首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ferriferous savannas, also known as cangas in Brazil, are nutrient-impoverished ecosystems adapted to seasonal droughts. These ecosystems support distinctive vegetation physiognomies and high plant diversity, although little is known about how nutrient and water availability shape these ecosystems. Our study was carried out in the cangas from Carajás, eastern Amazonia, Brazil. To investigate the N cycling and drought adaptations of different canga physiognomies and compare the findings with those from other ecosystems, we analyzed nutrient concentrations and isotope ratios (δ13C and δ15N) of plants, litter, and soils from 36 plots distributed in three physiognomies: typical scrubland (SB), Vellozia scrubland (VL), and woodland (WD). Foliar δ15N values in cangas were higher than those in savannas but lower than those in tropical forests, indicating more conservative N cycles in Amazonian cangas than in forests. The lower δ15N in savanna formations may be due to a higher importance of mycorrhizal species in savanna vegetation than in canga vegetation. Elevated δ13C values indicate higher water shortage in canga ecosystems than in forests. Foliar and litter nutrient concentrations vary among canga physiognomies, indicating differences in nutrient dynamics. Lower nutrient availability, higher C:N ratios, and lower δ15N values characterize VL, whereas WD is delineated by lower δ13C values and higher soil P. These results suggest lower water restriction and lower P limitation in WD, whereas VL shows more conserved N cycles due to lower nutrient availability. Differences in nutrient and water dynamics among physiognomies indicate different ecological processes; thus, the conservation of all physiognomies is required to ensure the maintenance of functional diversity in this unique ecosystem.  相似文献   

2.
Habitat degradation is one of the greatest threats to biodiversity worldwide and the main contributor to the decline of many carnivorous plant species. For carnivorous plants in the southeastern United States, including many Pinguicula species (butterwort, Lentibulariaceae), degradation via altered fire regime has been implicated in their decline. Despite this decline, limited empirical research has been conducted examining the influence of habitat structural changes (through natural succession or human management) on reproduction and prey capture by carnivorous plants. The objectives of our study were to compare reproduction and prey capture for Pinguicula lutea (yellow butterwort) in habitats with different vegetation structures in the Florida Panhandle, where differences were largely due to management history. Pinguicula lutea is a self-compatible carnivorous plant that inhabits fire-dependent longleaf pine savannas of the southeastern United States and is threatened in the state of Florida. In 2014 and 2015, 13 sites were identified occupying three different habitat structures: maintained (intermittently mowed), grassy (dominated by Aristida stricta var. beyrichiana), and woody (encroachment by Hypericum and Ilex). Reproductive output was determined by assessing fruit set and ovule fertilization rate at each site. Additionally, prey availability and prey capture were assessed at each habitat site. In general, there were no differences in either measure of reproduction across habitat structure types. There were differences in prey abundance of Collembola, Diptera, and total arthropods both in terms of availability and capture. Total arthropod availability and prey capture were lowest in grassy sites compared to maintained habitat sites and woody habitat sites. Microclimatic conditions associated with each habitat structure and leaf morphology or physiology could explain the observed arthropod abundance and prey capture patterns. This study is the first ecological assessment of plant–insect interactions for Pinguicula species of the southeastern US and highlights the importance of habitat quality and management for this understudied group of carnivorous plants.  相似文献   

3.
Euscepes postfasciatus (Fairmaire) is an invasive pest of the sweet potato (Ipomoea batatas) and is also parasitic to other wild host plants of the Ipomoea genus. The population density of E. postfasciatus is sometimes greater in Ipomoea pes-caprae L. than in Ipomoea indica (Burm. f.). We investigated the desirability of I. pes-caprae as a host plant for E. postfasciatus in terms of reproductive and developmental potential. Females laid fewer eggs on I. pes-caprae, and the eclosion of their larvae was delayed compared with on I. indica. Furthermore, the larval growth rate was slower on I. pes-caprae than on I. indica. These results suggest that I. pes-caprae is not always the preferred host for egg laying and growth rate in the early developmental stages. However, the larval survival rate after the initial period of development was markedly better on I. pes-caprae than on I. indica. The present simulation study demonstrated that the population density of E. postfasciatus on I. pes-caprae overwhelmed that on I. indica over generations. Comparing the two wild host plant species, I. pes-caprae outweighs I. indica with respect to total population growth, but reproduction on I. indica may be advantageous for the colonization of the new habitat.  相似文献   

4.
Recent salt marsh and barrier island restoration efforts in the northern Gulf of Mexico have focused on optimizing self-sustaining attributes of restored marshes to provide maximum habitat value and storm protection to vulnerable coastal communities. Salt marshes in this region are dominated by Spartina alterniflora and Avicennia germinans, two species that are valued for their ability to stabilize soils in intertidal salt marshes. We conducted a controlled greenhouse study to investigate the influences of substrate type, nutrient level, and marsh elevation on the growth and biomass allocation of S. alterniflora and A. germinans, and the consequent effects on soil development and stability. S. alterniflora exhibited optimal growth and survival at the lowest elevation (? 15 cm below the water surface) and was sensitive to high soil salinities at higher elevations (+ 15 cm above the water surface). A. germinans performed best at intermediate elevations but was negatively affected by prolonged inundation at lower elevations. We found that although there was not a strong effect of substrate type on plant growth, the development of stressful conditions due to the use of suboptimal materials would likely be exacerbated by placing the soil at extreme elevations. Soil shear strength was significantly higher in experimental units containing either S. alterniflora or A. germinans compared to unvegetated soils, suggesting that plants effectively contribute to soil strength in newly placed soils of restored marshes. As marsh vegetation plays a critical role in stabilizing shorelines, salt marsh restoration efforts in the northern Gulf of Mexico and other storm impacted coasts should be designed at optimal elevations to facilitate the establishment and growth of key marsh species.  相似文献   

5.
In the present work, we tested the hypothesis that the cost of reproduction was evident under stressful conditions with the rotifer Brachionus patulus at different pH levels (5–10 at 1 unit intervals). We used sublethal pH levels (pH 5, 9, and 10) to simulate stressful conditions. We analyzed the correlations between age-specific fecundity (m 1, m 2, m 3, …) versus future survival (l x + 1, l x + 2, l x + 3, … for the entire lifespan) (survival costs) and future expectation of reproduction (\( V_{ 1}^{*} , \, V_{ 2}^{*} , \, V_{ 3}^{*} , \ldots \) for the entire lifespan) (reproductive costs), using the data obtained from life table demographic studies of B. patulus under stressful and favorable (pH 6, 7, and 8) pH levels. The results showed that significant negative correlations were observed between age-specific fecundity and future survival and future expectation of reproduction at all tested pH levels, indicating that costs of reproduction exist in the rotifer B. patulus under stressful and favorable pH conditions. However, the percentage of statistically significant negative correlations from total correlations of survival and reproductive costs differed greatly, depending on the tested pH conditions. The percentage of significant negative correlation of reproductive costs is significantly higher under stressful pH conditions (pH 5, 9, and 10) than favorable pH conditions (pH 6, 7, and 8). For survival costs, the same trends are also observed, suggesting that the costs of reproduction were more obvious under stressful pH than favorable pH.  相似文献   

6.
Impatiens parviflora is one of the most widely spread invasive species in central Europe, yet the factors affecting its spread are still subject to discussion. The aim of this study was to determine which factors affect the spread of I. parviflora. This was achieved by observing the natural spread of the species on 15 permanent transects, in six different habitats, found within the Czech Republic from 2012 to 2016. The transects were divided into 321 plots, whilst data on environmental conditions, as well as of the spread of I. parviflora and its performance, were collected in each plot. The results showed that individual stages of the I. parviflora life-cycle were affected by individual environmental conditions to different extents. The most important factor preventing seedling emergence and establishment was a high cover of herb layer. It did not, however, affect survival of older plants. Thus, I. parviflora can grow in sites with dense cover of herb layer in case the cover formed after I. parviflora seedlings established. Juvenile mortality was the highest in sites with low nutrient levels and low soil moisture. Canopy openness had a negative effect on I. parviflora performance. Impatiens parviflora performed better in neutral soils, in comparison to acidic soils. Oak-hornbeam forests were the most suitable habitat for I. parviflora, followed by acidophilous oak and mixed coniferous forests. However, I. parviflora was able to penetrate into even species-rich habitats, such as thermophilous oak forests, as well as steppe grasslands on rocks. This makes it a potential threat to biodiversity. Only heathlands found on former pastures proved to be unsuitable for I. parviflora, as these remained uninvaded until the end of the study.  相似文献   

7.
Gene sequences mediating sexual reproduction are more divergent within and between closely related species. Microsatellite or simple sequence repeat (SSR) markers are valuable molecular tools for analysis of genetic variability, phylogeny, and also for identifying sex at seedling stage in dioecious plant species. Calamus travancoricus Bedd. ex. Becc. and Calamus nagbettai R.R.Fernald & Dey are economically important rattan species. The dioecious nature of the Calamus spp. limits its breeding and cultivation. The sex of rattans can only be identified after attaining reproductive maturity which ranges from 5 to 15 years. A study was carried out in this background and 9 putative sex-specific PCR products were identified as sex markers for C. travancoricus and C. nagbettai and sequenced by Sanger method. The sequence homology search revealed occurrence of identical sequences in many plant species across different families indicating the conserved nature of the sequences. However, these sequences were not present in opposite sex in the studied species, indicating divergent evolution favoring sex determination. Annotation of these sequences revealed that most of these are mediating sexual reproduction by and large. An adequate sex ratio is to be maintained for these dioecious palms in natural habitat for producing offsprings having equal gene complements for continual evolution and sustainable utilization. Developing scientific management strategies and improved utilization of canes could help to generate employment locally and thus contribute to the socioeconomics sustainably.  相似文献   

8.
Hyperaccumulators are plants that store exceptionally high concentrations of heavy metals or metalloids in their leaves. Phytolacca americana is one of the few species known to hyperaccumulate manganese (Mn); however, it is a common weedy species and has no specific association with high-Mn soils. Neither the mechanism by which P. americana hyperaccumulates Mn nor the ecological significance of this trait are well understood. It has recently been suggested that P. americana secretes acids into the rhizosphere as a means of acquiring phosphate, which might coincidentally increase Mn uptake. To determine whether P. americana acidifies the surrounding soil, plants were grown in rhizoboxes providing access to living roots. A thin layer of agar containing bromocresol green pH indicator dye was placed on the roots to observe color changes indicating acidification. Comparative studies showed that P. americana acidifies the rhizosphere significantly more than the non-accumulating plant Acalypha rhomboidea. A second experiment studied whether adjustment of soil pH and phosphate affect foliar Mn concentrations of P. americana. Concentrations of Mn in leaves were highest when plants were grown in acidified soils but were significantly lower in soils that were alkaline and/or enriched with phosphate. These results suggest that Mn hyperaccumulation may be a side effect of rhizosphere acidification as a phosphorus-acquisition mechanism, rather than an adaptation in its own right. The findings provide fundamental information about hyperaccumulator physiology and evolution, and may be relevant to attempts to utilize P. americana for phytoremediation.  相似文献   

9.
10.
As deforestation and land-use/land-cover change advance in tropical forest regions, an understanding of how plants adjust phenology and reproductive dynamics to altered landscapes can provide insights into plasticity, productivity, and population persistence. We compared the reproductive phenology, sex expression, and flower and fruit production of two monoecious Amazonian palms, Attalea phalerata and Attalea speciosa, in old-growth forest and as remnant trees growing in actively grazed pastures. Using 2 years of phenology data collected from natural populations near Vila Extrema, Rondônia, and eastern Acre, Brazil, we compared flowering and fruiting in the two habitats and tested for effects of palm height, crown size, and light availability on inflorescence and sex expression. Forest conversion to pasture stimulated greater overall flowering and fruiting in individual Attalea palms. As a population, remnant pasture palms continuously bore flowers and fruits year-round, while forest palms flowered seasonally in isolated peaks with consecutive months of inactivity. Crown size and greater light exposure affected flowering and fruiting dynamics in A. phalerata and A. speciosa, respectively, and increased light availability shifted A. speciosa sex expression towards greater female investment, primarily through regulation of sex determination and bud abortion. Removal of tropical forest does not always lead to the downfall of remnant tree populations, and under favorable conditions, such as abandonment of cropland and pasture, higher levels of reproduction can facilitate recovery of future generations. Tree species with flexible sex expression may be particularly resilient in the face of land-use and land-cover change.  相似文献   

11.
Although endophytic fungi are ubiquitous in plants, their full range of ecological effects has yet to be characterized, particularly in non-agronomic systems. In this study, we compared the responses of two congeneric bluegrass species to flooding. Both plant species co-occur in subalpine zones of the Rocky Mountains. Marsh bluegrass (Poa leptocoma) commonly hosts a vertically transmitted fungal endophyte (Epichloë sp.) and naturally grows in wetter conditions than does nodding bluegrass (Poa reflexa), which lacks an epichloid endophyte. We investigated the novel hypothesis that endophyte symbiosis promotes host fitness under flooded conditions, contributing to niche differentiation between the two bluegrass species. We used a factorial greenhouse experiment to test whether endophyte presence improved survival, growth, or reproduction of P. leptocoma under flooded versus non-flooded edaphic conditions by experimentally removing the endophyte from half of the plants. We compared P. leptocoma responses to those of the endophyte-free congener. In contrast to expectations generated from the natural distributions of the two plant species, endophyte presence was more beneficial to P. leptocoma under ambient soil moisture than under flooding. Increased benefits of symbiosis in drier soils are consistent with studies of other grass endophytes. Flooded soils also unexpectedly improved the growth of P. reflexa more than that of the wet habitat specialist, P. leptocoma. While our results demonstrate an overall benefit of fungal symbiosis in this system, ecological factors other than flooding per se likely underlie the observed geographical distributions of these congeneric grasses in nature.  相似文献   

12.
Increased fire frequency can significantly erode both soil properties and plant–pollinator interactions affecting plant reproductive success but they have seldom been assessed simultaneously. Here, we evaluate soil properties, pollinator assemblage and the reproductive success of two native Fabaceae herbs, Desmodium uncinatum and Rhynchosia edulis, growing in unburned, low and high fire frequency sites of Chaco Serrano across two consecutive years. Desmodium uncinatum is outcrossing with a high dependence on pollinators, whereas R. edulis is autogamous and completely independent of pollinators. We found that soil water content, nitrates and electrical conductivity significantly decreased in low and high fire frequency sites. Pollinator richness and composition visiting each plant species was similar across all fire frequency scenarios. However, fruit set of the exogamous D. uncinatum was strongly reduced in frequently burned sites, whereas fruit set of the autogamous R. edulis showed no significant changes. In both species, the probability of setting fruits was positively related to soil quality across fire frequency scenarios, implying that decreased reproduction was mainly driven by limitation of abiotic resources shaped by increased fire frequency. Because the pollinator-dependent D. uncinatum has a higher reproductive cost, reduced soil quality induced by fire frequency had stronger effects on its reproduction. Chronic reduction of sexual reproduction in frequently burned sites with depleted soils will limit population recruitment with negative consequences on long-term plant population persistence.  相似文献   

13.
Deschampsia antarctica3 E. Desv. is one of the two flowering plants that, along with Colobanthus quitensis (Kunth) Bartl., was able to settle the ice-free areas of Antarctica. In order to identify the possible adaptations of the D. antarctica reproductive system to adverse environmental conditions, comparative cytoembryological analysis of plants of this species growing on the Antarctic Peninsula with plants of the closely related species D. beringensis Hult. from the Kamchatka Peninsula was conducted. It was found that both species are characterized by sexual mode of reproduction, equal size of pollen grains (25.5 ± 2.2 and 26.2 ± 1.9 μm, respectively), same features of the embryo sac structure, and emryo- and endospermogenesis. Interspecies differences have been found in mature embryo sac size (326.8 ± 12.8 and 161.7 ± 10.4 μm), pollen sterility percentage (86.1 ± 8.9 and 35.3 ± 9.2%), and quantity of pollen in the anthers (140 ± 15.3 and 1578 ± 88.6). Possible causes and significance of these differences are discussed. No unique adaptations of seed reproduction system that are inherent exclusively to D. antarctica were found. The D. antarctica reproduction strategy is based on the combination of autogamy (and its extreme form cleistogamy) with production of excess pollen quantity for its mode of pollination.  相似文献   

14.
The regenerative capability of three types of explants was studied on media with different compositions of growth regulators with the purpose of selecting optimal conditions of fast reproduction of endangered Crambe species that could be used as a relevant source of genetic material for the improvement of industrially valuable plants. PCR-analysis of genotypes of C. koktebelica and C. tataria plants was conducted to identify the influence of in vitro cultivation on the genetic stability of plants. The highest regeneration rates were observed with the use of petiole explants on MS medium with BA and NAA. The absence of somaclonal variability in C. koktebelica and C. tataria in vitro regenerated plants was demonstrated.  相似文献   

15.
Phytophthora drechsleri damping-off is one of the most important diseases of cucumber (Cucumis sativus). Salinity is a serious problem for crop production and affects diversity and activity of soil microorganisms. Application of salt-tolerant biocontrol agents may be beneficial in order to protect plants against pathogenic fungi in saline soils. In this study, a total of 717 Streptomyces isolates were isolated from the rhizosphere of cucumber, out of which two isolates showed more than 70% inhibitory effect against P. drechsleri and had cellulase activity in the presence and absence of NaCl. In a greenhouse experiment, two Streptomyces isolates with the highest antagonistic activity, strains C 201 and C 801, reduced seedling damping-off of cucumber caused by P. drechsleri by 77 and 80%, respectively, in artificially infested soils. Strain C 201 increased dry weight of seedlings up to 21% in greenhouse experiments. Phylogenetic analyses of 16S rRNA gene sequence reveals that strains C 201 and C 801 are closely related to S. rimosus and S. monomycini respectively. Increased activity of polyphenol oxidase (PPO) and peroxidase (POX) enzymes in Streptomyces-treated plants proved the biocontrol-induced systemic resistance (ISR) in cucumber plants against P. drechsleri.  相似文献   

16.
Nickel (Ni) agromining aims to phytoextract heavy metals using hyperaccumulators whilst at the same time rehabilitating ultramafic soils. After removing the bioavailable metal, ultramafic soils are improved in terms of their agronomic properties with the aim of future agricultural uses. The low fertility of ultramafic soils can be compensated by integrating legumes already used in traditional agro-systems because of their importance in soil nitrogen enrichment. However, few studies have evaluated the potential profits of legumes on Ni agromining and their potential benefits on soil biological fertility. Here, we characterized the effect of a crop rotation with two plants, a legume (Vicia sativa) and a hyperaccumulator (Alyssum murale), on the phytoextraction efficiency and on soil structure and biofunctioning. A pot experiment was set up in controlled conditions to grow A. murale and four treatments were tested: rotation with V. sativa (Ro), fertilized mono-culture (FMo), non-fertilized mono-culture (NFMo) and bare soil without plants (BS). No significant difference was found between the Ro and NFMo treatments for the dry biomass yield. However, the Ro treatment showed the highest Ni concentrations ([Ni]) in A. murale shoots compared to FMo and NFMo treatments. The Ro treatment plants had more than twice as many leaves [Ni] compared to FMo. Soil physico-chemical analyses showed that the Ro treatment was better structured and showed the highest presence of bacterial micro-aggregates, as well as less non-aggregated particles. Legumes integration in Ni-agromining systems could be a pioneering strategy to reduce chemical inputs and to improve soil biofunctioning and thus fertility.  相似文献   

17.
Truffles are the fruiting structures of ascomycetes in the genus Tuber. Because of their economic importance, truffles have been cultivated for many years using artificially inoculated host plants. Nevertheless, the life cycle and reproductive mode of Tuber spp. are still poorly understood. In filamentous ascomycetes, sexual reproduction is genetically controlled by the mating-type (MAT) locus. Among Tuber spp., the MAT locus has been recently characterized in the black truffles Tuber melanosporum and Tuber indicum. Here, by using sequence information derived from these species and from a Tuber borchii expressed sequence tag (EST) showing similarity to the mat1 gene of Alternaria brassicicola, we embarked on a chromosome-walking procedure to sequence the complete MAT region of T. borchii. This fungus produces highly commercialized whitish truffles and represents a model species for addressing basic questions concerning the life cycle of Tuber spp. We show that T. borchii is heterothallic, as its MAT locus is organized into two idiomorphs, each harbored by different mycelial strains. The alignment of the MAT locus from black truffles and T. borchii reveals that extensive sequence rearrangements and inversions occurred between these species. Moreover, by coupling mating-type analyses to karyological observation, we show that mycelia isolated from ascocarps and mycorrhizae are formed by homokaryotic hyphae.  相似文献   

18.
Flowering time in members of the Solanaceae plant family, such as pepper (Capsicum spp.) and tomato (Solanum lycopersicum), is an important agronomic trait for controlling shoot architecture and improving yield. To investigate the feasibility of flowering time regulation in tomato, an RNA-binding protein (RBP) encoding gene homologous to human Nucleolar protein interacting with the forkhead-associated (FHA) domain of pKI-67 (NIFK), CaRBP, was isolated from hot pepper. The function of CaRBP was determined in transgenic tomato. The deduced amino acid sequence includes an RNA recognition motif (RRM) and showed most similarity to the RRM present in a putative RBP encoded by human NIFK. CaRBP was highly expressed in the vegetative and reproductive tissues, such as leaves and fruits, respectively. Subcellular localization analysis indicated that CaRBP is a nucleolar protein. Heterologous expression of CaRBP under 35S promoter in tomato plants induced severe alteration of flowering with additional defects of vegetative organs. This floral retardation was associated with the alteration of SFT/SP3D and SlSOC1s as floral integrators. Furthermore, CaRBP reduces the expression levels of SlCOLs/TCOLs via changes in the expression of SlCDF3, SlFBHs, and SlFKF1s. This indicates a repressive effect of CaRBP on the regulation of flowering time in tomato. Overall, these results suggest that alteration in CaRBP expression levels may provide an effective means of controlling flowering time in day-neutral Solanaceae.  相似文献   

19.
Do trade-offs between growth and reproduction differ between an invasive and noninvasive plant species and how do such trade-offs relate to population demographics? To help address these questions, we compared demographics for an invasive plant species, Rubus discolor, with a noninvasive congener, R. ursinus, in several populations of varying density. Removal of floral buds from reproductive canes increased the size of juvenile canes that arose from clonal sprouting in R. ursinus, suggesting a trade-off between current reproduction and growth. Removal of floral buds had no effect on growth of R. discolor. R. ursinus displayed trade-offs between reproduction (sexual and vegetative) and future growth based on negative correlations between leaf area production and both clonal sprouting and seedling production during the previous year. R. discolor did not exhibit these trade-offs. Both species had high population growth rates in low-density populations, but exhibited little or no growth in high-density populations. A life table response experiment was used to determine the underlying cause for the effect of density on population growth. For R. ursinus, lack of population growth in high-density populations was due primarily to increased mortality of clonally sprouting canes, while for R. discolor, it was due to decreased clonal cane production. Elasticity analysis revealed that clonal growth was more important than sexual reproduction for population growth of both species. However, elasticity values for sexual reproduction in R. discolor were greater in high- than low-density populations. This suggests an increased reliance on sexual reproduction in populations that had reached stable sizes, which could increase the capacity of R. discolor to disperse to new sites. Elasticity analyses were also used to simulate the efficacy of various control strategies for R. discolor. Control of this species could be attained by reducing clonal production within existing populations while reducing seed production to limit establishment of new populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号