首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ERRATA     
Effects of coupled solute and water flow in plant roots withspecial reference to Brouwer's experiment. Edwin L. Fiscus. p. 71 Abstract: Line 3 delete ‘interval’ insert‘internal’. p. 73 Materials and Methods: line 6: delete ‘diversion’ insert ‘division’ line 9 equation should read Jv=Lp PRT(C0C1). 74 Last line of figure legend: 10–1 should read 10–11. 75 Line 11: delete ‘seems’ insert ‘seem’. le 1 column heading—106 should read 1011. 77 delete ‘...membrane in series of...’ insert ‘membranein series or...’ Delete final paragraph.  相似文献   

2.
Removal of the blade from the leaf subtending the first flowerbud on Cyclamen persicum ‘Swan Lake’ plants causedthe petiole of that leaf to senesce, but had no effect on thegrowth of the flower peduncle in the debladed petiole's axil.A 10 mg NAA l–1 application generally had no effect onpetiole senescence, peduncle elongation or flowering date whenapplied to the cut end of the petiole after blade removal. A25 mg GA3 l–1 application or a combination of 25 mg GA3l–1 application or a combination of 25 mg GA3 l–1plus 10 mg NAA l–1 delayed petiole senescence and enhancedpeduncle elongation and subsequent flowering. No treatment significantlyaltered peduncle length at the time of flowering. Cyclamen persicum Mill, ‘Swan Lake’, tissue receptivity, flowering, GA3, NAA  相似文献   

3.
In this paper we report for the first time the occurrence ofan inducible weak CAM in leaves of Talinwn triangulare (Jacq.)Willd. This plant is a terrestrial perennial deciduous herbwith woody stems and succulent leaves which grows under fullexposure and in the shade in northern Venezuela. Plants grownin a greenhouse (‘sun’ plants) and a growth cabinet(‘shade’ plants) with daily irrigation showed CO2uptake only during the daytime (maximum rate, 4?0 µmolm–2 s–1) and a small acid accumulation during thenight (6?0 µmol H+g–1 FW). Twenty-four hours aftercessation of irrigation, no CO2 exchange was observed duringpart of the night. Dark fixation reached a maximum (1?0 µmolCO2 m–2 s–1, 100 µmol H+ g–1 FW) onday 9 of drought. By day 30 almost no gas exchange was observed,while acid accumulation was still 10 µmol H+ g–1FW. Rewatering reverted the pattern of CO2 exchange to thatof a C3 plant within 24 h. Daytime and night-time phosphoenolpyruvatecarboxylase activity increased up to 100% (shade) and 62% (sun)of control values after 10 and 15 d of drought, respectively.Light compensation point and saturating irradiance were similarin well-watered sun and shade plants, values being characteristicof sun plants. CAM seems to be important for the tolerance ofplants of this species to moderately prolonged (up to 2 months)periods of drought in conditions of full exposure as well asshade, and also for regaining high photosynthetic rates shortlyafter irrigation. Key words: Talinum triwigulare, inducible CAM, PEP-C activity, recycling  相似文献   

4.
The effects of root age, temperature, and soil water statuson root hydraulic conductivity (LP) were investigated for twocactus species, Ferocactus acanthodes and Opuntia ficus-indica.The volumetric flux density of water was measured for excisedroot segments, either using negative hydrostatic pressures appliedto the proximal end or using reverse flow of water from theroot to the soil. For both species, LP at 20 ?C increased withroot age, average values reaching a maximum of 3.9 ? 10–7m s–1 MPa–1 for F. acanthodes and 5.2 ? 10–7m s–1 MPa–1 for O.ficus-indica at 11 to 17 weeksof age; LP subsequently declined with increasing root age forboth species. LP was maximal at a temperature of about 10 ?Cfor the youngest roots (1–3 weeks), this optimum shiftingto 40 ?C for 8-week-old roots of both species. For older roots(up to 1.5-years-old), LP increased with temperature from 0?C to 50 ?C, with a Q10 of 1.3 between 20 ?C and 30 ?C. At asoil water potential (soil) of –0.016 MPa, root LP wasindependent of the direction of water flow for both species.Depending on root age, LP declined 45- to 500-fold for F. acanthodesand 90- to 800-fold for O.ficus-indica as soil was reduced from–0.016 to –1.06 MPa, consistent with a rectifier-likebehaviour with respect to water movement between soil and roots.Incorporation of such responses into water uptake models shouldlead to a better understanding of root function. Key words: Ferocactus acanthodes, Opuntia ficus-indica, water potential, tension, reverse flow  相似文献   

5.
Zoea I larvae of the brown shrimp Crangon crangon (Decapoda)were exposed to varying levels of UV radiation in a sunshinesimulator. ‘Short-term exposures’ (0–8 h)were used to determine the highest UV dose with no significanteffect (NOEC; defined by limit of detection) and the lethaldose of 10 and 50% mortality (LD10 and LD50). Crangon crangonshowed a relatively high sensitivity to UVB radiation (NOEC= 10 kJ m–2, LD10 = 15 kJ m–2, LD50 = 24 kJ m–2)compared to other crust-acean species. LD values (1997–1998)showed no adaptation to seasonal light regimes. ‘Long-termexposures’ (0–10 days) were carried out to assessthe range where the ‘law of reciprocity’ is valid.The larvae were exposed to UV levels of 0.2, 0.4 and 0.7 J m–2for appropriate time intervals, always cumulating in a sublethaldose of 5 kJ m–2 day–1. Results reflect a possiblethreshold (0.2–0.4 J m–2 UVB) in the effect of thedifferent UVB doses used; thus, a proportional relationshipof intensity and exposure time can only be shown at UVB levelsabove this threshold intensity.  相似文献   

6.
When a dicotyledonous stem is wounded by longitudinally splittinga young internode into halves, cells near the cut surface proliferateto form a callus within which vascular tissues differentiateand tend to restore a vascular cylinder in each half. Threephases of regeneration after wounding were identified and quantifiedin stems of three Solanaceous species. (1) In an initial ‘lag’phase, lasting about 2 d, neither cell division nor enlargementwere detected, but mitotic figures were observed within about300 µm of the cut surface. (2) Throughout a second, ‘division’phase, from about days 2–10, cell division and enlargementoccurred. Both were initiated mainly in the two cell layersnearest the surface. A mass of callus formed, with new cellwalls mostly parallel to the surface. Cell enlargement laggedbehind cell division for the first few days, so that mean radialcell diameter decreased until day 6, thereafter remaining almostconstant at 30–40 µm. Towards the end of this phase,mitoses ceased within the callus except in the positions ofthe future vascular and cork cambia, where radial cell diameterfell towards a constant 15–20 µm. (3) During a third,‘differentiation’ phase, cell division was restrictedto the cambial zones, and derivatives differentiated into cork,phloem or xylem according to position. The rate of increasein cell number per transect was 1.5–2.0 cells d–1,of which more than half was xylem. Capsicum annuum L., sweet pepper, Lycopersicon esculentum Mill., tomato, cambium, cell division, differentiation, regeneration, wounding of stems, xylem  相似文献   

7.
Lee, H. S. J. and Griffiths, H. 1987. Induction and repressionof CAM in Sedurn relephluni L. in response to photopcnod andwater stress.—J. exp. Bot. 38: 834–841. The introduction and repression of CAM in Sedurn telephiunmL, a temperate succulent, was investigated in watered, progressivelydrouglited and rewatered plants in growth chambers. Measurementswere made of water vapour and CO2 exchange, titratable acidity(TA) and xylem sap tension. Effects of photoperiod were alsostudied. CAM was induced by drought under long or short days,although when watered no CAM activity was expressed. C3-CAM intermediate plants were used for the investigation ofwater supply. Those which had received water and those drought-stressedboth displayed a similar nocturnal increase in TA, with a day-nightmaximum (H+) of 69 µmol g–1 fr. wt. The wateredplants took up CO2 at a maximum rate of 2?2 µmol m–2s–1 only in the light period, while the droughted plantsshowed a maximum nocturnal CO2 uptake rate of 0?69 µmolm–2 s–1. Subsequently, as CAM was repressed, thewatered S. telephiwn displayed little variation in TA, withconstant levels at 42 µmol g–1 fr. wt. (day 10).After 10 d of drought stress, the CAM characteristics of S.telephiurn were aLso affected, with reduced net CO2 uptake andH+. The transition between C3 and CAM in S. telephium can be describedas a progression in terms of the proportion of respiratory CO2which is recycled and refixed at night as malic acid, in comparisonwith net CO2 uptake. Recycling increased from 20% (day 1) to44% (day 10) as a result of the drought stress and was highin both the CAM-C3 stage (no net CO2 uptake at night) and alsoin the drought-stressed CAM stage (reduced net CO2 uptake atnight). The complete C3-CAM transition occurred in less than8 d, and the stages could be characterized by xylem sap tensionmeasurements: CAM = 0?50 MPa C3-CAM = 0?36 MPa C3 = 0?29 MPa. Key words: CAM, Sedum telephium L., recycling  相似文献   

8.
The effects of exposure of up to 2 h with sulphur dioxide ona range of plant species was observed by measuring changes inthe rate of net photosynthesis under closely controlled environmentalconditions. Ryegrass, Lolium perenne ‘S23’ was thespecies most sensitive to SO2; significant inhibition was detectedat 200 nl l–1. Fumigations at 300 nl l–1 also inhibitedphotosynthesis in field bean (Vicia faba cv. ‘Three FoldWhite’ and ‘Blaze’) and in barley (Hordeumvulgare cv. ‘Sonja’). No effect was detected inwheat (Triticum aestivum cv. ‘Virtue’) at concentrationsup to 600 nl l–1 SO2, or in oil-seed rape (Brassica napuscv. ‘Rafal’) except at 800 nl l–1 SO2). Recoverycommenced immediately after the fumigation was terminated andwas complete within 2 h when inhibition had not exceeded 20%during the SO2 treatment. Key words: Sulphur dioxide, short-term fumigation, photosynthesis  相似文献   

9.
Longitudinal Water Movement in the Primary Root of Zea mays   总被引:1,自引:0,他引:1  
The rates of transfer of tritiated water (THO) along lengthsof excised primary roots of Zea mays have been measured undera variety of conditions. The following values of ‘apparentdiffusion coefficients’ for THO in the root tissue havebeen evaluated: 1.5±0.1x10-5 cm2 sec-1 in roots boiledfor 3 min before use,0.5±0.03x10-5 cm2 sec-1 in rootspoisoned with 10-2 M NaF,0.9±0.07x10-5 cm2 sec-1 in rootspoisoned with 10-2 M NaN3,and 2.1±0.2x10-5 cm2 sec-1in normal roots. The bathing medium in all cases was 1.0 mMKCl/0.1 mM CaCl2 with the addition of the inhibitors where appropriate.Thefourfold increase in the rate of THO transfer in normal rootscompared with poisoned ones is attributed to the existence ofa long-distance convective flow in the first case, which isterminated by the addition of inhibitors. Since experimentsshow that this convective flow must occur both acropetally andbasipetally with equal velocity, it is thought to occur in thephloem.By assuming the ‘streaming transcellular strands’model for phloem transport, the rate of movement required togive the observed transfer has been computed as approximately4.5x10-2 cm sec-1 (160 cm h-1).The earlier report of the existenceof a highly impermeable barrier surrounding the xylem vesselshas been further substantiated by the experiments reported here.  相似文献   

10.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

11.
HARVEY  D. M.; GOODWIN  J. 《Annals of botany》1978,42(5):1091-1998
The effect of the ‘leafless’ mutation (in whichtendrils replace leaflets and the stipules are reduced to avestigial form) upon foliage area, photosynthetic net CO2 uptakepotential, dry matter production and seed yield in Pisum sativumwas studied by comparing two near-isogenic lines of genotypeafafstst and ++++. The mutation is of potential agronomic valuein that it offers improved lodging resistance, crop drying andharvester throughput. In the conventional phenotype the total foliage area of themain axis attained a plateau (456 cm2) at day 56 from seedlingemergence, whereas corresponding values for the ‘leafless’mutant showed a total area of 208 cm2 at day 68 with no indicationof a plateau. The agronomic consequence of this is discussed.During the vegetative phase of the plant the maximum CO2 uptakepotential in the fully expanded conventional leaf was 8·5mg CO2 leaf–1 h–1 and in the ‘leafless’mutant this value was 7·0 mg CO2 leaf–1 h–1.For most ‘leaves’ of the latter phenotype this valuewas between 30 and 60 per cent less than for their conventionalcounterpart. There was a consistently higher photosyntheticpotential per unit area in tendrils of the ‘leafless’mutant than in leaflets of the conventional phenotype. The respectivemean specific values for the two phenotypes were 53 and 37 mgCO2 dm–2 h–1. The problem of obtaining a meaningfulsurface area value for tendrils is discussed and the cylindricalnature of tendrils is taken into account. The ‘leafless’ mutant consistently accumulated 50per cent less dry matter than did conventional plants in theperiod from seedling emergence to anthesis and yield of maturedry seed per plant showed a reduction of 50 per cent both inseed number and total seed weight. The implications for future breeding and selection programmesaimed at haulm reduction are discussed in relation to evaluatingthe ability of the background genotype to produce adequate tendrilsin the presence of afafstst. Triticum aestivum, wheat, callus culture, organogenesis  相似文献   

12.
A microsomal flavonoid 3'-hydroxylase (F3'H) catalyzing themetabolism of naringenin to eriodictyol in Citrus sinensis (L.)Osbeck cv. ‘Hamlin’ cell suspension cultures wasshown to be a cytochrome P450 enzyme. This reaction requiredO2 and NADPH and was inhibited by CO, with partial reversalof CO-inhibition by light at 450 nm. Cytochrome P450 contentranged from 10–20 pmol (mg microsomal protein)–1.The F3'H reaction was shown to be linear in regard to proteinconcentration between 2.5 and 25 µg of microsomal protein.The optimum pH for the reaction was 7.4–7.6 and the temperatureoptimum was between 30 and 37°C. The apparent Km and Vmaxfor naringenin were 24 µM±3.2 and 81.4±7.9pmol eriodictyol min–1 (mg protein)–1, respectively.The microsomal F3'H was also capable of forming dihydroquercetinfrom dihydrokaempferol (40 pmol min–1 (mg protein)–1)and of quercetin from kaempferol (3.25 pmol min–1 (mgprotein–1). Cytochrome c and ketoconazole were the bestinhibitors of WH activity followed by piperonyl butoxide anda-naphthoflavone. Light was shown to be an inducer of the F3'Halmost doubling the specific activity and increasing the microsomalcytochrome P450 content by 30% over that of dark grown cells.F3'H activity was also confirmed in microsomal preparationsof young (new flush) leaves from ‘Hamlin’ treesand flavedo of ‘Hamlin’ oranges, ‘Marsh’grapefruit, and ‘Lisbon’ lemon. No activity wasobserved in older, hardened leaves and albedo of all the fruittested. Initiation of embryogenesis in the ‘Hamlin’cell suspension cultures by switching from a sucrose mediumto a glycerol-based medium resulted in the down-regulation ofF3'H. 1Mention of a trademark, warranty, proprietary product, or vendordoes not constitute a guarantee by the U.S. Department of Agricultureand does not imply its approval to the exclusion of other productsor vendors that may also be suitable.  相似文献   

13.
Water extracts of the red-tide dinoflagellate Alexandrium excavatumgrown at ‘high’ light intensity (200 µE m–2s–1) show a broad absorbance maximum in the UV regionof the spectrum (310–360 nm). Using TLC and reverse-phaseHPLC a series of mycosporine-like amino acids have been characterized:mycosporine-glycine (max = 310 nm), palythine (max = 320 nm),asterina-330 (max = 330 nm), shinorine (max = 334 nm), porphyra-334(max= 334 nm), palythenic acid (max = 337 nm) and the isomericmixture of usujirene and palythene (max = 359 nm). From theobserved spectral changes during transference from ‘low’(20 µE m–2 s–1) to ‘high’ (200µE m–2 s–1) light intensities and vice versa,the series of compounds are supposed to be biogenically relatedto one another. The presence of these compounds in A.excavatumis discussed in relation to their possible role in the photoprotectionto deleterious UV radiation.  相似文献   

14.
Ritchie, R. J. 1987. The permeability of ammonia, methylamineand ethylamine in the charophyte Chara corallina (C. australis).—J.exp. Bot. 38: 67–76 The permeabilities of the amines, ammonia (NH3), methylamine(CH3NH2) and ethylamine (CH3CH2NH2) in the giant-celled charophyteChara corallina (C. australis) R.Br. have been measured andcompared. The permeabilities were corrected for uptake fluxesof the amine cations. Based on net uptake rates, the permeabilityof ammonia was 6?4?0?93 µm s–1 (n = 38). The permeabilitiesof methylamine and ethylamine were measured in net and exchangeflux experiments. The permeabilities of methylamine were notsignificantly different in net and exchange experiments, norto that of ammonia (Pmethylamine = 6?0?0?49 µm s–1(n = 44)). In net flux experiments the apparent permeabilityof ethylamine was slightly greater than that of ammonia andmethylamine (Pethylamine, net = 8?4?1?2 µm s–1 (n= 40)) but the permeability of ethylamine based on exchangeflux data was significantly higher (Pethylamine, exchange =14?1?2 µm s–1 (n = 20)). Methylamine can be validlyused as an ammonium analogue in permeability studies in Chara. The plasmalemma of Chara has acid and alkaline bands; littlediffusion of uncharged amines would occur across the acid bands.The actual permeability of amines across the alkaline bandsis probably about twice the values quoted above on a whole cellbasis i.e. the permeability of ammonia across the permeablepart of the plasmalemma is probably about 12 µm s–1. Key words: Chara, permeability, ammonia, methylamine  相似文献   

15.
Myrothamnus flabellifoliusWelw. is a desiccation-tolerant (‘resurrection’)plant with a woody stem. Xylem vessels are narrow (14 µmmean diameter) and perforation plates are reticulate. This leadsto specific and leaf specific hydraulic conductivities thatare amongst the lowest recorded for angiosperms (ks0.87 kg m-1MPa-1s-1;kl3.28x10-5kg m-1MPa-1s-1, stem diameter 3 mm). Hydraulic conductivitiesdecrease with increasing pressure gradient. Transpiration ratesin well watered plants were moderate to low, generating xylemwater potentials of -1 to -2 MPa. Acoustic emissions indicatedextensive cavitation events that were initiated at xylem waterpotentials of -2 to -3 MPa. The desiccation-tolerant natureof the tissue permits this species to survive this interruptionof the water supply. On rewatering the roots pressures thatwere developed were low (2.4 kPa). However capillary forceswere demonstrated to be adequate to account for the refillingof xylem vessels and re-establishment of hydraulic continuityeven when water was under a tension of -8 kPa. During dehydrationand rehydration cycles stems showed considerable shrinking andswelling. Unusual knob-like structures of unknown chemical compositionwere observed on the outer surface of xylem vessels. These maybe related to the ability of the stem to withstand the mechanicalstresses associated with this shrinkage and swelling.Copyright1998 Annals of Botany Company cavitation, desiccation, hydraulic conductivity, refilling, resurrection plant, root pressure, xylem anatomy,Myrothamnus flabellifolius  相似文献   

16.
The levels of purine and pyrimidine nucleotides in suspensioncultures of Catharanthus roseus were determined 24 h after stationary-phasecells were transferred to fresh complete (‘+Pi’)or phosphate-deficient (‘–Pi’) Murashige-Skoogmedium. The levels of ATP, GTP, UTP and CTP were from approx.3 to 5-fold greater in the cells grown in ‘+Pi’medium than in the cells grown in ‘–Pi’ medium.The levels of almost all other nucleotides were slightly higherin the cells in ‘+Pi’ medium. The rates of de novoand salvage biosynthesis of purine and pyrimidine nucleotideswere estimated from the rates of incorporation of radioactivityfrom [14C]formate, [2–14C]glycine, NaH14CO3, [6–14C]orotate,[8–14C]adenine, [8–14C]adenosine, [2–14C]uraciland [2–14C]uridine. The results indicated that the activityof both the de novo and the salvage pathway was higher in thecells in ‘+Pi’ medium than in the cells in ‘–Pi’medium. The rate of degradation estimated from the rate of releaseof 14CO2 from labelled purines and pyrimidines indicated thatdegradation of uridine was significantly reduced in the cellsin ‘+Pi’ medium, but no significant difference wasfound in the degradation of adenine, adenosine and uracil. Thepossible role of Pi in the control of the biosynthesis of nucleotidesand in the degradation of uridine is discussed. Catharanthus roseus, Madagascar periwinkle, suspension culture, inorganic phosphate, nucleotides, purines, pyrimidines, biosynthesis, degradation  相似文献   

17.
Plants of Lupinus albus L., cv. Ultra, were grown hydroponicallywith NO3-nutrition for 51 d under control (0.05 mol m–3Na+ and 10 mol m–3 Cl) and saline (40 mol m–3NaCI) conditions. Plants were harvested 41 and 51 d after germinationand analysed for content and net increment of C, N and the mineralcations K+, Na+, Mg2+, and Ca2+ and the anions Cl, NOJ,malate, phosphate, and SO42–. Roots, stem interaodes,petioles and leaflets were analysed separately. During the studyperiod net photosynthesis, respiratory losses of CO2 from shootand root and the composition of the spontaneously bleeding phloemsap and the root pressure xylem exudate were also determined.Using molar ratios of C over N in the transport fluids, incrementsof C and N, and photosynthetic gains as well as respiratorylosses of C, the net flows of C and N in the xylem and phloemwere then calculated as in earlier studies (Pate, Layzell andMcNeill, 1979a). Knowing the carbon flows, the ratios of ionto carbon in the phloem sap, and ion increments in individualorgans, net flows of K+, Na+, and Cl over the study periodwere also calculated. Salt stress led to a general decrease of all partial componentsof C and N partitioning indicating that inhibitions were notdue to specific effects of NaCI salinity on photosynthesis oron NO3 uptake. However, there were differences between variouslyaged organs, and net phloem export of nitrogenous compoundsfrom ageing leaves was substantially enhanced under saline conditions.In addition, NO3reduction in the roots was specificallyinhibited. Uptake and xylem transport of K+ was more severelyinhibited than photosynthetic carbon gain or NO3 uptakeby the root. K+ transport in the phloem was even more severelyrestricted under saline conditions. Na+ and Cl flowsand uptake, on the other hand, were substantially increasedin the presence of salt and, in particular, there were thenmassive flows of Na in the phloem. The results are discussedin relation to the causes of salt sensitivity of Lupinus albus.The data suggest that both a restriction of K+ supply and astrongly increased phloem translocation of Na+ contribute tothe adverse effects of salt in this species. Restriction ofK+ supply occurs by diminished K+ uptake and even more by reducedK+ cycling within the plant. Key words: Lupinus albus, salt stress, phloem transport, xylem transport, partitioning, carbon, nitrogen, K+, Na+, CI  相似文献   

18.
Differences in premature leaf abscission and in visible steminjury in genetic lines of poplar followed continuous fumigationswith air pollutant levels of SO2 (90–100 nl l–1)and O3 (70–80 nl l–1) either separately or together.The clones used were: Populus deltoides var. missiouriensisMarsh., P. nigra cv. ‘italicd’ L., and the hybridsP. nigra cv. ‘italica’ xP. deltoides (He-X/3) andP. nigra cv.‘italica’ x P. nigra cv. ‘Serres’(He-K/7). While most leaf abscission occurred within 20 d fromthe start of fumigation, stem lesions (intumescences), appearedonly after 72 d. Their anatomical characteristics include theformation of lysigenous aerenchyma in the lower parts of theintumescence, the sloughing of superficial cells from the injuredarea, and the development of crystalline formations on the surfaceof the lesions. P. deltoides exhibited the least morphologicalresponse to the gases. Ethylene released from fumigated leaves was determined at thesame gas concentration of SO2 (100 nl l–1), O3 (75 nll–1) and their mixture. Leaves of P. deltoides consistentlyshowed the lowest ethylene production after the gas treatments.P. ‘italica’ production was higher but was littlealtered by the treatments. The two hybrids He-X/3 and He-K/7showed the greatest increases in ethylene evolution with time.With He-K/7 exposed to the gas mixture the production of ethylenedecreased after the initial sharp rise during days 1–2,and reflected the considerable leaf damage observed after day3. The results suggest that sensitivity to air pollution, (as shownby leaf abscission and the formation of stem intumescences)can be correlated with the level of pollutant-induced ethyleneevolution from leaves. Initially high levels could induce abscission,whilst prolonged production could be responsible for intumescenceinitiation. The discussion proposes a series of events fromSO2 and/or O3 entry into the leaf and the physiological reasonsfor the clonal differences. Key words: Sulphur dioxide, ozone, ethylene, poplar, leaf abscission, stem lesions  相似文献   

19.
Hordeum vulgare cv. California Mariout was established in sandculture at two different NaCl concentrations (0.5 mol m–3‘control’ and 100 mol m–3) in the presenceof 6.5 mol m–3 K +. Between 16 and 31 d after germination,before stem elongation started, xylem sap was collected by useof a pressure chamber. Collections were made at three differentsites on leaves 1 and 3: at the base of the sheath, at the baseof the blade, i.e. above the ligule, and at the tip of the blade.Phloem sap was collected from leaf 3 at similar sites throughaphid stylets. The concentrations of K +, Na+, Mg2+ and Ca2+were measured. Ion concentrations in xylem sap collected at the base of leaves1 and 3 were identical, indicating there was no preferentialdelivery of specific ions to older leaves. All ion concentrationsin the xylem decreased from the base of the leaf towards thetip; these gradients were remarkably steep for young leaves,indicating high rates of ion uptake from the xylem. The gradientsdecreased with leaf age, but did not disappear completely. In phloem sap, concentrations of K+ and total osmolality declinedslightly from the tip to the base of leaves of both controland salt-treated plants. By contrast, Na+ concentrations inphloem sap collected from salt-treated plants decreased drasticallyfrom 21 mol m–3 at the tip to 7.5 mol m–3 at thebase. Data of K/Na ratios in xylem and phloem sap were used to constructan empirical model of Na+ and K+ flows within xylem and phloemduring the life cycle of a leaf, indicating recirculation ofNa+ within the leaf. Key words: Hordeum vulgare, xylem transport, phloem transport, NaCl-stress  相似文献   

20.
Journal of Plankton Research, 11, 1273–1295, 1989. The values of P/U0 (Table I) and fluid velocity used to calculatethe energy required for sieving (pp. 1289–1290) and severalequations (footnote b of Table I; p. 1290, lines 3–4)are incorrect. The corrected table appears below: Table I. Filter setule measurements (mean and within specimenstandard deviation) of the gnathobases for the cladocerans studiedaGnathobaseof trunklimb number. bP = 8µU0/(b(1 – 21nt + 1/6(t2) - 1/144(t4))), whereP = pressure drop in dyn cm–2, =3.1416, U0 = fluid velocityin cm s–1, b = distance between setule centres in cm,t = ( x setule diameter)/b and µ = 0.0101 dyn s–1cm–2. Formula from Jørgensen (1983). The text (p. 1289, line 19 to p. 1290, line 10) should read: organism. Using a similar argument, a 0.5 mm Ceriodaphnia witha filter area of 0.025 mm2 (Ganf and Shiel, 1985) and pressuredrop P = 2757 dyn cm–2 (with fluid velocity of 0.07 cms–1) allocates only 2171 ergs h–1 to filtrationof a total energy expenditure of 104 ergs h–1 [filtrationenergy (ergs h–1) = area (cm2) x pressure drop (dyn cm–2)x 3600 (s h–1) x 1/0.2 (efficiency of conversion of biochemicalinto mechanical work); total energy (ergs h–1) = respiration(0.05 µl O2 ind–1 h–1 consumed; Gophen, 1976)x conversion factor (2 x 105 ergs µl–1 O2). Withan estimated 0.034 mm2 in filter area, fluid velocity of 0.041cm s–1 and respiration of 1.8 x 104 ergs h–1 (calculatedfrom Porter and McDonough, 1984), a 0.5 mm Bosmina uses <4%of its metabolism to overcome filter resistance. The velocities used in the original examples (0.4 cm s–1for Ceriodaphnia, 0.2 cm s–1 for Bosmina) were derivedfrom literature values of appendage beat rate and estimatesof the distance travelled by the appendages during each beatcycle. This approach unnecessarily assumes that all water movedpasses through the filter. In the new calculations, the flowacross the filter needed for food to be collected by sieving(0.07 cm s–1 for Ceriodaphnia and 0.041 cm s–1 forBosmina) was determined from the maximum clearance rate/filterarea. The amended energy expenditures, although higher, do notrefute the sieve model of particle collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号