首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A morphological mutant of Neurospora crassa, which showed great changes in cell wall β-glucan structures, was obtained. The mutant lacked spore-forming ability. Chemical analysis indicated that the mutant cell walls had more carbohydrates and less proteins than the wild type. In the structural polymers of cell walls, heteroglycan and chitin were not apparently changed in their sugar composition and structures. On the other hand, the alkali-soluble β-glucan of this mutant showed significant changes in the chemical structure, particularly, the number and length of branches. The mutant glucan had about 2.5 times as many branches as that from wild type and the number of 1,3-linked glucose residues was greatly reduced.  相似文献   

2.
Hyphal wall compositions of six Leptosphaeria species were compared to assess whether gross changes have occurred in the hyphal wall chemistry of closely related fungi which have become ecologically restricted to marine or terrestrial habitats. Unfractionated, lipid-extracted hyphal walls of each Leptosphaeria species had qualitatively identical compositions consisting of glucose, mannose, galactose, glucosamine, amino acids, and traces of galactosamine. Quantitative analyses showed that the hyphal wall components varied from species to species. Qualitative compositions of alkali-soluble wall fractions from each species were identical and contained the same sugars found in the unfractionated walls. The alkali-insoluble residues contained glucose, glucosamine, and amino acids. The alkali-soluble fractions were composed predominantly of glucose, galactose, and mannose. The alkali-insoluble fractions contained high concentrations of glucose and glucosamine and relatively low concentrations of amino acids.  相似文献   

3.
Trevithick, John R. (University of Wisconsin Medical School, Madison), Robert L. Metzenberg and Donald F. Costello. Genetic alteration of pore size and other properties of the Neurospora cell wall. J. Bacteriol. 92:1016-1020. 1966.-Several properties of the cell walls of wild type and the osmotic mutant of Neurospora crassa have been examined. The peameability of the isolated cell walls to polyethylene glycol and dextran polymers of different molecular weights was investigated by the volume of distribution technique. The exclusion thresholds were evaluated by a statistical treatment. The molecular weights corresponding to these thresholds for wild type and osmotic were approximately 4,750 and 18,500, respectively; these values are significantly different. The cell walls of osmotic appeared to be thinner, more easily broken, and more easily compressed to ribbonlike shapes, whereas those of wild type were tubular and strong. Chemical analysis showed that osmotic walls had roughly a 30-fold higher galactosamine-glucosamine ratio than did wild type. It is proposed that the osmotic mutant has a cell wall with abnormally large pores, and that this may account for the increased rate of egress of invertase and the decreased fractionation of light from heavy invertase in this strain.  相似文献   

4.
de Terra, Noël, and E. L. Tatum. (Rockefeller Inst., New York, N. Y.) A relationship between cell wall structure and colonial growth in Neurospora crassa . Amer.Jour. Bot. 50(7): 669–677. Illus. 1963.—Cell walls were isolated from morphological mutants of Neurospora crassa and from their corresponding wild-type strains. Acid hydrolysates prepared from these cell walls were then studied, qualitatively and quantitatively, with respect to their reducing sugar content. Paper chromatography revealed the presence of glucose and glucosamine in the cell walls of all strains studied. Quantitative analysis has shown that a group of 4 colonial mutants which strongly resemble each other in morphology all have significantly less glucose and more glucosamine per unit weight of cell wall than do their corresponding wild-type strains. These data strongly suggest that a particular type of morphological aberration in Neurospora is associated with similar changes in cell wall composition.  相似文献   

5.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   

6.
The levels of glucosamine and galactosamine were determined in conidia, germinating conidia, and vegetative mycelia of Neurospora crassa. In the vegetative mycelia about 90% of the amino sugars were shown to be components of the cell wall. The remaining 10% of the amino sugars were tentatively identified as the nucleotide sugars uridine diphospho-2-acetamido-2-deoxy-D-glucose and uridine diphospho-2-acetamido-2-deoxy-D-galactose. Conidia and vegetative mycelia contained about the same levels of glucosamine. During the first 9 h after the initiation of germination, the total glucosamine content had increased 3.1-fold, whereas the residual dry weight of the culture had increased 7.7-fold. This led to a drop in the glucosamine concentration from 100 mumol/g of residual dry weight to 42 mumol/g. During this time, all of the conidia had germinated and the surface area of the new germ tubes had increased to 10 times that of the conidia. Either germ tubes were initially produced without glucosamine-containing polymers, or these polymers (probably chitin) were deposited only at low densities in the germ tube cell walls. The chitin precursor uridine diphospho-2-acetamido-2-deoxy-D-glucose was present at all times during conidial germination. Conida contained very low levels of galactosamine. During germination, galactosamine could not be detected until the culture had reached a cell density of about 0.6 mg of residual dry weight per ml of growth medium. This was observed regardless of the time required to reach this cell density or the fold increase in dry weight. The accumulation of galactosamine-containing polymers does not appear to be necessary for germ tube formation. The levels of soluble galactosamine (uridine diphospho-2-actamido-2-deoxy-D-galatose) were very low in conidia and increased during germination at the same time that galactosamine appeared in the cellular polymers. In addition, under certain culture conditions, the appearance of galactosamine and the increase in the glucosamine concentration occurred simultaneously.  相似文献   

7.
Cell walls of four strains of Chlorella ellipsoidea (IAM C-27,C-87, C-102 and C-183) were compared as to their chemical compositions.Many differences were found: (1) The sugar composition of alkali-soluble cell walls differedin quantity as well as quality with glucuronic acid being foundonly in C-27 and C-87. (2) In alkali-insoluble cell walls glucosamine was found onlyin C-27. The other three strains contained mainly glucose. (3) The amino acid compositions of the alkali-insoluble cellwalls markedly differed among the four strains. The cell wallof C-102 contained more amino acids than carbohydrates, butC-27 and C-87 contained extremely little amino acid. In addition to the variation in cell wall composition, the opticalanisotropy findings also differed for these cell walls of Chlorellastrains which had been grouped as the same species. (Received August 16, 1983; Accepted December 27, 1983)  相似文献   

8.
Li L  Borkovich KA 《Eukaryotic cell》2006,5(8):1287-1300
The filamentous fungus Neurospora crassa is able to utilize a wide variety of carbon sources. Here, we examine the involvement of a predicted G-protein-coupled receptor (GPCR), GPR-4, during growth and development in the presence of different carbon sources in N. crassa. Deltagpr-4 mutants have reduced mass accumulation compared to the wild type when cultured on high levels of glycerol, mannitol, or arabinose. The defect is most severe on glycerol and is cell density dependent. The genetic and physical relationship between GPR-4 and the three N. crassa Galpha subunits (GNA-1, GNA-2, and GNA-3) was explored. All three Galpha mutants are defective in mass accumulation when cultured on glycerol. However, the phenotypes of Deltagna-1 and Deltagpr-4 Deltagna-1 mutants are identical, introduction of a constitutively activated gna-1 allele suppresses the defects of the Deltagpr-4 mutation, and the carboxy terminus of GPR-4 interacts most strongly with GNA-1 in the yeast two-hybrid assay. Although steady-state cyclic AMP (cAMP) levels are normal in Deltagpr-4 strains, exogenous cAMP partially remediates the dry mass defects of Deltagpr-4 mutants on glycerol medium and Deltagpr-4 strains lack the transient increase in cAMP levels observed in the wild type after addition of glucose to glycerol-grown liquid cultures. Our results support the hypothesis that GPR-4 is coupled to GNA-1 in a cAMP signaling pathway that regulates the response to carbon source in N. crassa. GPR-4-related GPCRs are present in the genomes of several filamentous ascomycete fungal pathogens, raising the possibility that a similar pathway regulates carbon sensing in these organisms.  相似文献   

9.
Cell walls were physically purified from bacteriophage-typable revertants that had been isolated from modified cell wall pleiotropic strains derived from Staphylococcus aureus NCTC 8511. The quantitative amino acid, amino sugar, and phosphorus contents of these cell walls are reported. Among the revertants were some whose walls possessed elevated serine and one strain whose walls contained the novel amino sugar galactosamine. The similarities in bacteriophage typing patterns between the revertants and the original parental strain lead to the conclusion that the previously described pleiotropic strains are mutants of NCTC 8511.  相似文献   

10.
Calcofluor is a fluorochrome that exhibits antifungal activity and a high affinity for yeast cell wall chitin. We isolated Saccharomyces cerevisiae mutants resistant to Calcofluor. The resistance segregated in a Mendelian fashion and behaved as a recessive character in all the mutants analyzed. Five loci were defined by complementation analysis. The abnormally thick septa between mother and daughter cells caused by Calcofluor in wild-type cells were absent in the mutants. The Calcofluor-binding capacity, observed by fluorescence microscopy, in a S. cerevisiae wild-type cells during alpha-factor treatment was also absent in some mutants and reduced in others. Staining of cell walls with wheat germ agglutinin-fluorescein complex indicated that the chitin uniformly distributed over the whole cell wall in vegetative or in alpha-factor-treated cells was almost absent in three of the mutants and reduced in the two others. Cell wall analysis evidenced a five- to ninefold reduction in the amount of chitin in mutants compared with that in the wild-type strain. The total amounts of cell wall mannan and beta-glucan in wild-type and mutant strains were similar; however, the percentage of beta-glucan that remained insoluble after alkali extraction was considerably reduced in mutant cells. The susceptibilities of the mutants and the wild-type strains to a cell wall enzymic lytic complex were rather similar. The in vitro levels of chitin synthase 2 detected in all mutants were similar to that in the wild type. The significance of these results is discussed in connection with the mechanism of chitin synthesis and cell wall morphogenesis in S. cerevisiae.  相似文献   

11.
A two-component histidine protein kinase gene, homologous to os-1 from Neurospora crassa, was cloned and sequenced from a single ascospore isolate of Botryotinia fuckeliana. A series of nine spontaneous mutants resistant to dicarboximide fungicides was selected from this strain and characterized with respect to fungicide resistance and osmotic sensitivity. Genetic crosses of the mutants with an authentic Daf1 strain showed that the phenotypes mapped to this locus. Single point mutations (seven transitions, one transversion, and one short deletion) were detected in the alleles of the nine mutants sequenced. The mutational changes were shown to cosegregate with the dicarboximide resistance and osmotic sensitivity phenotypes in progeny obtained from crossing selected resistant strains with a sensitive strain. All mutations detected are predicted to result in amino acid changes in the coiled-coil region of the putative Daf1 histidine kinase, and it is proposed that dicarboximide fungicides target this domain.  相似文献   

12.
Two-component signal transduction comprising of OS-1 (histidine kinase), OS-4 (MAPKK kinase), OS-5 (MAPK kinase), and OS-2 (MAP kinase) plays an important role in osmotic regulation in Neurospora crassa. To identify the genes regulated downstream of OS-2 MAP kinase, quantitative real-time RT-PCR analysis was conducted in selected genes based on Hog1 MAP kinase regulated genes in yeast. In response to osmotic stress and fludioxonil, expression of six genes that for glycerol synthesis (gcy-1, gcy-3, and dak-1), gluconeogenesis (fbp-1 and pck-1), and catalase (ctt-1) was activated in the wild-type strain, but not in the os-2 mutant. A heat shock treatment also induced their expression in the same way. Consisting with the gene expression, the enzyme activity of glycerol dehydrogenase, but not glycerol-3-phosphate dehydrogenase, was increased in response to osmotic stress and fludioxonil in the wild-type strain. OS-2 was phosphorylated by the OS-1 cascade in response to relatively low osmotic stress and fludioxonil. However, OS-2 phosphorylation by heat shock and a higher osmotic stress was found in the os-1 mutant normally but not in the os-4 and os-5 mutants. These results suggested that non-OS-1 signaling activates OS-2 in an OS-4-dependent manner in such conditions.  相似文献   

13.
The cell walls and peptidoglycans of two mutant strains, Streptomyces chrysomallus var. carotenoides and Streptomyces chrysomallus var. macrotetrolidi, were studied. The strains are organisms producing carotenes and antibiotics of the macrotetrolide group. By the qualitative composition of the peptidoglycans the mutants belong to Streptomyces and are similar. Their glycan portion consists of equimolar quantities of N-acetyl glucosamine and muramic acid. The peptide subunit is presented by glutamic acid, L, L-diaminopimelic acid, glycine and alanine. The molar ratio of alanine is 1.2-1.3. The mutant strains differ in the content of carbohydrates, total phosphorus and phosphorus belonging to teichoic acids. Teichoic acids of the cell walls of the both strains are of the ribitolhosphate nature. The cell walls of the mutants contain polysaccharides differing from teichoic acids and consisting of glucose, galactose, arabinose and fucose. The influence of the cell wall composition of the mutant strains on their morphology and metabolism and comparison of the data relative to the mutant strains with those relative to the starting strain are discussed.  相似文献   

14.
《Experimental mycology》1991,15(3):193-205
We examined the macroconidial wall layers of various strains ofNectria haematococca prior to germ tube emergence. Using freeze-substituted cells, the wall ultrastructure of an adhesion-competent wild-type strain was compared with two adhesion-reduced mutants, LE1 and LE2. At 0 h, the freshly harvested macroconidia of all strains had a similar, bilayered wall and were all nonadhesive. After 1 h, wild-type macroconidia were adhesive and their cell walls exhibited two additional layers not present at 0 h: a pellicular third layer and a thick, outermost fourth layer. Material from the fourth layer was apparently discharged into the surrounding medium. In contrast to the wild type, the mutants after 1 h were adhesion-deficient; the outermost wall layers of LE1 and LE2 differed from each other and from the wild type. There were also differences in the wall layers and extracellular matrices between the mutants and the wild type after 3- and 5-h incubations. Plasma membrane invaginations were not observed at 0 h, but were detected in both wild type and mutant macroconidia at 1, 3, and 5 h. The data demonstrate that in macroconidia ofN. haematococca (1) the wall and associated extracellular matrix undergo major morphological changes prior to germ tube emergence and (2) development of adhesiveness is correlated with the appearance of new wall layers.  相似文献   

15.
As a first step toward identifying novel genes of wall metabolism in filamentous fungi, we have screened a collection of Aspergillus nidulans mutants for strains exhibiting hypersensitivity toward the chitin binding agent Calcofluor White (CFW). This strategy has been used previously to identify cell wall mutants in Saccharomyces cerevisiae. We have identified 10 mutants representing eight loci, designated calA through calH, for Calcofluor hypersensitivity. All cal mutants are impaired for sporulation at 30 C or 42 C or both, and in eight of the 10 mutations this sporulation defect shows at least partial osmotic remediability. All cal mutants show elevated sensitivity to one or more of the following agents: Caspofungin, Nikkomycin, Tunicamycin, Congo red and SDS, which are recognized wall-compromising agents or have been shown to be inhibitory to wall integrity mutants in yeast. Seven of the 10 cal mutants show swelling at elevated temperature, which in most cases is osmotically remediable. Spore swelling also can be induced at 30 C in all but one of the cal mutants by germination in the presence of one or more of the following: Caspofungin, Nikkomycin or Tunicamycin. Analysis of wall sugars showed no major changes in mutant strains. We also report that the chitin synthase inhibitor Nikkomycin induces excessive spore swelling during germination in all tested strains that have wild type cell wall metabolism (GR5, A4, A28 and AH12) at 42 C but not at 30 C. This effect mimics that of certain temperature-sensitive swollen cell (swo) mutations.  相似文献   

16.
Deletion or repression of Aspergillus nidulans ugmA (AnugmA), involved in galactofuranose biosynthesis, impairs growth and increases sensitivity to Caspofungin, a β-1,3-glucan synthesis antagonist. The A. fumigatus UgmA (AfUgmA) crystal structure has been determined. From that study, AfUgmA mutants with altered enzyme activity were transformed into AnugmA▵ to assess their effect on growth and wall composition in A. nidulans. The complemented (AnugmA::wild type AfugmA) strain had wild type phenotype, indicating these genes had functional homology. Consistent with in vitro studies, AfUgmA residues R182 and R327 were important for its function in vivo, with even conservative amino (RK) substitutions producing AnugmA? phenotype strains. Similarly, the conserved AfUgmA loop III histidine (H63) was important for Galf generation: the H63N strain had a partially rescued phenotype compared to AnugmA▵. Collectively, A. nidulans strains that hosted mutated AfUgmA constructs with low enzyme activity showed increased hyphal surface adhesion as assessed by binding fluorescent latex beads. Consistent with previous qPCR results, immunofluorescence and ELISA indicated that AnugmA▵ and AfugmA-mutated A. nidulans strains had increased α-glucan and decreased β-glucan in their cell walls compared to wild type and AfugmA-complemented strains. Like the AnugmA▵ strain, A. nidulans strains containing mutated AfugmA showed increased sensitivity to antifungal drugs, particularly Caspofungin. Reduced β-glucan content was correlated with increased Caspofungin sensitivity. Aspergillus nidulans wall Galf, α-glucan, and β-glucan content was correlated in A. nidulans hyphal walls, suggesting dynamic coordination between cell wall synthesis and cell wall integrity.  相似文献   

17.
The glucosamine and galactosamine content of mycelia was measured in cultures of Neurospora crassa grown on the surface of dialysis membranes. The glucosamine content was relatively constant throughout the different regions of the mycelial mat. The galactosamine content, however, was always lower in the growing-front region of the mycelial mat than in the older regions. At most, only low levels of galactosamine were necessary for the formation of hyphae at the growing front of a mycelial mat. Thus, galactosamine-containing polymers cannot be a major shape-determining component of the cell walls of these hyphae in Neurospora. The effect of conidiation on the amino sugar content was determined by using the bd (band) strain of N. crassa. When grown on the surface of dialysis membranes, this strain rhythmically produced regions of conidiating and non-conidiating growth. With this strain, it was concluded that conidiation did not affect the amino sugar levels. Since conidia that contained only very low levels of galactosamine were produced from regions of the mycelial mat that contained much higher levels of this amino sugar, there must be some mechanism of spatial differentiation that prevented the accumulation of galactosamine-containing polymers in conidia.  相似文献   

18.
Neurospora crassa sl, a mutant that lacks a rigid cell wall, exhibits transport systems for glucose similar to those of wild-type strain 1A. When the orgnism is grown in a medium containing 50 mM glucose as the carbon source, glucose is transported primarily by a glucose-facilitated diffusion system (GluI). When it is grown in a medium with little or no glucose present, a glucose active transport system (Glu II) is expressed. Both of these systems are similar kinetically to those in the wild type. Significant differences do exist between strains sl and 1A with respect to genetic regulation of the glucose active transport system.  相似文献   

19.
A cobalt-resistant strain of Neurospora crassa (cor) was obtained by repeated subculturing of the wild type on cobalt-containing agar medium. N. crassa cor is twentyfold more resistant to cobalt ions compared with the wild type. Resistance was stable on repeated subculturing of cor on cobalt-free media. N. crassa cor is also cross-resistant to nickel (fourfold), but not to zinc or copper. Higher concentrations of iron and magnesium ions are required to reverse growth inhibition due to cobalt toxicity in N. crassa cor, compared with the wild type. Germinating conidia and mycelia of the cor strain accumulated lower levels of cobalt ions compared with the parent N. crassa. The partial transport block for cobalt uptake is shown to be primarily due to decreased surface binding of cobalt to mycelia and cell walls. Efflux of mycelial cobalt was also observed in wild type and cobalt-resistant N. crassa. The characteristics of cor in comparison with wild type N. crassa are discussed in relation to the mechanisms of cobalt resistance.  相似文献   

20.
Using the set of Saccharomyces cerevisiae mutants individually deleted for 5718 yeast genes, we screened for altered sensitivity to the antifungal protein, K1 killer toxin, that binds to a cell wall beta-glucan receptor and subsequently forms lethal pores in the plasma membrane. Mutations in 268 genes, including 42 in genes of unknown function, had a phenotype, often mild, with 186 showing resistance and 82 hypersensitivity compared to wild type. Only 15 of these genes were previously known to cause a toxin phenotype when mutated. Mutants for 144 genes were analyzed for alkali-soluble beta-glucan levels; 63 showed alterations. Further, mutants for 118 genes with altered toxin sensitivity were screened for SDS, hygromycin B, and calcofluor white sensitivity as indicators of cell surface defects; 88 showed some additional defect. There is a markedly nonrandom functional distribution of the mutants. Many genes affect specific areas of cellular activity, including cell wall glucan and mannoprotein synthesis, secretory pathway trafficking, lipid and sterol biosynthesis, and cell surface signal transduction, and offer new insights into these processes and their integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号