首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Previously, we and others have shown that epidermal growth factor (EGF) stimulates the synthesis of its own receptor and the accumulation of EGF receptor mRNA. Here, we demonstrate that the tumor promotor, 12-O-tetradecanoylphorbol-13-acetate (TPA), like EGF, also stimulates receptor synthesis in the human breast carcinoma cell line, MDA468 cells. The receptor synthesis rate increased 5-fold with a peak at 8 h after exposure to TPA with half-maximal stimulation at a dose of 5 ng/ml TPA. This stimulation of receptor synthesis occurred despite a 30% decrease in general cellular protein synthesis. The increased receptor synthesis rate resulted in the accumulation of 60% more receptor protein as determined by quantitative immunoblotting using a newly developed monoclonal antibody, H9B4. Although TPA treatment resulted in an immediate loss of high affinity EGF-binding sites, the long-term effect was an increase in both the low and high affinity binding sites. The effects of EGF and TPA on receptor synthesis were not additive. Furthermore, down-regulation of protein kinase C (the Ca2+/phospholipid-dependent enzyme) by long-term TPA treatment resulted in cells unable to respond to the stimulatory effects of both TPA and EGF on receptor synthesis. Nevertheless, the TPA-pretreated cells were still growth-inhibited by EGF. These results suggest that the stimulatory effect of EGF on receptor synthesis requires protein kinase C, whereas the inhibitory effect of EGF on the proliferation of these cells does not. Although we confirmed that EGF stimulated the incorporation of phosphate into phosphatidylinositol in A431 cells, it failed to do so in the MDA468 cells. Thus, in MDA468 cells, EGF may require protein kinase C for part of its action, but we could not demonstrate an associated activation of phosphatidylinositol turnover by EGF. The exact mechanism of involvement of protein kinase C in EGF action is still not clear.  相似文献   

2.
Platelet-derived growth factor (PDGF) increases the mitogenic activity of epidermal growth factor (EGF) in several cells lines, including BALB/C-3T3. PDGF-treated BALB/C-3T3 cells manifest a reduced capacity to bind 125I-labeled EGF due to a loss of high affinity EGF receptors. Cholera toxin potentiates the ability of PDGF to both decrease EGF binding and initiate mitogenesis. Whether PDGF increases EGF sensitivity via its effects on EGF receptors is not known and requires a more complete understanding of the mechanism by which PDGF decreases EGF binding. 12-O-tetradecanoylphorbol 13-acetate (TPA) also reduces EGF binding in BALB/C-3T3 and other cells, presumably by activating protein kinase C and, consequently, inducing the phosphorylation of EGF receptors at threonine-654. PDGF indirectly activates protein kinase C, and EGF receptors in PDGF-treated WI-38 cells are phosphorylated at threonine-654. Thus, the effects of PDGF on EGF binding may also be mediated by protein kinase C. We investigated this hypothesis by comparing the actions of PDGF and TPA on EGF binding in density-arrested BALB/C-3T3 cells. Both PDGF and TPA caused a rapid, transient, cycloheximide-independent loss of 125I-EGF binding capacity. The actions of both agents were potentiated by cholera toxin. However, whereas TPA allowed EGF binding to recover, PDGF induced a secondary and cycloheximide-dependent loss of binding capacity. Most importantly, PDGF effectively reduced binding in cells refractory to TPA and devoid of detectable protein kinase C activity. These findings indicate that PDGF decreases EGF binding by a mechanism that involves protein synthesis and is distinct from that of TPA.  相似文献   

3.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

4.
The liver tumor promoter, phenobarbital, directly applied to cultured, adult rat hepatocytes at concentrations of greater than 1 mM, decreases cellular surface binding of EGF. This effect of phenobarbital resembles that of 4 beta-phorbol-12 alpha-myristate-13 beta-acetate (TPA) in that both decrease EGF receptor number, but do not affect receptor affinity. The effects of the two tumor promoters differ however, in that only TPA reduces high affinity EGF binding by A431 cells. They also differ in that TPA, but not phenobarbital, causes redistribution of protein kinase C from a soluble to a membranous hepatocyte subcellular fraction. These data indicate that decreased EGF binding is a common hepatocyte response to the tumor promoters, TPA and phenobarbital, but that this response can be mediated by either a TPA-activated, protein kinase C-dependent pathway or by a phenobarbital-sensitive, protein kinase C-independent pathway.  相似文献   

5.
Heterologous regulation of the epidermal growth factor (EGF) receptor by platelet-derived growth factor (PDGF) was studied in FS4 human skin fibroblasts. The addition of PDGF to FS4 cells inhibited high affinity binding of 125I-EGF and stimulated phosphorylation of the EGF receptor. Phosphopeptide analysis by high performance liquid chromatography revealed that PDGF treatment of cells increased phosphorylation at several distinct sites of the EGF receptor. However, PDGF did not stimulate phosphorylation of threonine 654, a residue previously shown to be phosphorylated when protein kinase C is activated. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also stimulated phosphorylation of the same peptides from the EGF receptor as PDGF, and, in addition, induced phosphorylation of threonine 654. TPA inhibited both high and low affinity 125I-EGF binding by these cells. PDGF treatment of cells had no effect on EGF-dependent, tyrosine-specific autophosphorylation of the receptor, whereas TPA treatment was inhibitory. TPA, but not PDGF, stimulated phosphorylation of a Mr = 80,000 protein, known to be a substrate for protein kinase C, even though PDGF appeared to mediate breakdown of phosphoinositides. These data suggest that regulation of EGF receptor function by PDGF and TPA are distinct in these cells, even though some elements of regulation are shared. The results differ from those previously reported for a human lung fibroblast isolate, indicating that cell type-specific differences may exist in metabolism of the EGF receptor.  相似文献   

6.
The ability of staurosporine, a potent inhibitor of protein kinase C, to block certain cellular events initiated by 12-O-tetradecanoylphorbol-13-acetate (TPA) and epidermal growth factor (EGF) was examined. Treatment of MDA468 breast cancer cells with TPA decreases EGF binding to the cell surface and this effect is blocked by pretreatment with staurosporine with an IC50 of 30 nM. Either 10(-9) M EGF or 100 ng/ml TPA stimulated the accumulation of both EGF receptor and TGF-alpha mRNA and staurosporine (50 nM) completely abolished these mRNA accumulations. Staurosporine did not block EGF-stimulated tyrosine phosphorylation of its receptor as measured by immunoblotting with anti-phosphotyrosine antibodies. The ability of staurosporine to block the mRNA responses of either EGF or TPA suggests that these two agents have common signaling pathways and it implies a role for protein kinase C in the control of EGF receptor and TGF-alpha expression.  相似文献   

7.
Tumor promoters cause a variety of effects in cultured cells, at least some of which are thought to result from activation of the Ca2+-phospholipid-stimulated protein kinase C. One action of tumor promoters is the modulation of the binding and phosphorylation of the epidermal growth factor (EGF) receptor in A431 cells. To determine if these compounds act on the EGF receptor by substituting for the endogenous activator of C kinase, diacylglycerol, we compared the effects of the potent tumor promoter 12-O-tetradecanoyl phorbol 13-acetate (TPA) with those of the synthetic diacylglycerol analog 1-oleyl 2-acetyl diglycerol (OADG). When A431 cells were treated with TPA, the subcellular distribution of C kinase activity shifted from a predominantly cytosolic location to a membrane-associated state; OADG also caused the disappearance of cytosolic C kinase activity. The shift in the subcellular distribution of C kinase, caused by TPA or OADG, correlated with changes in binding and phosphorylation of the EGF receptor. OADG, like TPA, caused loss of binding to an apparent high affinity class of receptors, blocked EGF-induced tyrosine phosphorylation of the EGF receptor, and stimulated phosphorylation of the EGF receptor at both serine and threonine residues. No difference between the phosphopeptide maps of receptors from cells treated with OADG or TPA was observed. Thus, it appears that tumor promoters can exert their effects on the EGF receptors by substituting for diacylglycerol, presumably by activating protein kinase C. Further, these results suggest that endogenously produced diacylglycerol may have a role in normal growth regulatory pathways.  相似文献   

8.
Binding of 125I-labelled epidermal growth factor (EGF) to C3H/2K cells and the effect of a tumor promotor, 12-O-tetradecanoyl phorbol-13-acetate (TPA) and of a tumor promotor antagonist, retinoic acid, on the binding was studied. Scatchard plot analysis of the binding showed the presence of two types of binding sites with different affinity to EGF. Treatment of the cells with retinoic acid for 1 h resulted in elevation of the affinity of both sites without changing their number per cell. Prolonged exposure to retinoic acid abrogated this elevation of the affinity and caused cycloheximide-sensitive increase of the number of the binding sites of both types. TPA inhibited binding of EGF to the cells by abolishing the binding to the high affinity sites, whereas retinoic acid, in the presence of TPA, enhanced it by increasing the number of the low affinity sites.  相似文献   

9.
Binding of 125I-labelled epidermal growth factor (EGF) to C3H/2K cells and the effect of a tumor promotor, 12-O-tetradecanoyl phorbol-13-acetate (TPA) and of a tumor promotor antagonist, retinoic acid, on the binding was studied. Scatchard plot analysis of the binding showed the presence of two type of binding sites with different affinity to EGF. Treatment of the cells with retinoic acid for 1 h resulted in elevation of the affinity of both sites without changing their number per cell. Prolonged exposure to retinoic acid abrogated this elevation of the affinity and caused cycloheximide-sensitive increase of the number of the binding sites of both types. TPA inhibited binding of EGF to the cells by abolishing the binding to the high affinity sites, whereas retinoic acid, in the presence of TPA, enhanced it by increasing the number of the low affinity sites.  相似文献   

10.
We have recently reported that a polypeptide mitogen, the embryonal carcinoma-derived growth factor (ECDGF), induces phosphorylation of the epidermal growth factor (EGF) receptor in intact C3H 10T 1/2 mouse fibroblasts with concomittant loss of high affinity EGF binding sites. This phenomenon appears to be mediated through an activation of protein kinase C. Several groups have described an acidic 80,000 dalton protein substrate of protein kinase C. In this paper, we demonstrate that the addition of ECDGF or the phorbol ester TPA to intact C3H 10T 1/2 cells results in the enhanced phosphorylation of this 80 kd protein in vivo. Furthermore, this response is demonstrable in vitro. Thus the addition of ECDGF, the phorbol ester TPA, protein kinase C or phosphoinositidase C to crude membranes prepared from C3H 10T 1/2 cells resulted in the enhanced phosphorylation of this protein. Data obtained by phosphopeptide mapping of the 80 kd protein show that the ECDGF-induced activation of protein kinase C in our membrane preparations is comparable with that obtained in vivo. The availability of an in vitro system in which this response is preserved should now allow a detailed biochemical analysis of the steps between binding of a mitogen to its receptor and the activation of protein kinase C.  相似文献   

11.
Regulation of VL30 gene expression by activators of protein kinase C   总被引:9,自引:0,他引:9  
The mouse genome contains a retrovirus-like sequence, designated VL30, which is expressed at high levels in transformed cells and which can be induced by exogenously supplied epidermal growth factor (EGF). Binding of EGF to the EGF receptor produces changes in intracellular calcium levels and phospholipase activity which indirectly lead to activation of protein kinase C. We treated AKR-2B cells, Swiss 3T3 cells, and the 3T3 variants NR6 (EGF receptorless) and TNR9 (phorbol ester nonresponsive) with various phorbol ester tumor promoters and with the synthetic diacylglycerol sn-1,2-dioctanoylglycerol. Tumor-promoting phorbol esters (e.g. 12-O-tetradecanoyl phorbol acetate (TPA] increased the level of VL30 expression. Stimulation with either TPA or EGF produced a similar time course of VL30 expression. TPA induced VL30 expression in the EGF-receptorless NR6 cell line, indicating that neither EGF ligand-receptor binding nor phosphorylation of the EGF receptor was required for induction of VL30 expression. Protein synthesis was not required for the TPA-mediated increase in VL30 expression, as pretreatment with cycloheximide did not block or reduce the TPA effect. VL30 expression was also stimulated by treatment with sn-1,2-dioctanoylglycerol, an analog of a probable endogenous activator of protein kinase C. These results suggest that activation of protein kinase C plays a direct role in regulating VL30 expression.  相似文献   

12.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

13.
Epidermal growth factor (EGF) stimulated the rapid accumulation of inositol trisphosphate in WB cells, a continuous line of rat hepatic epithelial cells. Since we previously had shown that EGF stimulates EGF receptor synthesis in these cells, we tested whether hormones that stimulate PtdIns(4,5)P2 hydrolysis would increase EGF receptor protein synthesis and mRNA levels. Epinephrine, angiotensin II, and [Arg8]vasopressin activate phospholipase C in WB cells as evidenced by the accumulation of the inositol phosphates, inositol monophosphate, inositol bisphosphate, and inositol trisphosphate. A 3-4-h treatment with each hormone also increased the rate of EGF receptor protein synthesis by 3-6-fold as assessed by immunoprecipitation of EGF receptor from [35S]methionine-labeled cells. Northern blot analyses of WB cell EGF receptor mRNA levels revealed that agents linked to the phosphoinositide signaling system increased receptor mRNA content within 1-2 h. A maximal increase of 3-7-fold was observed after a 3-h exposure to EGF and hormones. The phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), which activates protein kinase C also stimulated EGF receptor synthesis. Pretreatment of WB cells for 18 h with high concentrations of TPA "down-regulated" protein kinase C and blocked TPA-directed EGF receptor mRNA synthesis. In contrast, the effect of EGF on EGF receptor mRNA levels was not significantly decreased by TPA pretreatment. Epinephrine-induced increases in EGF receptor mRNA were reduced from 4- to 2-fold. Similarly, 18 h TPA pretreatment abolished the effect of TPA on EGF receptor protein synthesis but did not affect EGF-dependent EGF receptor protein synthesis. The 18-h TPA pretreatment diminished by 30-50% the induction of receptor protein synthesis by epinephrine or angiotensin II. We conclude that in WB cells EGF receptor synthesis can be regulated by EGF and other hormones that stimulate PtdIns(4,5)P2 hydrolysis. In these cells, EGF receptor synthesis appears to be regulated by several mechanism: one pathway is dependent upon EGF receptor activation and can operate independently of protein kinase C activation; another pathway is correlated with PtdIns(4,5)P2 hydrolysis and is dependent, at least in part, upon protein kinase C activation.  相似文献   

14.
Vitamin K-3 or 12-O-tetradecanoylphorbol 13-acetate (TPA) reduced the binding of epidermal growth factor (EGF) to its receptor by more than 90% in human foreskin fibroblasts. After the equilibration of fibroblasts with [32P]orthophosphate, vitamin K-3 or TPA markedly increased the amount of 32P found in the receptor; the increase was principally due to serine and threonine phosphorylation. By the use of two-dimensional tryptic phosphopeptide mapping, using a synthetic phosphopeptide as a standard, threonine-654 was identified as one of the residues whose phosphorylation state was elevated by vitamin K-3 or TPA. Because of the large amounts of EGF receptor present on A431 human carcinoma cells, these cells were used to study further the relationship between the phosphorylation state of threonine-654, the tyrosine phosphorylation state of the receptor, and the receptor's protein tyrosine kinase activity toward exogenous substrates. Vitamin K-3 and TPA both increased the amount of phosphate on threonine-654 in A431 cells. However, whereas receptor from TPA-treated cells lacked phosphotyrosine, vitamin K-3-treated cells contained receptor with markedly elevated levels of phosphotyrosine. The addition of vitamin K-3, TPA or EGF to intact A431 cells followed by homogenization of the cells and the assay of EGF receptor protein tyrosine kinase activity by the use of a synthetic peptide substrate resulted in marked decreases in apparent receptor kinase activity. Therefore, assuming that the activity measured in the peptide assay reflects the protein tyrosine kinase activity of the receptor in the intact cell, the activity of the EGF receptor kinase cannot be deduced from the amount of phosphotyrosine associated with the receptor.  相似文献   

15.
Human squamous cell carcinoma cells (NA cells) possess a large number of epidermal growth factor (EGF) receptors and their growth is inhibited by EGF. Recently, we isolated a series of variants which escaped EGF-mediated growth inhibition. The variant ER11 cells expressed a decreased level of EGF receptors and grew in an EGF-dependent fashion. Treatment of ER11 cells with EGF resulted in the activation of protein kinase C, which was followed by the enhancement of 80-kDa protein phosphorylation as observed in NA cells. Thus, EGF can activate not only tyrosine kinase but also protein kinase C in both NA and ER11 cells. The EGF-dependent growth stimulation in ER11 cells was inhibited by 12-O-tetradecanoylphorbol 13-acetate (TPA). Exposure of NA and ER11 cells to TPA for 30 h resulted in the down-regulation of protein kinase C. In these protein kinase C-deficient cells, EGF was able to activate autophosphorylation of the EGF receptor. The EGF-activated EGF receptor kinase phosphorylated numerous cellular proteins even in the protein kinase C-deficient cells. However, there were less tyrosine-phosphorylated proteins in ER11 cells than in NA cells. These results suggested that protein kinase C is necessary for the EGF-dependent growth stimulation of ER11 cells and that several tyrosine-phosphorylated proteins commonly observed in both NA and ER11 cells seem essential for cell proliferation.  相似文献   

16.
Addition of epidermal growth factor (EGF) to many cell types activates phospholipase C resulting in increased levels of diacylglycerol and intracellular Ca2+ which may lead to activation of protein kinase C. EGF treatment of cells can also lead to phosphorylation of the EGF receptor at threonine 654 (a protein kinase C phosphorylation site) which appears to attenuate some aspects of receptor signaling. Thus, a feedback loop involving the EGF receptor, phospholipase C, and protein kinase C may regulate EGF receptor function. In this report, the role of phosphorylation of threonine 654 of the EGF receptor in regulation of EGF-stimulated activation of phospholipase C was investigated. NIH-3T3 cells expressing the normal human EGF receptor or expressing EGF receptor in which an alanine residue had been substituted at residue 654 of the receptor were used. Addition of EGF to cells expressing wild-type receptor induced a rapid, but transient, increase in phosphorylation of threonine 654. EGF addition also caused the rapid accumulation of inositol phosphates in these cells. EGF-stimulated accumulation of inositol phosphates was significantly higher in cells expressing Ala-654 receptors compared to control cells. Treatment of cells with 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulated phosphorylation of threonine 654 to a greater degree than EGF, completely inhibited EGF-dependent inositol phosphate accumulation in cells expressing wild-type receptor, but caused only a 20-30% inhibition in Ala-654 expressing cells. EGF stimulated phosphorylation of phospholipase C-gamma on serine and tyrosine residues in cells expressing wild-type of Ala-654 receptors. However, TPA treatment of cells inhibited EGF-induced tyrosine phosphorylation of phospholipase C-gamma only in cells expressing wild-type receptors. Similarly, TPA inhibited tyrosine-specific autophosphorylation of the EGF receptor and tyrosine phosphorylation of several other proteins in wild-type receptor cells, but not in Ala-654 cells. TPA treatment abolished high affinity binding of EGF to cells expressing wild-type receptors, while decreasing the number of high affinity binding sites 20-30% in Ala-654 cells. These data suggest that phosphorylation of threonine 654 can regulate early events in EGF receptor signal transduction such as phosphoinositide turnover, probably through a feedback mechanism involving protein kinase C. Subsequent dephosphorylation of threonine 654 could reactivate the EGF receptor for participation in later signaling events.  相似文献   

17.
Tumor necrosis factor (TNF) caused an inhibition of 125I-labeled epidermal growth factor [( 125I]EGF) binding to its receptors of human amniotic (WISH) cells at 5 min after addition of TNF, which reached a maximal level (60-70% reduction) after 15-30 min and declined thereafter. TNF also induced a translocation of protein kinase C activity from the cytosol to the membrane, which peaked at 45-60 min after addition of TNF and almost returned to basal level at 120 min. Furthermore, prolonged incubation of WISH cells with 12-O-tetradecanoylphorbol 13 acetate (TPA) diminished the TPA effect on the inhibition of EGF binding to the cells due to the desensitization of protein kinase C; however, TNF still reduced the EGF binding to the cells pretreated with TPA for a long time. These results indicate that although TNF causes the translocation of protein kinase C to the membrane, activation of protein kinase C is not required for TNF to induce a decrease in EGF binding to the cells.  相似文献   

18.
Cell surface tyrosine kinase receptors are subject to a rapid activation by their ligand, which is followed by secondary regulatory processes. The IHE2 cell line is a unique model system to study the regulation of EGF binding to EGF receptors after activation of the EGF receptor kinase. IHE2 cells express both a chimeric insulin-EGF receptor kinase (IER) and a kinase-deficient EGF receptor (HER K721A). We have previously reported that IER is an insulin-responsive EGF receptor tyrosine kinase that activates one or several serine/threonine kinases, which in turn phosphorylate(s) the unoccupied HER K721A. In this article we show that insulin through IER activation induces a decrease in 125I-EGF binding to IHE2 cells. Scatchard analysis indicates that, as for TPA, the effect of insulin can be accounted for by a loss of the high affinity binding of EGF to HER K721A. Since this receptor transmodulation persists in protein kinase C downregulated IHE2 cells, it is likely to be due to a mechanism independent of protein kinase C activation. Using an in vitro system of 125I-EGF binding to transmodulated IHE2 membranes, we illustrate that the inhibition of EGF binding induced by IER activation is related to the phosphorylation state of HER K721A. Further, studies with phosphatase 2A, or at a temperature (4 degrees C) where only IER is functional, strongly suggest that the loss of high affinity EGF binding is related to the serine/threonine phosphorylation of HER K721A after IER activation. Our results provide evidence for a "homologous desensitization" of EGF receptor binding after activation of the EGF receptor kinase of the IER receptor.  相似文献   

19.
To test the functional consequence of phosphorylation of the EGF receptor at Thr 654 by protein kinase C, the normal Thr 654 human EGF receptor cDNA or a mutant encoding an Ala 654 were expressed in heterologous cells. In cell lines expressing both the Thr 654 and Ala 654 receptors, functional cell-surface Thr 654 receptors were reduced or were totally lost, but were not degraded, following activation of protein kinase C by phorbol esters (TPA), whereas Ala 654 receptors were unaffected. These data suggest that protein kinase C regulates ligand-independent receptor binding and internalization via phosphorylation of Thr 654 of the EGF holoreceptor. Because EGF induces internalization and degradation of the Ala 654 EGF receptor, at least two independent mechanisms can serve to signal loss of functional EGF receptors.  相似文献   

20.
We investigated the effect of epidermal growth factor (EGF) pretreatment on binding to its own receptor. We found that EGF specifically induces a rapid, reversible, and global change in the affinity of surface EGF receptors. Occupancy of only a few (less than 1%) was sufficient to reduce the affinity of the majority of surface receptors by 10 min and a maximal response required only 5% occupancy. The rate at which EGF receptor affinity decreased was essentially independent of the extent of receptor occupancy and occurred with a t 1/2 between 2-2.5 min. Surface receptors remained in the lower affinity state as long as EGF remained present. Removal of EGF resulted in the restoration of receptor affinity with a t 1/2 of about 20 min. Kinetic analyses revealed that the alteration in apparent affinity was due to changes in both the association and dissociation rate constants as well as an increase in the specific internalization rate of the receptor. Treatment of cells with phorbol esters produced a similar affinity drop, but depletion of intracellular protein kinase C did not affect the affinity change induced by EGF. Thus, phorbol esters and EGF mediate their effects through different pathways. EGF reduced the affinity of its own receptors in a variety of cell types including Chinese hamster ovary cells expressing transfected human EGF receptors. Our observations are consistent with the hypothesis that occupancy of a few receptors on EGF naive cells triggers a global modification/phosphorylation of surface receptors which results in the observed change in affinity. This system is independent of protein kinase C and probably serves to regulate the activity of the EGF receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号