首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Halophytes are potential gene sources for genetic manipulation of economically important crop species. This study addresses the physiological responses of a widespread halophyte, Prosopis strombulifera (Lam.) Benth to salinity. We hypothesised that increasing concentrations of the two major salts present in soils of central Argentina (Na2SO4, NaCl, or their iso‐osmotic mixture) would produce distinct physiological responses. We used hydroponically grown P. strombulifera to test this hypothesis, analysing growth parameters, water relations, photosynthetic pigments, cations and anions. These plants showed a halophytic response to NaCl, but strong general inhibition of growth in response to iso‐osmotic solutions containing Na2SO4. The explanation for the adaptive success of P. strombulifera in high NaCl conditions seems to be related to a delicate balance between Na + accumulation (and its use for osmotic adjustment) and efficient compartmentalisation in vacuoles, the ability of the whole plant to ensure sufficient K+ supply by maintaining high K + /Na + discrimination, and maintenance of normal Ca2 + levels in leaves. The three salt treatments had different effects on the accumulation of ions. Findings in bi‐saline‐treated plants were of particular interest, where most of the physiological parameters studied showed partial alleviation of SO42?‐induced toxicity by Cl?. Thus, discussions on physiological responses to salinity could be further expanded in a way that more closely mimics natural salt environments.  相似文献   

2.
Abstract. Facilitation of the establishment of certain plant species by nurse plants is a common phenomenon in arid and semiarid ecosystems. The most commonly reported mechanisms of facilitation include cooler temperatures and increased soil nutrients beneath the nurse plant canopy, which favor establishment of other plant species. During conversion of upland grasslands to thorn woodland in southern Texas, Prosopis glandulosa appears to facilitate establishment of other woody plants, including Celtis pallida, whereas Acacia smallii occurs only in habitats between P. glandulosa canopies. We tested the hypothesis that light intensity and soils under P. glandulosa canopies facilitate seedling emergence and growth of C. pallida but inhibit seedling emergence and growth of A. smallii. In the field, C. pallida and A. smallii seeds were planted under P. glandulosa canopies and in adjacent interspaces. Percent emergence of C. pallida seedlings was greater under the canopy of P. glandulosa, whereas percent emergence of A. smallii seedlings was greater in interspaces. In a greenhouse experiment, seeds of each species were planted in pots filled with soil from under P. glandulosa canopies or from adjacent interspaces. Two treatments, shade and sunlight, were imposed and plants harvested seven weeks later. Seedling mass of both species was greater in canopy soil than in interspace soil in sunlight but mass of the two species did not differ between soil sources in shade. Canopy soils contained more total and available nitrogen than interspace soils. These results suggest that light is more limiting than nutrients under shaded conditions and so neither species can take advantage of the high nutrients beneath P. glandulosa. Shade and greater soil nutrients beneath P. glandulosa do not appear to be the major factors that facilitate C. pallida or inhibit A. smallii. Aggregation of C. pallida beneath P. glandulosa canopies appears to be a complex process that involves both passive facilitation (seed dispersal by birds) and active facilitation (reduction of seed dormancy by under-canopy temperatures) operating only during the seed germination stage with successional mechanisms other than facilitation operating during later stages of shrub establishment and growth.  相似文献   

3.
There has been much taxonomic confusion over the identification of Prosopis species, especially where introduced. Prosopis juliflora is the most widespread species in the arid and semi-arid tropics, although it has been confused with other species, particularly the closely related Prosopis pallida. In this study, RAPDs markers were used for the first time to distinguish between these species. Eighteen primers were used in amplification reactions, which yielded an average of 120 bands per accession. A dendrogram showing genetic similarities among accessions was constructed using UPGMA cluster analysis and the Nei and Li similarity coefficient. The genetic similarity observed between P. juliflora and P. pallida is similar to the value in sympatric Prosopis species in North America, and reconsideration of the series rank in section Algarobia is suggested. Species-specific markers confirmed that material in Burkina Faso is P. juliflora, but suggested that material collected in Brazil, Cape Verde and Senegal is P. pallida, whereas this has previously been identified as P. juliflora.  相似文献   

4.
Abstract. In arid zones dominant woody plants are capable of causing changes in microclimate and soil properties likely to affect species composition, as well as the establishment and spatial distribution of plant species. In North American and European deserts species richness appears to be higher under the canopy of shrubs and trees, in contrast with Chilean deserts where it seems to be lower. Since Prosopis flexuosa (Fabaceae, Mimosoideae) is the most conspicuous tree in the central Monte desert, Argentina, we analysed the effect of this species on the composition and abundance of the shrub and herbaceous layers and on soil properties. We considered two mesohabitats: ‘under P. flexuosa canopy’ and ‘intercanopy areas’. In addition, we analysed the differences between two microhabitats under canopies: ‘northern part of the canopy’ and ‘southern part of the canopy’. Results indicate that species composition and soil properties are affected by both mesohabitats and microhabitats. We found a higher number of shrubs under canopies, whereas that of grasses and perennial forbs increased in intercanopy areas. Concentrations of organic matter, nitrogen, potassium and phosphorus, factors limiting biological productivity in Monte desert soils, were significantly higher under than outside P. flexuosa canopies. Electrical conductivity and concentrations of Na+, Ca++, Mg++ were higher in the northern than in the southern microhabitats. No differences in species richness, evenness or diversity were found between mesohabitats or between microhabitats. We conclude that P. flexuosa modifies the spatial pattern of plant species in the shrub and herbaceous layers and the chemical conditions of the soil, generating spatial heterogeneity on different scales.  相似文献   

5.
Seed weight, percentage germination, seedling growth, and nutrient concentrations (Mg, Na, K, Zn, Cu and P) of whole seeds, and of seed coats and embryos separately of two tree species, the native Prosopis cineraria and the invasive alien P. juliflora from semi-arid and arid areas of north and north-west India, were analysed to understand the differences in their ecology. Seeds of P. cineraria were heavier than those of P. juliflora. Percent germination was similar in the two species, but seedling growth was faster in P. juliflora than in P. cineraria. Nutrient concentrations of seeds of the two species were similar (except Cu). Nutrient concentrations in the embryo were higher in P. cineraria, while those in the seed coat were higher in P. juliflora. The relative allocation of nutrients to seed coat was higher in P. juliflora than in P. cineraria. Nutrient-rich embryos and slow growth, along with a staggered seed germination pattern in the native P. cineraria could be linked to delayed establishment as well, in the substratum. Faster growth of the nutrient-poor embryos in P. juliflora along with its simultaneous seed germination pattern, and creation of a favourable microenvironment through leaching of nutrients from a nutrient-rich seed coat can facilitate immediate and successful establishment of this alien species in the invaded habitats.  相似文献   

6.
Prosopis chilensis and Prosopis flexuosa (Fabaceae) are closely related hardwood arboreal species that are widely distributed in the arid regions of Argentina. The development of highly polymorphic markers, such as microsatellites, is desirable for genetic studies of these species. Here, we present the development and characterization of six polymorphic microsatellite markers in P. chilensis and P. flexuosa. These markers showed a polymorphism information content between 0.14 and 0.85 and the number of alleles varied from two to 13 considering both species. All markers revealed a broad cross‐species affinity when tested in seven other Prosopis species. All primers amplified in at least five species.  相似文献   

7.
We coordinated biogeographical comparisons of the impacts of an exotic invasive tree in its native and non-native ranges with a congeneric comparison in the non-native range. Prosopis juliflora is taxonomically complicated and with P. pallida forms the P. juliflora complex. Thus we sampled P. juliflora in its native Venezuela, and also located two field sites in Peru, the native range of Prosopis pallida. Canopies of Prosopis juliflora, a native of the New World but an invader in many other regions, had facilitative effects on the diversity of other species in its native Venezuela, and P. pallida had both negative and positive effects depending on the year, (overall neutral effects) in its native Peru. However, in India and Hawaii, USA, where P. juliflora is an aggressive invader, canopy effects were consistently and strongly negative on species richness. Prosopis cineraria, a native to India, had much weaker effects on species richness in India than P. juliflora. We carried out multiple congeneric comparisons between P. juliflora and P. cineraria, and found that soil from the rhizosphere of P. juliflora had higher extractable phosphorus, soluble salts and total phenolics than P. cineraria rhizosphere soils. Experimentally applied P. juliflora litter caused far greater mortality of native Indian species than litter from P. cineraria. Prosopis juliflora leaf leachate had neutral to negative effects on root growth of three common crop species of north-west India whereas P. cineraria leaf leachate had positive effects. Prosopis juliflora leaf leachate also had higher concentrations of total phenolics and L-tryptophan than P. cineraria, suggesting a potential allelopathic mechanism for the congeneric differences. Our results also suggest the possibility of regional evolutionary trajectories among competitors and that recent mixing of species from different trajectories has the potential to disrupt evolved interactions among native species.  相似文献   

8.
Re‐establishing native vegetation in stressed soils is of considerable importance in many parts of the world, leading to significant interest in using plant–soil symbiont interactions to increase the cost‐effectiveness of large‐scale restoration. However, effective use of soil microbes in revegetation requires knowledge of how microbe communities vary along environmental stress gradients, as well as how such variation relates to symbiont effectiveness. In Australia, shrubby legumes dominate many ecosystems where dryland salinity is a major issue, and improving plant establishment in saline soils is a priority of regional management agencies. In this study, strains of rhizobial bacteria were isolated from a range of Acacia spp. growing in saline and non‐saline soils. Replicates of each strain were grown under several salinity levels in liquid culture and characterized for growth and salt tolerance. Genetic characterization of rhizobia showed considerable variation among strains, with salt tolerance and growth generally higher in rhizobial populations derived from more saline soils. These strains showed markedly different genetic profiles and generic affiliations to those from more temperate soils, suggesting community differentiation in relation to salt stress. The identification of novel genomic species from saline soils suggests that the diversity of rhizobia associated with Australian Acacia spp. is significantly greater than previously described. Overall, the ability of some symbiotically effective strains to tolerate high salinity is promising with regard to improving host plant re‐establishment in these soils.  相似文献   

9.
This study aimed to evaluate the herbicidal activity of picloram on the biomass of the remediation plants Eleusine coracana and Panicum maximum after cultivation in a soil contaminated with this herbicide. These species were grown in three soils, differentiated based on texture (clayish, middle, and sandy, with 460, 250, and 40 g kg–1 of the clay, respectively), previously contaminated with picloram (0, 80, and 160 g ha–1). After 90 days, the plants were harvested and an extract was produced by maceration of leaves and stems of these plants. It was applied to pots containing washed sand, comprising a bioassay in a growth chamber using soybean as a bioindicator for picloram. Soil and plant samples were analyzed by HPLC. The results showed the presence of picloram or metabolites with herbicidal activity in the shoots of E. coracana and P. maximum at phytotoxic levels with regard to soybean plants, indicating that they work only as phytoextractors and that the presence of straw on the soil surface can promote recontamination within the area. It is not recommended to cultivate species susceptible to picloram in areas where it was reported remediation by E. indica and P. maximum and still present residues of these species.  相似文献   

10.
Abstract. Prosopis glandulosa, an arborescent legume, may act as a nurse plant that facilitates the establishment of other woody species. We hypothesized that attenuation of radiant energy and increased soil nutrients beneath P. glandulosa canopies facilitate establishment of subordinate shrubs and shrub cluster development. We determined the spatial distribution pattern of shrubs under P. glandulosa at three locations in southern Texas. Density of Celtis pallida, Zanthoxylum fagara, and total woody plants were comparable among the four cardinal directions at each location, which countered the prediction that shrub density would be greater on the north side of P. glandulosa canopies if attenuation of solar energy was a factor in cluster development. Total woody plant density increased with increasing P. glandulosa basal diameter, canopy radius, and height only at one location. Total woody plant density decreased with increasing total N in the upper 15 cm of soil at two of the three locations. Late in shrub cluster development, extraction of N from the soil and incorporation of N into plant tissue in dense shrub clusters may operate to inhibit further increases in subordinate shrub density.  相似文献   

11.
Diversity of 50 bacterial isolates recovered from root nodules of Prosopis farcta grown in different arid soils in Tunisia, was investigated. Characterization of isolates was assessed using a polyphasic approach including phenotypic characteristics, 16S rRNA gene PCR–RFLP and sequencing, nodA gene sequencing and MLSA. It was found that most of isolates are tolerant to high temperature (40°C) and salinity (3%). Genetic characterization emphasizes that isolates were assigned to the genus Ensifer (80%), Mesorhizobium (4%) and non-nodulating endophytic bacteria (16%). Forty isolates belonging to the genus Ensifer were affiliated to Ensifer meliloti, Ensifer xinjiangense/Ensifer fredii and Ensifer numidicus species. Two isolates belonged to the genus Mesorhizobium. Eight isolates failing to renodulate their host plant were endophytic bacteria and belonged to Bacillus, Paenibacillus and Acinetobacter genera. Symbiotic properties of nodulating isolates showed a diversity in their capacity to infect their host plant and fix atmospheric nitrogen. Isolate PG29 identified as Ensifer meliloti was the most effective one. Ability of Prosopis farcta to establish symbiosis with rhizobial species confers an important advantage for this species to be used in reforestation programs. This study offered the first systematic information about the diversity of microsymbionts nodulating Prosopis farcta in the arid regions of Tunisia.  相似文献   

12.
Mesquite plants (Prosopis glandulosa var. Torreyana) were grown in 2-m long columns 20 cm in diameter, and provided with a constant, stable ground water source 10 cm above the sealed base of the column. Ground water contained 0, 1 or 5 mM nitrate, or a mixed salt solution (1.4, 2.8, or 5.6 dS m-1) with the ionic ratios of ground water found in a field stand of Prosopis at Harper's Well (2.8 dS m-1). Water uptake in the highly salinized columns began to decrease relative to low salt columns when soil salinity probes 30 cm above the column base read approximately 28 dS m-1, a potential threshold for mesquite salt tolerance. Prosopis growth increased with increasing nitrate, and decreased with increasing salinity. Water use efficiency was little affected by treatment, averaging approximately 2 g dry matter L-1 water used. Most fine roots were recovered from a zone about 25 cm above the ground water surface where water content and aeration appeared to be optimal for root growth. Root-shoot ratio was little affected by nitrate, but increased slightly with increasing salinity. Plant tissue P concentrations tended to increase with increasing salinity and decrease with increasing N, approaching potentially deficient foliage concentrations at 5 mM nitrate. The whole-plant leaf samples increased in sodium concentration both with added salt and with added nitrate. Foliar manganese concentrations increased with increasing salt in the absence of nitrate. Concentrations of sodium in leaves were low (<10 g kg-1), considering the high salt concentrations in the ground water. Prosopis appears to exclude sodium very effectively, especially from its younger leaves. Although Prosopis is highly salt tolerant, the degree to which it utilizes soil nitrate in place of biologically fixed N may lower its salinity tolerance and affect its nutrient relations in phreatic environments.  相似文献   

13.
Natural hybridization commonly produces individuals with intermediate morphological and genetic characteristics, but their response to environmental stress is still uncertain, with some studies showing that transgressive performance would be common. Prosopis chilensis and Prosopis flexuosa are the most important tree species from Arid Chaco, South-America. Both species occupy different ecological niches in terms of water availability. Genetic and morphological studies have demonstrated the existence of interspecific hybrids in contact areas between these species. Hybrids are characterized by clear intermediate morphological characteristics, which have taxonomical value, and genetic structure compared to both parental species. We studied mechanisms implicated in drought stress tolerance in seedlings of P. chilensis, P. flexuosa and their interspecific hybrids trying to elucidate if hybrids have a morpho-physiological, growth and survival intermediate response to drought compared to differential parental responses or if they out-perform both parental species when subjected to drought. Our results suggest that hybridization does not result in individuals with intermediate mechanisms related to drought resistance, but with a unique trait combination leading to high growth when water availability is high (similar to the most vulnerable parental species) and high survival under drought stress (similar to the more resistant parental species). Certain uncoupling between symplastic and apoplastic resistence to drought was observed in hybrids, as well as decreased physiological-wood anatomical plasticity compared to parental species. The long-term consequences in terms of adaptive response to drought of this particular trait combination of hybrids remain still unknown.  相似文献   

14.
The parasite Phelipanche aegyptiaca infests tomato, a crop plant that is commonly cultivated in semi‐arid environments, where tomato may be subject to salt stress. Since the relationship between the two stresses —salinity and parasitism – has been poorly investigated in tomato, the effects of P. aegyptiaca parasitism on tomato growing under moderate salinity were examined. Tomatoes were grown with regular or saline water irrigation (3 and 45 mM Cl?, respectively) in soils infested with P. aegyptiaca . The infested plants accumulated higher levels of sodium and chloride ions in the roots, shoots and leaves (old and young) under both salinity levels vs. non‐infected plants. There was a positive linear correlation between P. aegyptiaca biomass and salt accumulation in young tomato leaves, and a negative linear correlation between parasite biomass and the osmotic potential of young tomato leaves. Concentrations of the osmoprotectants proline, myoinositol and sucrose were reduced in infected tomato plants, which impaired the host's osmotic adjustment ability. The sensitivity of P. aegyptiaca to salt stress was manifested as a decrease in biomass. In conclusion, P. aegyptiaca parasitism reduced the salt tolerance of tomato plants by promoting the accumulation of salts from the rhizosphere and impairing the host's osmotic adjustment ability.  相似文献   

15.
Distichlis spicata and Suaeda aegyptiaca are two potential halophytic plant species for bioremediation of salt degraded soils, and development of saline agriculture. The physiological responses of the species to different levels of salinity (EC 0, 12, 24, 36, and 48 dS/m) in a controlled environment experiment were studied. Both species showed a high level of tolerance to elevated concentrations of salt in the irrigation water. The shoot fresh and dry weights in S. aegyptiaca increased till 36 dS/m and were sustained under 48 dS/m while in D. spicata, both parameters decreased as salinity increased. Glycine betaine accumulation did not change in D. spicata with increasing salinity, whereas proline content revealed a marked increase of 7.13 fold in 48 dS/m salinity compared to the control, which showed its critical osmoprotection role in the plant. In S. aegyptiaca, both osmolytes content significantly increased at high salinity levels (36 and 48 dS/m) up to 3.22 and 2.0 folds, respectively. Overall, S. aegyptiaca had a better potential of Na+ phytoremediation, and tolerated higher salinity compared to D. spicata. In contrast, the vigorous root and rhizome growth in D. spicata made it a proper solution for protecting the soils against further erosion under saline conditions.  相似文献   

16.
A decrease in whole plant dry weight was observed when Prosopis juliflora (Swartz) DC. was treated with saline irrigation water for 24 days which was partially alleviated by the addition of 0.47 mM SiO2 to the irrigation water. The plants treated with high salinity and SiO2 showed a greater distribution of dry material to the leaves at the expense of the stems and roots compared to control plants. The possible use of SiO2 to grow plants may be beneficial in areas of high soil salinities.  相似文献   

17.
Effects of salinity and nitrate nitrogen (NO3-N) on ion accumulation and chlorophyll fluorescence were monitored for two populations of Suaeda salsa grown from seeds in a greenhouse experiment. One population inhabits the intertidal zone and the other occurs on inland saline soils. Ion contents in soils and in leaves of the two populations were also investigated in field. In the greenhouse, seedlings were exposed to a NaCl concentration of 0.6 and 35.1 ppt, with 0.1 or 5 mM NO3-N treatments for 20 days. The contents of Na+ and Cl were higher, but NO3 was lower in soils of the intertidal zone than at the inland site. In the field, ion concentrations and the estimated contribution of these ions to osmotic potential in leaves showed no difference between the two populations, except that the estimated contribution of Na+ to osmotic potential in leaves of the intertidal population was lower than that in the inland population. In the greenhouse, in contrast, the concentration of Cl was lower, but NO3 concentration and the estimated contribution of NO3 to osmotic potential were higher, in the leaves of plants from the intertidal zone. Salinity had no effect on the maximal efficiency of PSII photochemistry (Fv/Fm) and the actual PSII efficiency (ΦPSII). The results indicated that S. salsa from the intertidal zone was better able to regulate Cl to a lower level, and accumulate NO3 even with low soil NO3 concentrations. Tolerance of the PSII machinery to high salinity stress may be an important characteristic for the studied species supporting growth in highly saline environments.  相似文献   

18.
The reclamation of saline sodic soils requires sodium removal and the phytoremediation is one of the proven low-cost, low-risk technologies for reclaiming such soils. However, the role of Phragmites australis in reclaiming saline sodic soils has not been evaluated extensively. The comparative reclaiming role of P. australis and gypsum was evaluated in a column experiment on a sandy clay saline sodic soil with ECe 74.7 dS m?1, sodium adsorption ratio (SAR) 63.2, Na+ 361 g kg?1, and pH 8.46. The gypsum at 100% soil requirement, planting common reed (P. australis) alone, P. australis + gypsum at 50% soil gypsum requirements, and leaching (control without plant and gypsum) were four treatments applied. After 11 weeks of incubation, the results showed that all treatments including the control significantly reduced pH, EC, exchangeable Na+, and SAR from the initial values, the control being with least results. The gypsum and P. australis + gypsum were highly effective in salinity (ECe) reduction, while sodicity (SAR) and Na+ reductions were significantly higher in P. australis + gypsum treatment. The reclamation efficiency in terms of Na+ (83.4%) and SAR (86.8%) reduction was the highest in P. australis + gypsum. It is concluded that phytoremediation is an effective tool to reclaim saline sodic soil.  相似文献   

19.
N2-fixing, drought tolerant and multipurpose Acacia and Prosopis species are appropriate trees for reforestation of degraded areas in arid and semiarid regions of the tropics and subtropics. Acacia and Prosopis trees form N2-fixing nodules with a wide range of rhizobia, for example African acacias mainly with Sinorhizobium sp. and Mesorhizobium sp., and Australian acacias with Bradyrhizobium sp. Although dry and hot seasons restrict formation of N2-fixing nodules on Acacia and Prosopis spp., fully grown trees and their symbiotic partners are well adapted to survive in harsh growth conditions. This review on one hand deals with major constraints of arid and semiarid soils, i.e. drought, salinity and high soil temperature, which affect growth of trees and rhizobia, and on the other hand with adaptation mechanisms by which both organisms survive through unfavourable periods. In addition, defects in infection and nodulation processes due to various abiotic and biotic constraints are reviewed. This knowledge is important when Acacia and Prosopis seedlings are used for forestation of degraded areas in arid and semiarid tropics.  相似文献   

20.
The relationship between Na+ accumulation and salt tolerance was tested by comparing subspecies of the halophyte, Atriplex canescens (fourwing saltbush), that differed markedly in Na+ content and Na:K ratios. Above ground tissues of one low-sodium and two high-sodium subspecies were compared with respect to cation accumulation, osmotic adjustment and growth along a salinity gradient in greenhouse trials. Plants of each subspecies were grown for 80 d on 2.2, 180, 540 and 720 mol m?3 NaCl. At harvest, A. canescens ssp. canescens had significantly lower Na+ levels, higher K+ levels and lower Na:K ratios in leaf and stem tissues than A. canescens ssp. macropoda and linearis over the salinity range (P < 0.05 or 0.01). Na:K ratios in leaves of the latter two, high-sodium, subspecies were approximately 2 on the lowest salinity treatment and ranged from 5 to 10 on the more saline solutions. By contrast, Na:K ratios in leaves of the low-sodium subspecies canescens, were only 0.4 on the lowest salinity and ranged narrowly from 1.7 to 2.3 at higher salinities. However, despite different patterns of Na+ and K+ accumulation, all three subspecies exhibited equally high salt tolerance and had similar osmotic pressures in their leaves or stems over the salinity range. Contrary to expectations, high salt tolerance was not necessarily dependent on high levels of Na+ accumulation in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号