首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Proteoglycans were extracted from the adult human meniscus under dissociative conditions and purified by CsCl-density-gradient centrifugation. The preparations of highest density contained proteoglycan that possessed the ability to interact with hyaluronic acid, was of large subunit size and was composed of chondroitin sulphate, keratan sulphate and sialic acid-containing oligosaccharides. This 'cartilage-like' proteoglycan also exhibited subunit and aggregate structures analogous to those of hyaline-cartilage proteoglycans when examined by electron microscopy. However, the composition of this proteoglycan was more comparable with proteoglycans from immature cartilage than from age-matched cartilage. The preparations from lower density, which were enriched in dermatan sulphate, contained smaller proteoglycan that was not able to interact with hyaluronic acid. This non-aggregating proteoglycan may be structurally distinct from the 'cartilage-like' proteoglycan, which does not contain dermatan sulphate.  相似文献   

2.
Proteoglycans were extracted, in a yield of about 90%, from costal cartilage of young, growing guinea-pigs. Three solvents were used in sequence: 0.4 M guanidine - HCl, pH 5.8, 4 M guanidine - HCl, pH 5.8, and 4 M guanidine - HCl/0.1 M EDTA, pH 5.8. The proteoglycans were purified and fractionated by cesium chloride density gradient ultracentrifugation under associative and dissociative conditions. Gel chromatography on Sepharose 2 B of proteoglycan fractions from associative centrifugations showed the presence of both aggregated and monomer proteoglycans. The ratio of aggregates to monomers was higher in the second extract than in the other two extracts. Dissociative gradient centrifugation gave a similar distribution for proteoglycans from all three extracts. Thus, with decreasing buoyant density there were decreasing ratios of polysaccharide to protein, and of chondroitin sulfate to keratan sulfate. In addition, there was with decreasing density an increasing ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. Amino acid analyses of dissociative fractions were inaccordance with previously published results. On comparing proteoglycan monomers of the three extracts, significant differences were found. Proteoglycans, extracted at low ionic strength, contained lower proportions of protein, keratan sulfate, chondroitin 6-sulfate and basic amino acids than those of the second extract. The proteoglycans of the third extract also differed from those of the other extracts. The results indicate that the proteoglycans of guinea-pig costal cartilage exist as a very polydisperse and heterogenous population of molecules, exhibiting variations in aggregation capacity, molecular size, composition of protein core, degree of substitution of the protein core, as well as variability in the type of polysaccharides substituted.  相似文献   

3.
The structure of the proteoglycans from normal pig nucleus pulposus and relatively normal human annulus fibrosus and nucleus pulposus was investigated in detail and the results were compared with the current structural model of proteoglycans of hyaline cartilage. Like proteoglycans of cartilage, those of intervertebral disc contain keratan sulphate and chondroitin sulphate attached to a protein core; they are able to aggregate to hyaluronic acid; the protein core likewise has three regions, one lacking glycosaminoglycans, another rich in keratan sulphate and a third region rich in chondroitin sulphate. However, disc proteoglycans contain more keratan sulphate and protein and less chondroitin sulphate and are also considerably smaller than cartilage proteoglycans. In proteoglycans of human discs, these differences appeared to be due principally to a shorter region of the core protein bearing the chondroitin sulphate chains, whereas in proteoglycans of pig discs their smaller size and relatively low uronic acid content were due to shorter chondroitin sulphate chains. There were subtle differences between proteoglycans from the nucleus and annulus of human discs. In the latter a higher proportion of proteoglycans was capable of binding to hyaluronate.  相似文献   

4.
The chondroitin sulfate-rich region was cleaved from cartilage proteoglycans of experimental osteoarthritic canine joints to establish whether changes in this region of the molecule contribute to the well-documented increase in the chondroitin sulfate to keratan sulfate ratio in osteoarthritis. Experimental osteoarthritis was induced in eight dogs by severance of the right anterior cruciate ligament, the left joint serving as a control. Proteoglycans were extracted from the femoral cartilage of both joints, isolated as A1 fractions by associative density gradient centrifugation and cleaved with hydroxylamine. The chondroitin sulfate-rich region was isolated by either gel chromatography or dissociative density gradient centrifugation. The chondroitin sulfate-rich region from the proteoglycans of the experimental osteoarthritic joints was slightly larger in hydrodynamic size and had both a higher uronate/protein weight ratio and galactosamine/glucosamine molar ratio than the corresponding control. We conclude that the chondroitin sulfate-rich region of proteoglycans in articular cartilage of experimental osteoarthritic joints is larger and has more chondroitin sulfate than that of proteoglycans of normal cartilage.  相似文献   

5.
Proteoglycans of calf and steer articular cartilage were studied with a view of assessing structure and changes occurring as a result of the aging process. The average reduction in hydrodynamic size noted in steer was associated with a diminution in size of the chondroitin sulfate-rich region of the core protein as well as the chondroitin sulfate chains themselves. By contrast the keratan sulfate-rich region was hydrodynamically larger in steer although the keratan sulfate chains were only slightly longer than in calf. The proteoglycans showed a maturation-related decrease in chondroitin sulfate content (shorter chains, fewer chains, smaller chondroitin sulfate-rich region) and an enrichment in keratan sulfate chains in both the chondroitin sulfate-rich and keratan sulfate-rich regions. Proteoglycans from both age groups contained an oligosaccharide which was recovered mainly from outside of the keratan sulfate-rich region. There were no significant differences in size between keratan sulfate chains recovered from the keratan sulfate-rich region and the chondroitin sulfate-rich region.  相似文献   

6.
Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 X 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 X 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.  相似文献   

7.
Proteoglycans were extracted with 4 M guanidine–HCl from the zone of maturing chondrocytes, the site of endochondral ossification of growing antlers of wapiti (Cervus elaphus). Proteoglycans were isolated by DEAE-Sephacel chromatography and separated by Sepharose CL-4B chromatography into three fractions. Fraction I contained a high molecular mass (>1000 kDa) chondroitin sulfate proteoglycan capable of interacting with hyaluronic acid. Its amino acid composition resembled that of the cartilage proteoglycan, aggrecan. Fraction II contained proteoglycans with intermediate molecular weight which were recognized by monoclonal antibodies specific to chondroitin sulfate and keratan sulfate. Fraction III contained a low molecular mass (<160 kDa) proteoglycan, decorin, with a glucuronate-rich glycosaminoglycan chain.  相似文献   

8.
Full-depth plugs of adult human articular cartilage were cut into serial slices from the articular surface and analysed for their glycosaminoglycan content. The amount of chondroitin sulphate was highest in the mid-zone, whereas keratan sulphate increased progressively through the depth. Proteoglycans were isolated from each layer by extraction with 4M-guanidinium chloride followed by centrifugation in 0.4M-guanidinium chloride/CsCl at a starting density of 1.5 g/ml. The efficiency with which proteoglycans were extracted depended on slice thickness, and extraction was complete only when cartilage from each zone was sectioned at 20 microns or less. When thick sections (250 microns) were extracted, hyaluronic acid was retained in the tissue. Most of the proteoglycans, extracted from each layer under optimum conditions, could interact with hyaluronic acid to form aggregates, although the extent of aggregation was less in the deeper layers. Two pools of proteoglycan were identified in all layers by gel chromatography (Kav. 0.33 and 0.58). The smaller of these was rich in keratan sulphate and protein, and gradually increased in proportion through the cartilage depth. Chondroitin sulphate chain size was constant in all regions. The changes in composition and structure observed were consistent with the current model for hyaline-cartilage proteoglycans and were similar to those observed with increasing age in human articular cartilage.  相似文献   

9.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns.The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows.The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow.The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

10.
Articular cartilage from cow and calf femoral condyles was incubated in Tyrodes solution containing [35S]sulphate for different periods up to 80 min. Glycosaminoglycans from the cartilage tissue and incubation medium were fractionated on Cetylpyridinium chloride and ECTEOLA cellulose microcolumns. The incorporation of [35S]sulphate into all individual fractions of chondroitin sulphate and keratan sulphate was found to be linear from 20 to 80 min incubation time. As a rule the total specific activities of keratan sulphate and chondroitin sulphate were similar for both calves and cows. The proteoglycan material recovered from the medium amounted to about 1% of the tissue dry weight and was found to have a higher chondroitin sulphate: keratan sulphate ratio than the corresponding cartilage tissue for both calf and cow. The solubility profiles for the newly synthesised glycosaminoglycans, obtained from determination of the radioactivity in the individual fractions, were compared with those of glycosaminoglycans already present. These curves indicated that newly synthesised chondroitin sulphate had a higher average molecular size than that present in the tissue whereas the newly synthesised keratan sulphate had a smaller average molecular size. These newly synthesised components were also detected in the proteoglycans recovered from the incubation medium.  相似文献   

11.
Proteoglycans were extracted from normal human articular cartilage of various ages with 4M-guanidinium chloride and were purified and characterized by using preformed linear CsCl density gradients. With advancing age, there was a decrease in high-density proteoglycans of low protein/uronic acid weight ratio and an increase in the proportion of lower-density proteoglycans, richer in keratan sulphate and protein. Proteoglycans of each age were also shown to disaggregate in 4M-guanidinium chloride and at low pH and to reaggregate in the presence of hyaluronic acid and/or low-density fractions. Osteoarthrotic-cartilage extracts had an increased content of higher-density proteoglycans compared with normal cartilage of the same age, and results also suggested that these were not mechanical or enzymic degradation products, but were possibly proteoglycans of an immature nature.  相似文献   

12.
Punch biopsies of bovine hip articular cartilage was sectioned according to depth and the proteoglycans were isolated. The mid-sections of the cartilage contained more proteoglycans than did either the superficial or the deepest portions of the cartilage proteoglycans than did either the superficial or the deepest portions of the cartilage. The most superficial 40 micrometer of the cartilage contained relatively more glucosaminoglycans compared with the remainder of the cartilage. The proteoglycans recovered from the surface 200 micrometer layer contained less chondroitin sulphate, were smaller and almost all of these molecules were able to interact with hyaluronic acid to form aggregates. From about 200 micrometer and down to 1040 micrometer from the surface, the proteoglycans became gradually somewhat smaller, probably owing to decreasing size of the chondroitin sulphate-rich region. The proportion of molecules that were able to interact with the hyaluronic acid was about 90% and remained constant with depth. The proteoglycans from the deepest layer near the cartilage-bone junction contained a large proportion of non-aggregating molecules, and the average size of the proteoglycans was somewhat larger. The alterations of proteoglycan structure observed with increasing depth of the articular cartilage beneath the surface layer (to 200 micrometer) are of the same nature as those observed with increasing age in full-thickness articular cartilage. The articular-cartilage proteoglycans were smaller and had much higher keratan sulphate and protein contents that did molecules isolated from bovine nasal or tracheal cartilage.  相似文献   

13.
A Velasco  J Hidalgo 《Tissue & cell》1988,20(4):567-575
Proteoglycans in the adult rat cornea were demonstrated at the electron microscope level using two approaches: (a) staining with cuprolinic blue dye in the presence of 0.3 MgCl2, and (b) immunocytochemical localization of glycosaminoglycans with monoclonal antibodies and protein A-gold complexes. In the stroma two kinds of cuprolinic blue-induced filaments were morphologically differentiated and characterized according to their sensitivity to enzymatic degradations as keratan sulphate-rich and chondroitin-dermatan sulphate-rich proteoglycans respectively. Both types were mostly associated with collagen fibres, occupying the whole stroma except in certain areas whose significance is discussed. By immunocytochemistry, anterior and posterior regions of the stroma were found to be richer in chondroitin sulphate than the middle part, whereas keratan sulphate showed an homogeneous distribution throughout the stroma. Glycosaminoglycans were also detected in corneal basement membranes, epithelium and endothelium. The latter localizations are discussed in the light of what is known at present about the production of glycosaminoglycans by corneal cells.  相似文献   

14.
Proteoglycans extracted with 4M-guanidinium chloride from pig laryngeal cartilage and bovine nasal septum were purified by density-gradient centrifugation in CsCl under 'associative' followed by 'dissociative' conditions [Hascall & Sajdera (1969) J. Biol. Chem. 244, 2384-2396]. Proteoglycans were then digested exhaustively with testicular hyaluronidase, which removed about 80% of the chondroitin sulphate. The hyaluronidase was purified until no proteolytic activity was detectable under the conditions used for digestion. The resulting 'core' proteins of both species were fractionated by a sequence of gel-chromatographic procedures which gave four major fractions of decreasing hydrodynamic size. Those that on electrophoresis penetrated 5.6% (w/v) polyacrylamide gels migrated as discrete bands whose mobility increased with decreasing hydrodynamic size. The unfractionated 'core' proteins had the same N-terminal amino acids as the intact proteoglycan, suggesting that no peptide bonds had been cleaved during hyaluronidase digestion. Alanine predominated as the N-terminal residue in all the fractions of both species. Fractions were analysed for amino acid, amino sugar, uronic acid and neutral sugar compositions. In pig 'core' proteins, the glutamic acid content increased significantly with hydrodynamic size, but in bovine 'core' proteins this trend was less marked. Significant differences in amino acid composition between fractions suggested that in each species there was more than one variety of proteoglycan. The molar proportions of xylose to serine destroyed on alkaline beta-elimination were equivalent in most fractions, indicating that the serine residues destroyed were attached to the terminal xylose of chondroitin sulphate chains. The ratio of serine residues to threonine residues destroyed on beta-elimination, was similar in all fractions of both species. Since the fractions of smallest hydrodynamic size contained less keratan sulphate than those of larger size, it implies that in the former the keratan sulphate chains were shorter than in the latter.  相似文献   

15.
The proteoglycans of the canine intervertebral disc   总被引:3,自引:0,他引:3  
The high-buoyant-density proteoglycans of the nucleus pulposus and annulus fibrosus of the beagle intervertebral disc have been isolated by CsCl density gradient ultracentrifugation. The sulphated proteoglycans were labelled in vivo with 35SO4, 24 h and 60 days prior to killing. The hydrodynamic size and aggregation of the 24 h, 60 day and resident (from hexuronic acid and hexosamine analysis) proteoglycan subunit populations were determined by Sepharose CL-2B chromatography in the presence or absence of excess hyaluronic acid. The hydrodynamic size of the keratan sulphate-proteoglycan core protein complexes were also determined by Sepharose CL-2B chromatography after chondroitinase ABC digestion of proteoglycans. When initially synthesised (24 h) or after 60 days, the percentage aggregation and hydrodynamic size of the proteoglycans derived from the annulus fibrosus were larger than those present in the nucleus pulposus. Hexosamine, hexuronic and protein determination of the high-buoyant-density fractions showed that the proteoglycans of the nucleus pulposus were richer in chondroitin sulphate than those in the annulus. However there was no difference in Mr of the chondroitin sulphate and keratan sulphate attached to the proteoglycans of the two disc regions, nor were differences detected by HPLC between the proportions of chondroitin 4-sulphate and chondroitin 6-sulphate present in these high-density fractions. In contrast, the low-buoyant-density (1.54 greater than p greater than 1.45) proteoglycan fractions and tissue residues remaining after 4 M GuHCl extraction were found to contain dermatan sulphate, suggesting the presence of a third proteoglycan species possibly associated with the collagen of the fibrocartilagenous matrix.  相似文献   

16.
Summary Monoclonal antibodies specific to chondroitin sulphate (CS-56) and keratan sulphate (AH12) were used to localize proteoglycans in the proximal tibial articular cartilage and growth plate of broiler chickens. There was no CS-56 labelling in the proliferative zone of the growth plate. In contrast, intense labelling with this antibody was observed in the transitional and hypertrophic zones of the growth plate and the articular cartilage. This was confirmed by extracting chondroitin sulphate fractions from different zones of the growth plate and articular cartilage, and examining their antigenicities to CS-56 by ELISA inhibition assay. It was suggested that the maturation of chondrocytes in the growth plate is related to the production of chondroitin sulphate with CS-56 epitope, which may be a prerequisite for normal endochondral bone formation in the chicken tibia. The role of chondroitin sulphate recognized by CS-56 in the articular cartilage is unknown.  相似文献   

17.
Articular-cartilage proteoglycans in aging and osteoarthritis.   总被引:10,自引:5,他引:5       下载免费PDF全文
The composition of macroscopically normal hip articular cartilage obtained from dogs of various ages was studied. Pieces of cartilage with signs of degeneration were studied separately. In normal aging, the extraction yield of proteoglycans decreased; the keratan sulphate content of extracted proteoglycans increased and the chondroitin sulphate content decreased. The extracted proteoglycans were smaller in the older cartilage, mainly owing to a decrease in the chondroitin sulphate-rich region of the proteoglycan monomers. The hyaluronic acid-binding region and the keratan sulphaterich region were increased and the molar concentration of proteoglycan probably increase with increasing age. The degenerated cartilage had higher water content and the proteoglycans, as well as other tissue components, gave higher yields. The proteoglycan monomers from the degenerated cartilage were smaller than those from normal cartilage of the same age, and hence had a smaller chondroitin sulphate-rich region and some of the molecules also appeared to lack the hyaluronic acid-binding region. Increased proteolytic activity may be involved in the process of cartilage degeneration.  相似文献   

18.
Explants of cartilage from tibiae of 11-12 days chick embryos were grown in organ culture. To one group hyaluronidase was added to the medium during the first 2 days of culture; the treated tissue was then cultured in medium without enzyme for a further 4 days. Control explants grown in hyaluronidase-free medium for 6 days grew rapidly in size and the total hexosamine content more than doubled during this time. After exposure to hyaluronidase, much of the hexosamine was lost from treated cartilage and appeared in the culture medium, but it was mostly replaced in the tissue during the subsequent recovery period. Analysis of cartilage and medium showed that net synthesis of hexosamine increased greatly in treated cartilage. The proteoglycans were extracted by two procedures from control and treated cartilage after 2, 4 and 6 days in culture. The hydrodynamic sizes of the purified proteoglycans were compared by gel chromatography and the composition of the gel-chromatographic fractions was determined. The proteoglycans from controls did not change during culture, but after exposure to hyaluronidase the proteoglycans from treated cartilage were of much smaller size and lower chondroitin sulphate content. During recovery, even though new proteoglycans were formed, they were nevertheless of smaller size and lower chondroitin sulphate content than control proteoglycans. They gradually became more like control proteoglycans during recovery from treatment, but even after 4 days they were not yet the same. After 2 days of treatment with the enzyme, the chondroitin sulphate in the cartilage was of shorter chain length than in controls but during recovery after 4 and 6 days in culture, the chain lengths in control and treated cartilage were similar. It is concluded that the proteoglycans formed in embryo cartilage in response to their depletion by enzyme treatment contained fewer chondroitin sulphate chains attached to the protein moiety of proteoglycans. This may have resulted from a failure under stress to glycosylate the protein moiety to the usual extent; alternatively the synthesis of normal proteoglycans of low chondroitin sulphate content may have increased, thus changing the proteoglycan population.  相似文献   

19.
A chondroitin sulphate proteoglycan capable of forming large aggregates with hyaluronic acid was identified in cultures of human glial and glioma cells. The glial- cell- and glioma-cell-derived products were mutually indistinguishable and had some basic properties in common with the analogous chondroitin sulphate proteoglycan of cartilage: hydrodynamic size, dependence on a minimal size of hyaluronic acid for recognition, stabilization of aggregates by link protein, and precipitability with antibodies raised against bovine cartilage chondroitin sulphate proteoglycan. However, they differed in some aspects: lower buoyant density, larger, but fewer, chondroitin sulphate side chains, presence of iduronic acid-containing repeating units, and absence (less than 1%) of keratan sulphate. Apparently the major difference between glial/glioma and cartilage chondroitin sulphate proteoglycans relates to the glycan rather than to the protein moiety of the molecule.  相似文献   

20.
Nuclei pulposi were dissected from lumbar discs of radiologically normal human spines of cadavers aged 17, 20 and 21 years. Proteoglycans were extracted with 4 M guanidine hydrochloride (dissociative conditions) with proteinase inhibitors and isolated as A1 fractions by associative density-gradient centrifugation. Aggregating and non-aggregating proteoglycans were separated by Sepharose 2B chromatography. Both aggregating and non-aggregating proteoglycans contained a keratan sulphate-rich region as isolated by chondroitinase/trypsin/chymotrypsin digestion and Sepharose CL-6B chromatography. Agarose/acrylamide-gel electrophoresis of individual fractions of a Bio-Gel A-50m dissociative-column separation of the aggregating proteoglycans revealed two, well-separated bands: S and F, the slower and faster migrating bands respectively. The non-aggregating proteoglycan fractions were eluted under associative conditions (0.5 M-sodium acetate, pH 6.8) and migrated as a single band in the electrophoretic system. The gel-electrophoretic heterogeneity of the aggregating proteoglycans was still evident after hydroxylamine fragmentation and removal of the hyaluronate-binding portion of the molecule. Dissociative density-gradient centrifugation of the aggregating proteoglycans partially separated the Band-S proteoglycans from the Band-F population. Subsequent dissociative chromatography of the high-buoyant-density Band F proteoglycans permitted discrimination of this band into two gel-electrophoresis-distinguishable populations (Bands F-1 and F-2). Enzyme-linked immunosorbent assays with a monoclonal antibody that recognized keratan sulphate demonstrated that the D1 fraction containing the Band F-1 proteoglycans was enriched in keratan sulphate compared with the total aggregating or non-aggregating pool of proteoglycans. The proteoglycans of young adult nucleus pulposus could then be ascribed to one of four structurally and/or electrophoretically distinct populations: (1) the non-aggregating population, which comprised about 70% of the total extractable proteoglycans; (2) the aggregating pool, comprising: (a) Band F-1 proteoglycans, which had a relatively large hydrodynamic size, uronate/protein weight ratio, were enriched in keratan sulphate and had a high buoyant density; (b) Band S proteoglycans, which migrated slower in agarose/acrylamide gels, had a smaller hydrodynamic size, lower buoyant density and a lower uronate/protein ratio than the Band F-1 population; (c) Band F-2 proteoglycans, which were lower in buoyant density, smaller in hydrodynamic size and slightly faster in electrophoretic mobility than the Band F-1 proteoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号