共查询到20条相似文献,搜索用时 15 毫秒
1.
Christopher P. Vellano Nicole E. Brown Joe B. Blumer John R. Hepler 《The Journal of biological chemistry》2013,288(5):3620-3631
Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates heterotrimeric G protein and H-Ras signaling pathways. RGS14 possesses an RGS domain that binds active Gαi/o-GTP subunits to promote GTP hydrolysis and a G protein regulatory (GPR) motif that selectively binds inactive Gαi1/3-GDP subunits to form a stable heterodimer at cellular membranes. RGS14 also contains two tandem Ras/Rap binding domains (RBDs) that bind H-Ras. Here we show that RGS14 preferentially binds activated H-Ras-GTP in live cells to enhance H-Ras cellular actions and that this interaction is regulated by inactive Gαi1-GDP and G protein-coupled receptors (GPCRs). Using bioluminescence resonance energy transfer (BRET) in live cells, we show that RGS14-Luciferase and active H-Ras(G/V)-Venus exhibit a robust BRET signal at the plasma membrane that is markedly enhanced in the presence of inactive Gαi1-GDP but not active Gαi1-GTP. Active H-Ras(G/V) interacts with a native RGS14·Gαi1 complex in brain lysates, and co-expression of RGS14 and Gαi1 in PC12 cells greatly enhances H-Ras(G/V) stimulatory effects on neurite outgrowth. Stimulation of the Gαi-linked α2A-adrenergic receptor induces a conformational change in the Gαi1·RGS14·H-Ras(G/V) complex that may allow subsequent regulation of the complex by other binding partners. Together, these findings indicate that inactive Gαi1-GDP enhances the affinity of RGS14 for H-Ras-GTP in live cells, resulting in a ternary signaling complex that is further regulated by GPCRs. 相似文献
2.
Veronica G. Taylor Paige A. Bommarito John J. G. Tesmer 《The Journal of biological chemistry》2016,291(10):5138-5145
Regulator of G protein signaling (RGS) proteins interact with activated Gα subunits via their RGS domains and accelerate the hydrolysis of GTP. Although the R4 subfamily of RGS proteins generally accepts both Gαi/o and Gαq/11 subunits as substrates, the R7 and R12 subfamilies select against Gαq/11. In contrast, only one RGS protein, RGS2, is known to be selective for Gαq/11. The molecular basis for this selectivity is not clear. Previously, the crystal structure of RGS2 in complex with Gαq revealed a non-canonical interaction that could be due to interfacial differences imposed by RGS2, the Gα subunit, or both. To resolve this ambiguity, the 2.6 Å crystal structure of RGS8, an R4 subfamily member, was determined in complex with Gαq. RGS8 adopts the same pose on Gαq as it does when bound to Gαi3, indicating that the non-canonical interaction of RGS2 with Gαq is due to unique features of RGS2. Based on the RGS8-Gαq structure, residues in RGS8 that contact a unique α-helical domain loop of Gαq were converted to those typically found in R12 subfamily members, and the reverse substitutions were introduced into RGS10, an R12 subfamily member. Although these substitutions perturbed their ability to stimulate GTP hydrolysis, they did not reverse selectivity. Instead, selectivity for Gαq seems more likely determined by whether strong contacts can be maintained between α6 of the RGS domain and Switch III of Gαq, regions of high sequence and conformational diversity in both protein families. 相似文献
3.
Mark R. Nance Barry Kreutz Valerie M. Tesmer Rachel Sterne-Marr Tohru Kozasa John J.G. Tesmer 《Structure (London, England : 1993)》2013,21(3):438-448
- Download : Download high-res image (286KB)
- Download : Download full-size image
4.
Shu-Jing Li Ya Li Shi-chao Cui Yao Qi Jing-Jing Zhao Xiao-Yan Liu Ping Xu Xian-Hua Chen 《PloS one》2013,8(8)
Regulator of G protein signaling 4 (RGS4) is a critical modulator of G protein-coupled receptor (GPCR)-mediated signaling and plays important roles in many neural process and diseases. Particularly, drug-induced alteration in RGS4 protein levels is associated with acute and chronic effects of drugs of abuse. However, the precise mechanism underlying the regulation of RGS4 expression is largely unknown. Here, we demonstrated that the expression of RGS4 gene was subject to regulation by alternative splicing of the exon 6. Transformer-2β (Tra2β), an important splicing factor, bound to RGS4 mRNA and increased the relative level of RGS4-1 mRNA isoform by enhancing the inclusion of exon 6. Meanwhile, Tra2β increased the expression of full-length RGS4 protein. In rat brain, Tra2β was co-localized with RGS4 in multiple opioid action-related brain regions. In addition, the acute and chronic morphine treatment induced alteration in the expression level of Tra2β in rat locus coerulus (LC) in parallel to that of RGS4 proteins. It suggests that induction of this splicing factor may contribute to the change of RGS4 level elicited by morphine. Taken together, the results provide the evidence demonstrating the function of Tra2β as a new mediator in opioid-induced signaling pathway via regulating RGS4 expression. 相似文献
5.
Adam J. Kimple Meera Soundararajan Stephanie Q. Hutsell Annette K. Roos Daniel J. Urban Vincent Setola Brenda R. S. Temple Bryan L. Roth Stefan Knapp Francis S. Willard David P. Siderovski 《The Journal of biological chemistry》2009,284(29):19402-19411
“Regulator of G-protein signaling” (RGS) proteins facilitate the termination of G protein-coupled receptor (GPCR) signaling via their ability to increase the intrinsic GTP hydrolysis rate of Gα subunits (known as GTPase-accelerating protein or “GAP” activity). RGS2 is unique in its in vitro potency and selectivity as a GAP for Gαq subunits. As many vasoconstrictive hormones signal via Gq heterotrimer-coupled receptors, it is perhaps not surprising that RGS2-deficient mice exhibit constitutive hypertension. However, to date the particular structural features within RGS2 determining its selectivity for Gαq over Gαi/o substrates have not been completely characterized. Here, we examine a trio of point mutations to RGS2 that elicits Gαi-directed binding and GAP activities without perturbing its association with Gαq. Using x-ray crystallography, we determined a model of the triple mutant RGS2 in complex with a transition state mimetic form of Gαi at 2.8-Å resolution. Structural comparison with unliganded, wild type RGS2 and of other RGS domain/Gα complexes highlighted the roles of these residues in wild type RGS2 that weaken Gαi subunit association. Moreover, these three amino acids are seen to be evolutionarily conserved among organisms with modern cardiovascular systems, suggesting that RGS2 arose from the R4-subfamily of RGS proteins to have specialized activity as a potent and selective Gαq GAP that modulates cardiovascular function.G protein-coupled receptors (GPCRs)4 form an interface between extracellular and intracellular physiology, as they convert hormonal signals into changes in intracellular metabolism and ultimately cell phenotype and function (1–3). GPCRs are coupled to their underlying second messenger systems by heterotrimeric guanine nucleotide-binding protein (“G-proteins”) composed of three subunits: Gα, Gβ, and Gγ. Four general classes of Gα subunits have been defined based on functional couplings (in the GTP-bound state) to various effector proteins. Gs subfamily Gα subunits are stimulatory to membrane-bound adenylyl cyclases that generate the second messenger 3′,5′-cyclic adenosine monophosphate (cAMP); conversely, Gi subfamily Gα subunits are generally inhibitory to adenylyl cyclases (4). G12/13 subfamily Gα subunits activate the small G-protein RhoA through stimulation of the GEF subfamily of RGS proteins, namely p115-RhoGEF, LARG, and PDZ-RhoGEF (5). Gq subfamily Gα subunits are potent activators of phospholipase-Cβ enzymes that generate the second messengers diacylglycerol and inositol triphosphate (6); more recently, two additional Gαq effector proteins have been described: the receptor kinase GRK2 and the RhoA nucleotide exchange factor p63RhoGEF (7, 8).The duration of GPCR signaling is controlled by the time Gα remains bound to GTP before its hydrolysis to GDP. RGS proteins are key modulators of GPCR signaling by virtue of their ability to accelerate the intrinsic GTP hydrolysis activity of Gα subunits (reviewed in Refs. 9 and 10). RGS2/G0S8, one of the first mammalian RGS proteins identified (11) and member of the R4-subfamily (10), has a critical role in the maintenance of normostatic blood pressure both in mouse models (12, 13) and in humans (14, 15); additionally, Rgs2-deficient mice exhibit impaired aggression and increased anxiety (16, 17), behavioral phenotypes with potential human clinical correlates (18, 19).Although many RGS proteins are promiscuous and thus act on multiple Gα substrates in vitro (e.g. Ref. 20), RGS2 exhibits exquisite specificity for Gαq in biochemical binding assays and single turnover GTPase acceleration assays (20, 21). Consistent with this in vitro selectivity,5 mice deficient in RGS2 uniquely exhibit constitutive hypertension and prolonged responses to vasoconstrictors, as would be expected upon loss of a potent negative regulator of Gαq that mediates signaling from various vasoconstrictive hormones such as angiotensin II, endothelin, thrombin, norepinephrine, and vasopressin (22). In addition, RGS2-deficient mice respond to sustained pressure overload with an accelerated time course of maladaptive cardiac remodeling (23), a pathophysiological response that evokes myocardial hypertrophy known to be critically dependent on Gαq signaling (24, 25).To gain insight into the structural basis of the unique Gα substrate selectivity exhibited by RGS2, a series of point mutants in RGS2 were evaluated that enable this protein to bind and accelerate GTP hydrolysis by Gαi; we subsequently delineated the structural determinants of the Gαi/mutant RGS2 interaction using x-ray crystallography. Three key positions, first identified by Heximer and colleagues (21) and highlighted in our structural studies as key determinants of RGS2 substrate selection, were also found to be conserved throughout the evolution of the RGS2 protein in a manner suggestive of specialization toward cardiovascular signaling modulation. 相似文献
6.
《Molecular cell》2014,53(4):663-671
- Download : Download high-res image (85KB)
- Download : Download full-size image
7.
James D. Londino Dexter Gulick Jeffrey S. Isenberg Rama K. Mallampalli 《The Journal of biological chemistry》2015,290(52):31113-31125
Signal regulatory protein α (SIRPα) is a membrane glycoprotein immunoreceptor abundant in cells of monocyte lineage. SIRPα ligation by a broadly expressed transmembrane protein, CD47, results in phosphorylation of the cytoplasmic immunoreceptor tyrosine-based inhibitory motifs, resulting in the inhibition of NF-κB signaling in macrophages. Here we observed that proteolysis of SIRPα during inflammation is regulated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), resulting in the generation of a membrane-associated cleavage fragment in both THP-1 monocytes and human lung epithelia. We mapped a charge-dependent putative cleavage site near the membrane-proximal domain necessary for ADAM10-mediated cleavage. In addition, a secondary proteolytic cleavage within the membrane-associated SIRPα fragment by γ-secretase was identified. Ectopic expression of a SIRPα mutant plasmid encoding a proteolytically resistant form in HeLa cells inhibited activation of the NF-κB pathway and suppressed STAT1 phosphorylation in response to TNFα to a greater extent than expression of wild-type SIRPα. Conversely, overexpression of plasmids encoding the proteolytically cleaved SIRPα fragments in cells resulted in enhanced STAT-1 and NF-κB pathway activation. Thus, the data suggest that combinatorial actions of ADAM10 and γ-secretase on SIRPα cleavage promote inflammatory signaling. 相似文献
8.
William M. Mahoney Jr Jagadambika Gunaje Guenter Daum Xiu Rong Dong Mark W. Majesky 《PloS one》2013,8(4)
Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases. 相似文献
9.
Integrin-mediated phagocytosis, an important physiological activity undertaken by professional phagocytes, requires bidirectional signalling to/from αMβ2 integrin and involves Rap1 and Rho GTPases. The action of Rap1 and the cytoskeletal protein talin in activating αMβ2 integrins, in a RIAM-independent manner, has been previously shown to be critical during phagocytosis in mammalian phagocytes. However, the events downstream of Rap1 are not clearly understood. Our data demonstrate that one potential Rap1 effector, Regulator of G-Protein Signalling-14 (RGS14), is involved in activating αMβ2. Exogenous expression of RGS14 in COS-7 cells expressing αMβ2 results in increased binding of C3bi-opsonised sheep red blood cells. Consistent with this, knock-down of RGS14 in J774.A1 macrophages results in decreased association with C3bi-opsonised sheep red blood cells. Regulation of αMβ2 function occurs through the R333 residue of the RGS14 Ras/Rap binding domain (RBD) and the F754 residue of β2, residues previously shown to be involved in binding of H-Ras and talin1 head binding prior to αMβ2 activation, respectively. Surprisingly, overexpression of talin2 or RAPL had no effect on αMβ2 regulation. Our results establish for the first time a role for RGS14 in the mechanism of Rap1/talin1 activation of αMβ2 during phagocytosis. 相似文献
10.
Alyson C. Howlett Amy J. Gray Jesse M. Hunter Barry M. Willardson 《The Journal of biological chemistry》2009,284(24):16386-16399
The G protein βγ subunit dimer (Gβγ) and the Gβ5/regulator of G protein signaling (RGS) dimer play fundamental roles in propagating and regulating G protein pathways, respectively. How these complexes form dimers when the individual subunits are unstable is a question that has remained unaddressed for many years. In the case of Gβγ, recent studies have shown that phosducin-like protein 1 (PhLP1) works as a co-chaperone with the cytosolic chaperonin complex (CCT) to fold Gβ and mediate its interaction with Gγ. However, it is not known what fraction of the many Gβγ combinations is assembled this way or whether chaperones influence the specificity of Gβγ dimer formation. Moreover, the mechanism of Gβ5-RGS assembly has yet to be assessed experimentally. The current study was undertaken to directly address these issues. The data show that PhLP1 plays a vital role in the assembly of Gγ2 with all four Gβ1–4 subunits and in the assembly of Gβ2 with all twelve Gγ subunits, without affecting the specificity of the Gβγ interactions. The results also show that Gβ5-RGS7 assembly is dependent on CCT and PhLP1, but the apparent mechanism is different from that of Gβγ. PhLP1 seems to stabilize the interaction of Gβ5 with CCT until Gβ5 is folded, after which it is released to allow Gβ5 to interact with RGS7. These findings point to a general role for PhLP1 in the assembly of all Gβγ combinations and suggest a CCT-dependent mechanism for Gβ5-RGS7 assembly that utilizes the co-chaperone activity of PhLP1 in a unique way.Eukaryotic cells utilize receptors coupled to heterotrimeric GTP-binding proteins (G proteins)3 to mediate a vast array of responses ranging from nutrient-induced migration of single-celled organisms to neurotransmitter-regulated neuronal activity in the human brain (1). Ligand binding to a G protein-coupled receptor (GPCR) initiates GTP exchange on the G protein heterotrimer (composed of Gα, Gβ, and Gγ subunits), which in turn causes the release of Gα-GTP from the Gβγ dimer (2–4). Both Gα-GTP and Gβγ propagate and amplify the signal by interacting with effector enzymes and ion channels (1, 5). The duration and amplitude of the signal is dictated by receptor phosphorylation coupled with arrestin binding and internalization (6) and by regulators of G protein signaling (RGS) proteins, which serve as GTPase-activating proteins for the GTP-bound Gα subunit (7, 8). The G protein signaling cycle is reset as the inactive Gα-GDP reassembles with the Gβγ dimer and Gαβγ re-associates with the GPCR (5).To fulfill its essential role in signaling, the G protein heterotrimer must be assembled post-translationally from its nascent polypeptides. Significant progress has been made recently regarding the mechanism by which this process occurs. It has been clear for some time that the Gβγ dimer must assemble first, followed by subsequent association of Gα with Gβγ (9). What has not been clear was how Gβγ assembly would occur given the fact that neither Gβ nor Gγ is structurally stable without the other. An important breakthrough was the finding that phosducin-like protein 1 (PhLP1) functions as a co-chaperone with the chaperonin containing tailless complex polypeptide 1 (CCT) in the folding of nascent Gβ and its association with Gγ (10–15). CCT is an important chaperone that assists in the folding of actin and tubulin and many other cytosolic proteins, including many β propeller proteins like Gβ (16). PhLP1 has been known for some time to interact with Gβγ and was initially believed to inhibit Gβγ function (17). However, several recent studies have demonstrated that PhLP1 and CCT work together in a highly orchestrated manner to form the Gβγ dimer (10–15).Studies on the mechanism of PhLP1-mediated Gβγ assembly have focused on the most common dimer Gβ1γ2 (10, 13, 14), leaving open questions about the role of PhLP1 in the assembly of the other Gβγ combinations. These are important considerations given that humans possess 5 Gβ genes and 12 Gγ genes with some important splice variants (18, 19), resulting in more than 60 possible combinations of Gβγ dimers. Gβ1–4 share between 80 and 90% sequence identity and are broadly expressed (18, 19). Gβ5, the more atypical isoform, shares only ∼53% identity with Gβ1, carries a longer N-terminal domain, and is only expressed in the central nervous system and retina (20). The Gγ protein family is more heterogeneous than the Gβ family. The sequence identity of the 12 Gγ isoforms extends from 10 to 70% (21), and the Gγ family can be separated into 5 subfamilies (21–23). All Gγ proteins carry C-terminal isoprenyl modifications, which contribute to their association with the cell membrane, GPCRs, Gαs, and effectors (9). Subfamily I Gγ isoforms are post-translationally farnesylated, whereas all others are geranylgeranylated (22, 24).There is some inherent selectivity in the assembly of different Gβγ combinations, but in general Gβ1–4 can form dimers with most Gγ subunits (25). The physiological purpose of this large number of Gβγ combinations has intrigued researchers in the field for many years, and a large body of research indicates that GPCRs and effectors couple to a preferred subset of Gβγ combinations based somewhat on specific sequence complementarity, but even more so on cellular expression patterns, subcellular localization, and post-translational modifications (18).In contrast to Gβ1–4, Gβ5 does not interact with Gγ subunits in vivo, but it instead forms irreversible dimers with RGS proteins of the R7 family, which includes RGS proteins 6, 7, 9, and 11 (26). All R7 family proteins contain an N-terminal DEP (disheveled, Egl-10, pleckstrin) domain, a central Gγ-like (GGL) domain, and a C-terminal RGS domain (8, 26). The DEP domain interacts with the membrane anchoring/nuclear shuttling R7-binding protein, and the GGL domain binds to Gβ5 in a manner similar to other Gβγ associations (27, 28). Like Gβγs, Gβ5 and R7 RGS proteins form obligate dimers required for their mutual stability (26). Without their partner, Gβ5 and R7 RGS proteins are rapidly degraded in cells (26, 29). Gβ5-R7 RGS complexes act as important GTPase-accelerating proteins for Gi/oα and Gqα subunits in neuronal cells and some immune cells (26).It has been recently shown that all Gβ isoforms are able to interact with the CCT complex, but to varying degrees (15). Gβ4 and Gβ1 bind CCT better than Gβ2 and Gβ3, whereas Gβ5 binds CCT poorly (15). These results suggest that Gβ1 and Gβ4 might be more dependent on PhLP1 than the other Gβs, given the co-chaperone role of PhLP1 with CCT in Gβ1γ2 assembly. However, another report has indicated that Gγ2 assembly with Gβ1 and Gβ2 is more PhLP1-dependent than with Gβ3 and Gβ4 (30). Thus, it is not clear from current information whether PhLP1 and CCT participate in assembly of all Gβγ combinations or whether they contribute to the specificity of Gβγ dimer formation, nor is it clear whether they or other chaperones are involved in Gβ5-R7 RGS dimer formation. This report was designed to address these issues. 相似文献
11.
Jeffrey L. Waugh Jeremy Celver Meenakshi Sharma Robert L. Dufresne Dimitra Terzi S. Craig Risch William G. Fairbrother Rachael L. Neve John P. Kane Mary J. Malloy Clive R. Pullinger Harvest F. Gu Christos Tsatsanis Steven P. Hamilton Stephen J. Gold Venetia Zachariou Abraham Kovoor 《PloS one》2011,6(11)
12.
Karim Melliti Ulises Meza Rory Fisher Brett Adams 《The Journal of general physiology》1999,113(1):97-110
Regulators of G protein signaling (RGS) proteins bind to the α subunits of certain heterotrimeric G proteins and greatly enhance their rate of GTP hydrolysis, thereby determining the time course of interactions among Gα, Gβγ, and their effectors. Voltage-gated N-type Ca channels mediate neurosecretion, and these Ca channels are powerfully inhibited by G proteins. To determine whether RGS proteins could influence Ca channel function, we recorded the activity of N-type Ca channels coexpressed in human embryonic kidney (HEK293) cells with G protein–coupled muscarinic (m2) receptors and various RGS proteins. Coexpression of full-length RGS3T, RGS3, or RGS8 significantly attenuated the magnitude of receptor-mediated Ca channel inhibition. In control cells expressing α1B, α2, and β3 Ca channel subunits and m2 receptors, carbachol (1 μM) inhibited whole-cell currents by ∼80% compared with only ∼55% inhibition in cells also expressing exogenous RGS protein. A similar effect was produced by expression of the conserved core domain of RGS8. The attenuation of Ca current inhibition resulted primarily from a shift in the steady state dose–response relationship to higher agonist concentrations, with the EC50 for carbachol inhibition being ∼18 nM in control cells vs. ∼150 nM in RGS-expressing cells. The kinetics of Ca channel inhibition were also modified by RGS. Thus, in cells expressing RGS3T, the decay of prepulse facilitation was slower, and recovery of Ca channels from inhibition after agonist removal was faster than in control cells. The effects of RGS proteins on Ca channel modulation can be explained by their ability to act as GTPase-accelerating proteins for some Gα subunits. These results suggest that RGS proteins may play important roles in shaping the magnitude and kinetics of physiological events, such as neurosecretion, that involve G protein–modulated Ca channels. 相似文献
13.
Ryouhei Tsutsumi Yuko Fukata Jun Noritake Tsuyoshi Iwanaga Franck Perez Masaki Fukata 《Molecular and cellular biology》2009,29(2):435-447
The heterotrimeric G protein α subunit (Gα) is targeted to the cytoplasmic face of the plasma membrane through reversible lipid palmitoylation and relays signals from G-protein-coupled receptors (GPCRs) to its effectors. By screening 23 DHHC motif (Asp-His-His-Cys) palmitoyl acyl-transferases, we identified DHHC3 and DHHC7 as Gα palmitoylating enzymes. DHHC3 and DHHC7 robustly palmitoylated Gαq, Gαs, and Gαi2 in HEK293T cells. Knockdown of DHHC3 and DHHC7 decreased Gαq/11 palmitoylation and relocalized it from the plasma membrane into the cytoplasm. Photoconversion analysis revealed that Gαq rapidly shuttles between the plasma membrane and the Golgi apparatus, where DHHC3 specifically localizes. Fluorescence recovery after photobleaching studies showed that DHHC3 and DHHC7 are necessary for this continuous Gαq shuttling. Furthermore, DHHC3 and DHHC7 knockdown blocked the α1A-adrenergic receptor/Gαq/11-mediated signaling pathway. Together, our findings revealed that DHHC3 and DHHC7 regulate GPCR-mediated signal transduction by controlling Gα localization to the plasma membrane.G-protein-coupled receptors (GPCRs) form the largest family of cell surface receptors, consisting of more than 700 members in humans. GPCRs respond to a variety of extracellular signals, including hormones and neurotransmitters, and are involved in various physiologic processes, such as smooth muscle contraction and synaptic transmission (20, 25). Heterotrimeric G proteins, composed of α, β, and γ subunits, transduce signals from GPCRs to their effectors and play a central role in the GPCR signaling pathway (13, 21, 24, 32). Although the Gα subunit seems to localize stably at the cytosolic face of the plasma membrane (PM), a recent report suggested that Gαo, a Gα isoform, shuttles rapidly between the PM and intracellular membranes (2). The PM targeting of Gα requires both interaction with the Gβγ complex and subsequent lipid palmitoylation of Gα (22). Thus, palmitoylation of Gα is a critical determinant of membrane targeting of the heterotrimer Gαβγ.Protein palmitoylation is a common posttranslational modification with lipid palmitate and regulates protein trafficking and function (7, 18). Gα is a classic and representative palmitoyl substrate (19, 38), and recent studies revealed that protein palmitoylation modifies virtually almost all the components of G-protein signaling, including GPCRs, Gα subunits, several members of the RGS (regulators of G-protein signaling) family of GTPase-activating proteins, GPCR kinase GRK6, and some small GTPases (7, 33). This common lipid modification plays an important role in compartmentalizing G-protein signaling to the specific microdomain, such as membrane caveolae and lipid raft (26). The palmitoyl thioester bond is relatively labile, and palmitates on substrates turn over rapidly, allowing proteins to shuttle between the cytoplasm/intracellular organelles and the PM (2, 3, 27). For example, binding of isoproterenol to the β-adrenergic receptor markedly accelerates the depalmitoylation of the associated Gαs, shifting Gαs to the cytoplasm (37). This receptor activation-induced depalmitoylation was also observed in a major postsynaptic PSD-95 scaffold, which anchors the AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid)-type glutamate receptor at the excitatory postsynapse through stargazin (6). On glutamate receptor activation, accelerated depalmitoylation of PSD-95 dissociates PSD-95 from postsynaptic sites and causes AMPA receptor endocytosis (6). Thus, palmitate turnover on Gαs and PSD-95 is accelerated by receptor activation, contributing to downregulation of the signaling pathway. However, the enzymes that add palmitate to proteins (palmitoyl-acyl transferases [PATs]) and those that cleave the thioester bond (palmitoyl-protein thioesterases) were long elusive.Recent genetic studies in Saccharomyces cerevisiae identified Erf2/Erf4 (1, 40) and Akr1 (29) as PATs for yeast Ras and yeast casein kinase 2, respectively. Erf2 and Akr1 have four- to six-pass transmembrane domains and share a common domain, referred to as a DHHC domain, a cysteine-rich domain with a conserved Asp-His-His-Cys signature motif. Because the DHHC domain is essential for the PAT activity, we isolated 23 mammalian DHHC domain-containing proteins (DHHC proteins) and developed a systematic screening method to identify the specific enzyme-substrate pairs (11, 12): DHHC2, -3, -7, and -15 for PSD-95 (11); DHHC21 for endothelial NO synthase (10); and DHHC3 and -7 for GABAA receptor γ2 subunit (9). Several other groups also reported that DHHC9 with GCP16 mediates palmitoylation toward H- and N-Ras (36) and that DHHC17, also known as HIP14, palmitoylates several neuronal proteins: huntingtin (14), SNAP-25, and CSP (14, 23, 35). However, the existence of PATs for Gα has been controversial because spontaneous palmitoylation of Gα could occur in vitro (4).In this study, we screened the 23 DHHC clones to examine which DHHC proteins can palmitoylate Gα. We found that DHHC3 and -7 specifically and robustly palmitoylate Gα at the Golgi apparatus. Inhibition of DHHC3 and -7 reduces Gαq/11 palmitoylation levels and delocalizes it from the PM to the cytoplasm in HeLa cells and primary hippocampal neurons. Also, DHHC3 and -7 are necessary for the continuous Gαq shuttling between the Golgi apparatus and the PM. Finally, blocking DHHC3 and -7 inhibits the α1A-adrenergic receptor [α1A-AR]/Gαq-mediated signaling pathway, indicating that DHHC3 and -7 play an essential role in GPCR signaling by regulating Gα localization. 相似文献
14.
Mohammed Akli Ayoub Marjorie Damian Christian Gespach Eric Ferrandis Olivier Lavergne Olivier De Wever Jean-Louis Ban��res Jean-Philippe Pin Gr��goire Pierre Pr��vost 《The Journal of biological chemistry》2009,284(42):29136-29145
The simultaneous activation of many distinct G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play a major role in various pathological conditions. Pan-inhibition of GPCR signaling by small molecules thus represents a novel strategy to treat various diseases. To better understand such therapeutic approach, we have characterized the biomolecular target of BIM-46187, a small molecule pan-inhibitor of GPCR signaling. Combining bioluminescence and fluorescence resonance energy transfer techniques in living cells as well as in reconstituted receptor-G protein complexes, we observed that, by direct binding to the Gα subunit, BIM-46187 prevents the conformational changes of the receptor-G protein complex associated with GPCR activation. Such a binding prevents the proper interaction of receptors with the G protein heterotrimer and inhibits the agonist-promoted GDP/GTP exchange. These observations bring further evidence that inhibiting G protein activation through direct binding to the Gα subunit is feasible and should constitute a new strategy for therapeutic intervention.G protein-coupled receptors (GPCRs)3 represent the largest superfamily of signaling proteins with a very high impact on drug discovery (1). Approximately 30% of the current drug targets are indeed GPCRs and these latter are involved in all major disease areas (2). The classical drug discovery process selects and optimizes compounds that interact selectively with a specific receptor (1), but recent reports show that certain critical conditions such as cancer (3) or pain (4) are driven by the concomitant activation of many different GPCRs (5). Novel therapeutic strategies could therefore emerge from the simultaneous blockade of the various GPCRs involved in such pathologies. The GPCR signaling downstream cascade triggers several protein/protein interactions that may be blocked or modulated by small molecules (6). Such protein/protein interactions involve the GPCR transmembrane domain and the heterotrimeric G protein complex, composed of an α subunit (Gα) and a βγ dimer (Gβγ), which interact sequentially with several partners (e.g. guanine nucleotides, effectors, and regulatory proteins) (7). This offers multiple possibilities to develop small molecules controlling heterotrimeric G protein signaling (6, 8, 9). For example, Higashijima et al. (10, 11) showed that Mastoparan, a peptide toxin from wasp venom, directly acts on G proteins to mimic the role played by the activated receptors. The anti-helminthic drug Suramin and some analogs represent a second class of compounds that directly interact with G proteins and interfere with nucleotide exchange (12–14). Small molecules modulating regulator of G protein signaling proteins have also been proposed for drug development (15). More recently, Bonacci et al. (16) have described fluorescein analogs that display central pain relief activity via binding to the Gβγ subunits. From our own group, we have reported in vivo inhibition of the GPCR signaling pathway by two closely related imidazopirazine containing small molecules, displaying potent antiproliferative activity (BIM-46174) (17) and potent pain relief activity (BIM-46187) (18).Here, we examined the molecular mechanisms underlying the biological activity of BIM-46187 with the various constituents of the GPCR signaling pathways. We report that this small molecule prevents GPCR-G protein signaling through a selective binding to the Gα protein subunit. Our results support the concept of targeting and inhibiting the heterotrimeric G protein complex as an approach to treat certain pathologies involving simultaneous activation of several GPCRs and/or heterotrimeric G proteins. 相似文献
15.
Atsuro Oishi Noriko Makita Junichiro Sato Taroh Iiri 《The Journal of biological chemistry》2012,287(46):38705-38715
RhoA plays a pivotal role in regulating cell shape and movement. Protein kinase A (PKA) inhibits RhoA signaling and thereby induces a characteristic morphological change, cell rounding. This has been considered to result from cAMP-induced phosphorylation of RhoA at Ser-188, which induces a stable RhoA-GTP-RhoGDIα complex and sequesters RhoA to the cytosol. However, few groups have shown RhoA phosphorylation in intact cells. Here we show that phosphorylation of RhoGDIα but not RhoA plays an essential role in the PKA-induced inhibition of RhoA signaling and in the morphological changes using cardiac fibroblasts. The knockdown of RhoGDIα by siRNA blocks cAMP-induced cell rounding, which is recovered by RhoGDIα-WT expression but not when a RhoGDIα-S174A mutant is expressed. PKA phosphorylates RhoGDIα at Ser-174 and the phosphorylation of RhoGDIα is likely to induce the formation of a active RhoA-RhoGDIα complex. Our present results thus reveal a principal molecular mechanism underlying Gs/cAMP-induced cross-talk with Gq/G13/RhoA signaling. 相似文献
16.
Natasha M. Sosanya Luisa P. Cacheaux Emily R. Workman Farr Niere Nora I. Perrone-Bizzozero Kimberly F. Raab-Graham 《The Journal of biological chemistry》2015,290(26):16357-16371
The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the “capture” of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the “tag” is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner. 相似文献
17.
Regulator of G protein signaling (RGS) proteins inhibit G protein signaling by activating Gα GTPase activity, but the mechanisms that regulate RGS activity are not well understood. The mammalian R7 binding protein (R7BP) can interact with all members of the R7 family of RGS proteins, and palmitoylation of R7BP can target R7 RGS proteins to the plasma membrane in cultured cells. However, whether endogenous R7 RGS proteins in neurons require R7BP or membrane localization for function remains unclear. We have identified and knocked out the only apparent R7BP homolog in Caenorhabditis elegans, RSBP-1. Genetic studies show that loss of RSBP-1 phenocopies loss of the R7 RGS protein EAT-16, but does not disrupt function of the related R7 RGS protein EGL-10. Biochemical analyses find that EAT-16 coimmunoprecipitates with RSBP-1 and is predominantly plasma membrane-associated, whereas EGL-10 does not coimmunoprecipitate with RSBP-1 and is not predominantly membrane-associated. Mutating the conserved membrane-targeting sequence in RSBP-1 disrupts both the membrane association and function of EAT-16, demonstrating that membrane targeting by RSBP-1 is essential for EAT-16 activity. Our analysis of endogenous R7 RGS proteins in C. elegans neurons reveals key differences in the functional requirements for membrane targeting between members of this protein family. 相似文献
18.
Ting Wu Yuanyue Li Deli Huang Felicia Han Ying-Ying Zhang Duan-Wu Zhang Jiahuai Han 《PloS one》2014,9(4)
Autophagy has diverse biological functions and is involved in many biological processes. The L929 cell death induced by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethyl ketone (zVAD) was shown to be an autophagy-mediated death for which RIP1 and RIP3 were both required. It was also reported that zVAD can induce a small amount of TNF production, which was shown to be required for zVAD-induced L929 cell death, arguing for the contribution of autophagy in the zVAD-induced L929 cell death. In an effort to study RIP3 mediated cell death, we identified regulator of G-protein signaling 19 (RGS19) as a RIP3 interacting protein. We showed that RGS19 and its partner Gα-inhibiting activity polypeptide 3 (GNAI3) are involved in zVAD-, but not TNF-, induced cell death. The role of RGS19 and GNAI3 in zVAD-induced cell death is that they are involved in zVAD-induced autophagy. By the use of small hairpin RNAs and chemical inhibitors, we further demonstrated that zVAD-induced autophagy requires not only RIP1, RIP3, PI3KC3 and Beclin-1, but also RGS19 and GNAI3, and this autophagy is required for zVAD-induced TNF production. Collectively, our data suggest that zVAD-induced L929 cell death is a synergistic result of autophagy, caspase inhibition and autocrine effect of TNF. 相似文献
19.
G protein–coupled receptors (GPCRs) transduce their signals through trimeric G proteins, inducing guanine nucleotide exchange on their Gα-subunits; the resulting Gα-GTP transmits the signal further inside the cell. GoLoco domains present in many proteins play important roles in multiple trimeric G protein–dependent activities, physically binding Gα-subunits of the Gαi/o class. In most cases GoLoco binds exclusively to the GDP-loaded form of the Gα-subunits. Here we demonstrate that the poly-GoLoco–containing protein Pins of Drosophila can bind to both GDP- and GTP-forms of Drosophila Gαo. We identify Pins GoLoco domain 1 as necessary and sufficient for this unusual interaction with Gαo-GTP. We further pinpoint a lysine residue located centrally in this domain as necessary for the interaction. Our studies thus identify Drosophila Pins as a target of Gαo-mediated GPCR receptor signaling, e.g., in the context of the nervous system development, where Gαo acts downstream from Frizzled and redundantly with Gαi to control the asymmetry of cell divisions. 相似文献