water content, but the concentrations of starch, condensed tannins, and total phenolics decreased, and sugar and N concentrations increased. Despite higher relative consumption rates (RCRs) larvae consumed 33% less N per unit larval biomass and per day at the two high CO2 treatments, compared to those feeding on 280 μl l−1-needles, but they maintained similar N accumulation rates due to increased N utilization efficiencies (NUE). However, over the 12-day experimental period larvae gained less N overall and reached a 35% lower biomass in the two high-CO2 treatments compared to those at 280 μl l−1. The effects of increased N deposition on needle quality and insect performance were generally opposite to those of CO2 enrichment, but were lower in magnitude. We conclude that altered needle quality in response to elevated CO2 will impair the growth and development of L. monacha larvae. Increasing N deposition may mitigate these effects, which could lead to altered insect herbivore distributions depending on regional patterns of N deposition. Received: 8 June 1998 / Accepted: 27 October 1998  相似文献   

19.
Information from field studies investigating the responses of roots to increasing atmospheric CO2 is limited and somewhat inconsistent, due partly to the difficulty in studying root systems in situ. In this report, we present standing root biomass of species and root length and diameter after five years of CO2 enrichment (∽720 μmol mol−1) in large (16 m2 ground area) open-top chambers placed over a native shortgrass steppe in Colorado, USA. Total root biomass in 100 cm long×20 cm wide×75 cm depth soil monoliths and root biomass of the three dominant grass species of the site were not significantly affected by elevated CO2. Root biomass of Stipa comata in the 0–20 cm soil depth was nearly 100% greater in elevated vs. ambient CO2 chambers, but this was not statistically significant (P=0.14). However, there was a significant 37% increase in fine root length under elevated CO2 in the 0–10 cm soil depth layer. Other reports from this study suggest that the increase in fine roots is primarily from improved seedling recruitment of S. comata under elevated CO2. Few treatment differences in root length or diameter were detected in lower 10 cm depth increments, to 80 cm. These results reflect the root status integrated over two wet, two dry and one normal precipitation years and approximately one complete cycle of root turn-over on the shortgrass steppe. We conclude that increasing atmospheric CO2 will have only small effects on standing root biomass and root length and diameter of most shortgrasss steppe species. However, the potential increased competitive ability of Stipa comata, a low forage quality species, could alter the ecosystem from the current dominant, high forage quality species, Bouteloua gracilis. B. gracilis is very well adapted to the frequent droughts of the shortgrass steppe. Increased competitive ability of less desirable plant species under increasing atmospheric CO2 will have large implications for long-term sustainability of grassland ecosystems.  相似文献   

20.
Changes in the composition of plant species induced by grassland degradation may alter soil respiration rates and decrease carbon sequestration; however, few studies in this area have been conducted. We used net primary productivity (NPP), microbial biomass carbon (MBC), and soil organic carbon (SOC) to examine the changes in soil respiration and carbon balance in two Chinese temperate grassland communities dominated by Leymus chinensis (undisturbed community; Community 1) and Puccinellia tenuiflora (degraded community; Community 2), respectively. Soil respiration varied from 2.5 to 11.9 g CO2 m−2 d−1 and from 1.5 to 9.3 g CO2 m−2 d−1, and the contribution of root respiration to total soil respiration from 38% to 76% and from 25% to 72% in Communities 1 and 2, respectively. During the growing season (May–September), soil respiration, shoot biomass, live root biomass, MBC and SOC in Community 2 decreased by 28%, 39%, 45%, 55% and 29%, respectively, compared to those in Community 1. The considerably lower net ecosystem productivity in Community 2 than in Community 1 (104.56 vs. 224.73 g C m−2 yr−1) suggests that the degradation has significantly decreased carbon sequestration of the ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号