首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Hydrophilized and hydrophobized forms of the lipase from Mucor miehei were obtained by its chemical modification with cellobiose and N-succinimidyl palmitate with a modification degree of 4 in both cases. A comparative analysis of the regulation of the catalytic activities of the native and modified lipases was carried out in the system of reversed micelles of OT aerosol (AOT) in isooctane. The level of catalytic activity of all the lipase preparations in the micellar medium was found to be higher than that in aqueous solution. The chemical modification of lipase did not result in a change in the regulation of the oligomeric composition of the enzyme controlled by the degree of micelle hydration Ω0 (micelle size). The k cat dependences on Ω0 for each lipase preparation exhibit two maxima, corresponding to the functioning of lipase monomers and tetramers. The changes in the hydrophilic-lipophilic balance of the lipase surface significantly affect the character of the regulation of enzyme activity due to changes in the surfactant concentration (the number of micelles). The lipase hydrophobization results in a decrease in the enzyme activation effect with an increase in the AOT concentration in comparison with the native lipase. The lipase hydrophilization dramatically decreases the activity of lipase tetramer when the AOT concentration is increased. The catalytic activity of the monomer of hydrophilized lipase is practically independent of the AOT concentration. Kinetic data indicate a mixed type of activation of both oligomeric forms of the native and the hydrophobized lipase by AOT molecules and the noncompetitive type of the activation and AOT inhibition of the monomer and the tetramer of the hydrophilized lipase, respectively.  相似文献   

2.
NAD(+)-dependent formate dehydrogenase (FDH) was hydrophobized with palmitoyl chloride to give the samples with various modification degrees (2-10). The native and modified FDHs were comparatively studied in the system of reverse micelles of Aerosol OT in octane. Like the native, the modified enzyme displayed three maxima in the curve of dependence of its catalytic activity on the degree of surfactant hydration (the micelle size), which reflect the enzyme functioning in the form of a monomer, dimer, or octamer. The peak corresponding to the functioning of the FDH dimer was found to decrease along with an increase in the modification degree. Thus, the modified enzyme mainly functions in the form of monomer and octamer. The modified FDH displayed membranotropy and revealed the dependence of catalytic activity on surfactant concentration.  相似文献   

3.
NAD+-dependent formate dehydrogenase (FDH) was hydrophobized with palmitoyl chloride to give the samples with various modification degrees (2–10). The native and modified FDHs were comparatively studied in the system of reverse micelles of Aerosol OT in octane. Like the native, the modified enzyme displayed three maxima in the curve of dependence of its catalytic activity on the degree of surfactant hydration (the micelle size), which reflect the enzyme functioning in the form of a monomer, dimer, or octamer. The peak corresponding to the functioning of the FDH dimer was found to decrease along with an increase in the modification degree. Thus, the modified enzyme mainly functions in the form of monomer and octamer. The modified FDH displayed membranotropy and revealed the dependence of catalytic activity on surfactant concentration.  相似文献   

4.
The oligomeric state and formation of supramolecular structures of glycogen phosphorylase b from rabbit skeletal muscle was studied in the system of aerosol OT (AOT) reversed micelles in octane. The sedimentation experiments have shown that the enzyme oligomeric state depends on the degree of micelle hydration. The enzyme monomer, dimer, trimer, tetramer, hexamer, and octamer were observed, depending on the degree of hydration.  相似文献   

5.
The regularities of their functioning of enzyme, water-soluble and membrane forms, in the systems of the reversed micelles of surfactants in organic solvents are compared. Using as examples gamma-glutamyltransferase (in AOT reversed micelles in octane) and aminopeptidase (in Brij 96 reversed micelles in cyclohexane), the principal difference in the catalytic activity regulation of water-soluble and membrane forms is demonstrated. The catalytic activity of the membrane form depends considerably on the surfactant concentration at the constant degree of hydration, whereas the activity of the water-soluble form is constant under these conditions. The catalytic activity dependence on the surfactant concentration is regarded as a test for enzyme membrane activity.  相似文献   

6.
The properties of penicillin acylase from E. coli solubilized by hydrated reversed micelles of Aerozol OT (AOT) in octane were studied. The catalytic activity dependence on the hydration degree, a parameter which determines the size of the micelle inner cavity, represents a curve with three optima, each corresponding to the enzyme functioning either in a dimer form (omega 0 = 23) or in the form of separate subunits--heavy, beta, and light, alpha, at omega 0 = 20 and 14, respectively. Reversible dissociation of the enzyme was confirmed by ultracentrifugation followed by electrophoresis. Preparative isolation of penicillin acylase subunits, their catalytic activity being retained, was shown to be possible.  相似文献   

7.
The oligomeric state and formation of supramolecular structures of glycogen phosphorylase b from rabbit skeletal muscles have been studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. Sedimentation studies show that the oligomeric state of the enzyme is controlled by the degree of hydration of micelles. Monomeric, dimeric, trimeric, tetrameric, hexameric, or octameric forms of the enzyme were observed depending on the degree of micelle hydration.  相似文献   

8.
The size of the inner water cavity of reversed micelles formed in a triple system 'water-surfactant-organic solvent' can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles 'uncouple' such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceraldehyde-3-phosphate have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.  相似文献   

9.
The influence of micelle hydration degree (w0) and AOT concentration on fluorescence, circular dichroism (CD), catalytic activity, and stability of catalase in Aerosol OT (AOT) reversed micelles in heptane was investigated. The quantitative parameters--differential fluorescence of catalase (DeltaI), protein molar ellipticity ([theta]lambda), initial rate of catalytic reaction, catalase efficiency (kcat/Km), and rate constant of enzyme inactivation (kin, sec-1)--decreased with increasing AOT concentration in micellar systems, reflecting the interaction of solubilized catalase with the AOT micellar aggregates in heptane. The dependences of all these parameters on increasing hydration degree of micelles (w0) were characterized by the appearance of maxima at w0 of 8, 15-18, and 26-30. These maxima are suggested to reflect three different states of catalase in the micellar system, distinguished by their conformations and catalytic activity, which is determined by the micellar microenvironment of the enzyme.  相似文献   

10.
Comparative studies were carried out in the catalytic activity regulation of native alpha-chymotrypsin and its artificially produced hexameric form as an example of non-dissociating oligomeric enzyme (covalently cross-linked by means of succinimidyl-3-(2-pyridylthiopropionate] in the Aerosol OT reversed micelles in octane. Native (monomeric) alpha-chymotrypsin exhibits maximal catalytic activity in the reversed micelles at the hydration degree w0 = 10, when the radius of the micelle inner cavity is equal to the radius of the alpha-chymotrypsin globule. For the alpha-chymotrypsin hexamer, optimum is observed at w0 = 45, with the inner micellar cavity radius (r = 68 A) being approximately equal to the radius of the sphere surrounding the octahedral combination of the six monomeric alpha-chymotrypsin molecules (r = 61 A). Thus, construction of the corresponding oligomeric structures is made easy, with the optimal catalytic activity in a preset range of the hydration degrees.  相似文献   

11.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

12.
The kinetics of palmitoyl-CoA hydrolase were influenced by both the availability of the substrate and formation of micelles. At palmitoyl-CoA concentrations below the critical micelle concentration, addition of non-ionic detergent increased the activity until the critical micelle concentration of the mixed micelles was reached. At palmitoyl-CoA concentrations above the critical micelle concentration, inhibitor of the activity was observed, but addition of detergents of the Triton X series reversed the inhibition. Maximum palmitoyl-CoA hydrolase activity was found when the ratios (w/v) of palmitoyl-CoA: Triton X-100 and palmitoyl-CoA: Triton X-405 were approximately 0.35 and 0.05, respectively. At these above the mixed critical micelle concentration. The results indicate that monomer palmitoyl-CoA is the substrate and that monomer forms of the non-ionic detergents of the Triton X series activate the enzyme. Isolated microsomal lipids activated the microsomal palmitoyl-CoA hydrolase, suggesting that a hydrophobic environment is advantageous for interaction between enzyme and substrate in vivo. The maximum activity in the presence of mixed micelles is discussed in relation to a model where mixed micelles are regarded as artificial membranes to which the enzyme may adhere in an equilibrium with the monomer substrate and detergent in the monomer form. It is suggested that intracellular membranes may resemble mixed micelles in equilibrium with detergent-active substrates such as palmitoyl-CoA.  相似文献   

13.
Properties of the membrane and soluble forms of somatic angiotensin-converting enzyme (ACE) were studied in the system of hydrated reversed micelles of aerosol OT (AOT) in octane. The membrane enzyme with a hydrophobic peptide anchor was more sensitive to anions and to changes in pH and composition of the medium than the soluble enzyme without anchor. The activity of both forms of the enzyme in the reversed micelles significantly depended on the molarity of the buffer added to the medium (Mes-Tris-buffer, 50 mM NaCl). The maximum activity of the soluble ACE was recorded at buffer concentration of 20-50 mM, whereas the membrane enzyme was most active at 2-10 mM buffer. At buffer concentrations above 20 mM, the rate of hydrolysis of the substrate furylacryloyl-L-phenylalanyl-glycylglycine by both ACE forms was maximal at pH 7.5 both in the reversed micelles and in aqueous solutions. However, at lower concentrations of the buffer (2-10 mM), the membrane enzyme had activity optimum at pH 5.5. Therefore, it is suggested that two conformers of the membrane ACE with differing pH optima for activity and limiting values of catalytic constants should exist in the reversed micelle system with various medium compositions. The data suggest that the activity of the membrane-bound somatic ACE can be regulated by changes in the microenvironment.  相似文献   

14.
The regulations of functioning of water soluble and membrane forms of enzymes in the systems of reversed micelles of surfactants in organic solvents are compared. By an examples of gamma-glutamyltransferase (in AOT reversed micelles in octane) and amino-peptidase (in Brij 96 reversed micelles in cyclohexane) the principal difference in the catalytic activity regulation of water soluble and membrane forms is demonstrated. The catalytic activity of the membrane form depends largely on the surfactant concentration at the constant hydration degree, whereas the activity of the water soluble form is constant under these conditions. The catalytic activity dependence on the surfactant concentration is regarded as a "test for the enzyme's membrane activity".  相似文献   

15.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30-40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

16.
The catalytic function of catalase and its peroxidatic activity during tetramethylbenzidine (TMB) oxidation by cumene hydroperoxide were studied in reversed micelles of Aerosol OT (AOT) in octane relative to the [H2O]/[AOT] ratio and the initial catalase concentration. The optimum conditions permitting to retain the catalytic activity of the enzyme and its ability to induce peroxidation of TMB, were found. The catalytic function of the enzyme was shown to be dependent on its concentration in AOT micelles. The catalase stability monitored by the catalytic reaction and the decrease of the Soret band were analyzed. Both processes have two phases differing by the rate constants of the pseudo-first order. The catalase inserted into AOT micelles is characterized by the high stability as compared to other hemoproteins (cytochrome P-450, myoglobin, hemoglobin, peroxidase) under identical conditions.  相似文献   

17.
AOT reverse micellar system was modified with DMSO for improved esterification activity of Chromobacteriumviscosum lipase (glycerol–ester hydrolase, EC 3.1.1.3). The enzymatic activity was strongly affected by the concentration of DMSO, and maximum activity was obtained at 30–40 mM. The various relevant physical parameters such as w0 (molar ratio of water to AOT), pH and reaction temperature that influence the activity of lipase were studied in order to obtain the best value and compared with those in simple AOT reverse micelles. The apparent activation energy decreased in the presence of DMSO. The stability of lipase entrapped in modified AOT systems was excellent, and the half-life was about 3.25 times than that observed in simple AOT systems at 25°C. A simple first-order deactivation model was considered to determine the deactivation rate constant. The thermodynamic stability of lipase in reverse micelles was measured by the Gibbs free energy. A fluorescence study was performed to provide information on structural changes in AOT reverse micelles which was accompanied by the addition of DMSO.  相似文献   

18.
The alterations in the catalytic activity of the horseradish peroxidase after its interaction with antibodies against this enzyme have been studied in buffered solution and in reversed Aerosol OT (AOT) micelles in heptane. The antibodies were obtained by immunizing the rabbits with electrophoretically homogeneous enzyme and were purified by affinity chromatography. In the AOT micelles and mixed micelles containing AOT and Triton X-45, the enzyme interacted with antibodies very rapidly (in less than 5 min), i.e. the micelles did not hinder effective interaction between the enzyme and antibodies. The decrease in the peroxidase catalytic activity upon its interaction with antibodies in a micellar medium was determined by [H2O]/[AOT] ratio, pH and molarity of polar nucleus, as well as by the initial concentration of antibody. In buffered solutions, the decrease n the peroxidase activity of the enzyme--antibody complex was only weakly dependent on pH and molarity of a buffer solution.  相似文献   

19.
Cycling of intracellular pH has recently been shown to play a critical role in ischemia-reperfusion injury. Ischemia-reperfusion also leads to mitochondrial matrix acidification and dysfunction. However, the mechanism by which matrix acidification contributes to mitochondrial dysfunction, oxidative stress, and the resultant cellular injury has not been elucidated. We observe pH-dependent equilibria between monomeric, dimeric, and a previously undescribed tetrameric form of pig heart lipoamide dehydrogenase (LADH), a mitochondrial matrix enzyme. Dynamic light scattering studies of native LADH in aqueous solution indicate that lowering pH favors a shift in average molecular mass from higher oligomeric states to monomer. Sedimentation velocity of LADH entrapped in reverse micelles reveals dimer and tetramer at both pH 5.8 and 7.5, but monomer was observed only at pH 5.8. Enzyme activity measurements in reverse Aerosol OT micelles in octane indicate that LADH dimer and tetramer possess lipoamide dehydrogenase and diaphorase activities at pH 7.5. Upon acidification to pH 5.8 only the LADH monomer is active and only the diaphorase activity is observed. These results indicate a correlation between pH-dependent changes in the LADH reaction specificity and its oligomeric state. The acidification of mitochondrial matrix that occurs during ischemia-reperfusion injury is sufficient to alter the structure and enzymatic specificity of LADH, thereby reducing mitochondrial defenses, increasing oxidative stress, and slowing the recovery of energy metabolism. Matrix acidification may also disrupt the quaternary structure of other mitochondrial protein complexes critical for cellular homeostasis and survival.  相似文献   

20.
Deactivation and conformational changes of cutinase in reverse micelles   总被引:1,自引:0,他引:1  
Deactivation data and fluorescence intensity changes were used to probe functional and structural stability of cutinase in reverse micelles. A fast deactivation of cutinase in anionic (AOT) reverse micelles occurs due to a reversible denaturation process. The deactivation and denaturation of cutinase is slower in small cationic (CTAB/1-hexanol) reverse micelles and does not occur when the size of the cationic reverse micellar water-pool is larger than cutinase. In both systems, activity loss and denaturation are coupled processes showing the same trend with time. Denaturation is probably caused by the interaction between the enzyme and the surfactant interface of the reversed micelle. When the size of the empty reversed micelle water-pool is smaller than cutinase (at W0 5, with W0 being the water:surfactant concentration ratio) a three-state model describes denaturation and deactivation with an intermediate conformational state existing on the path from native to denaturated cutinase. This intermediate was clearly detected by an increase in activity and shows only minor conformational changes relative to the native state. At W0 20, the size of the empty water-pool was larger than cutinase and the data was well described by a two-state model for both anionic and cationic reverse micelles. For AOT reverse micelles at W0 20, the intermediate state became a transient state and the deactivation and denaturation were described by a two-state model in which only native and denaturated cutinase were present. For CTAB/1-hexanol reverse micelles at W0 20, the native cutinase was in equilibrium with an intermediate state, which did not suffer denaturation. 1-Hexanol showed a stabilizing effect on cutinase in reverse micelles, contributing to the higher stabilities observed in the cationic CTAB/1-hexanol reverse micelles. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号