首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 Å resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C1, C2, and C3. Each domain adopts a DE-variant IgG fold, with two β-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimal region of binding was contained within the first and second DE-variant-IgG domains (C1 and C2) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C1 and C2 domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C1 and C2 domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.  相似文献   

2.
Oral streptococci adhere to tooth-immobilized glycoprotein 340 (GP340) via the surface protein antigen I/II (AgI/II) and its homologs as the first step in pathogenesis. Studying this interaction using recombinant proteins, we observed that calcium increases the conformational stability of the scavenger-rich cysteine repeat (SRCRs) domains of GP340. Our results also show that AgI/II adheres specifically with nanomolar affinity to the calcium-induced SRCR conformation in an immobilized state and not in solution. This interaction is significantly dependent on the O-linked carbohydrates present on the SRCRs. This study also establishes that a single SRCR domain of GP340 contains the two surfaces to which the apical and C-terminal regions of AgI/II noncompetitively adhere. Compared with the single SRCR domain, the three tandem SRCR domains displayed a collective/cooperative increase in their bacterial adherence and aggregation. The previously described SRCRP2 peptide that was shown to aggregate several oral streptococci displayed limited aggregation and also nonspecific adherence compared to SRCR domains. Finally, we show distinct species-specific adherence/aggregation between Streptococcus mutans AgI/II and Streptococcus gordonii SspB in their interaction with the SRCRs. This study concludes that identification of the metal ion and carbohydrate adherence motifs on both SRCRs and AgI/II homologs could lead to the development of anti-adhesive inhibitors that could deter the adherence of pathogenic oral streptococci and thereby prevent the onset of infections.  相似文献   

3.
Human whole saliva induces aggregation of Streptococcus mutans cells via an interaction between a surface protein antigen (PAc) of the organism and salivary agglutinin. Bovine milk inhibits the saliva-induced aggregation of S. mutans. In this study, the milk component that possesses inhibitory activity against this aggregation was isolated and found to be lactoferrin. Surface plasmon resonance analysis indicated that bovine lactoferrin binds more strongly to salivary agglutinin, especially to high molecular mass glycoprotein, which is a component of the agglutinin, than to recombinant PAc. The binding of bovine lactoferrin to salivary agglutinin was thermostable, and the optimal pH for binding was 4.0. To identify the saliva-binding region of bovine lactoferrin, 11 truncated bovine lactoferrin fragments were constructed. A fragment corresponding to the C-terminal half of the lactoferrin molecule had a strong inhibitory effect on the saliva-induced aggregation of S. mutans, whereas a fragment corresponding to the N-terminal half had a weak inhibitory effect. Seven shorter fragments corresponding to lactoferrin residues 473-538 also showed a high ability to inhibit the aggregation of S. mutans. These results suggest that residues 473-538 of bovine lactoferrin are important in the inhibition of saliva-induced aggregation of S. mutans.  相似文献   

4.
Monoclonal antibodies were raised against the mt- sexual agglutinin of Chlamydomonas eugametos gametes. Those that blocked the agglutination site were selected. They were divided into two classes dependent upon whether they gave a weak (class A) or clear positive (class B) reaction with mt- flagellar membranes in an ELISA and an indirect immunofluorescence test using glutaraldehyde-fixed mt- gametes. Class A antibodies were shown to be specific for the agglutinin in an extract of mt- gametes, based on results from immunoblotting, immunoprecipitation, affinity chromatography, and the absence of a reaction with nonagglutinable cells. Surprisingly, class A mAbs also recognized two mt+ glycoproteins, one of which is the mt+ agglutinin. Class B antibodies were shown to bind to several glycoproteins in both mt- and mt+ gametes, including the mt- agglutinin. Fab fragments from class A mAbs blocked the sexual agglutination process, but those from class B did not, even though the parent antibody did. We conclude that the class A epitope lies in or close to the agglutination site of the mt- agglutinin, whereas the class B epitope lies elsewhere on the molecule. We also conclude that the mt- agglutinin is the only component on the mt- flagellar surface directly involved in agglutination. Class A mAbs were found to elicit several reactions displayed by the mt+ agglutinin. They bound to the mt- agglutinin on gamete flagella and induced most of the reactions typical of sexual agglutination, with the exception of flagellar tip activation. None of these reactions was induced by Fab fragments. High concentrations of class A mAbs completely repressed the sexual competence of live mt- gametes, but low concentrations stimulated cell fusion.  相似文献   

5.
Porcine enzootic pneumonia is a chronic respiratory disease that affects swine. The etiological agent of the disease, Mycoplasma hyopneumoniae, is a bacterium that adheres to cilia of the swine respiratory tract, resulting in loss of cilia and epithelial cell damage. A M. hyopneumoniae protein P116, encoded by mhp108, was investigated as a potential adhesin. Examination of P116 expression using proteomic analyses observed P116 as a full-length protein and also as fragments, ranging from 17 to 70 kDa in size. A variety of pathogenic bacterial species have been shown to bind the extracellular matrix component fibronectin as an adherence mechanism. M. hyopneumoniae cells were found to bind fibronectin in a dose-dependent and saturable manner. Surface plasmon resonance was used to show that a recombinant C-terminal domain of P116 bound fibronectin at physiologically relevant concentrations (KD 24 ± 6 nm). Plasmin(ogen)-binding proteins are also expressed by many bacterial pathogens, facilitating extracellular matrix degradation. M. hyopneumoniae cells were found to also bind plasminogen in a dose-dependent and saturable manner; the C-terminal domain of P116 binds to plasminogen (KD 44 ± 5 nm). Plasminogen binding was abolished when the C-terminal lysine of P116 was deleted, implicating this residue as part of the plasminogen binding site. P116 fragments adhere to the PK15 porcine kidney epithelial-like cell line and swine respiratory cilia. Collectively these data suggest that P116 is an important adhesin and virulence factor of M. hyopneumoniae.  相似文献   

6.
Researchers now recognize the utility of surface plasmon resonance technology to evaluate interactions of microbial pathogens with host components. The surface adhesin and candidate vaccine antigen P1 of Streptococcus mutans, the main causative agent of dental caries, interacts with a high molecular weight glycoprotein called salivary agglutinin, or gp340, in the salivary pellicle. We optimized a BIAcore assay to measure P1-mediated Ca(2+) dependent binding of S. mutans whole cells to this physiological ligand immobilized on a Pioneer F1 sensor chip. Regeneration conditions allowed cells to be eluted from the sensor chip permitting multiple reuse of the agglutinin-coated surface. An isogenic P1-deficient S. mutans mutant did not bind to immobilized agglutinin demonstrating specificity of the detected interaction. Glutaraldehyde-fixation of bacterial cells showed the assay measured a whole cell-ligand interaction and was not an artifact of solubilized or leached proteins. Adherence inhibition assays demonstrated varying degrees of disruption of the S. mutans-agglutinin interaction by anti-P1 monoclonal antibodies recognizing different epitopes, whereas a polyclonal reagent demonstrated more complete inhibition. This report describes an improved method to assess salivary agglutinin-mediated adherence of S. mutans in vitro under physiological-like conditions and to evaluate the effectiveness of antibodies of differing specificities to inhibit binding.  相似文献   

7.
Chlamydia trachomatis infection is the most common sexually transmitted bacterial disease. Left untreated, it can lead to ectopic pregnancy, pelvic inflammatory disease, and infertility. Here we present the structure of the secreted C. trachomatis protein Pgp3, an immunodominant antigen and putative virulence factor. The ∼84-kDa Pgp3 homotrimer, encoded on a cryptic plasmid, consists of globular N- and C-terminal assemblies connected by a triple-helical coiled-coil. The C-terminal domains possess folds similar to members of the TNF family of cytokines. The closest Pgp3 C-terminal domain structural homologs include a lectin from Burkholderia cenocepacia, the C1q component of complement, and a portion of the Bacillus anthracis spore surface protein BclA, all of which play roles in bioadhesion. The N-terminal domain consists of a concatenation of structural motifs typically found in trimeric viral proteins. The central parallel triple-helical coiled-coil contains an unusual alternating pattern of apolar and polar residue pairs that generate a rare right-handed superhelical twist. The unique architecture of Pgp3 provides the basis for understanding its role in chlamydial pathogenesis and serves as the platform for its optimization as a potential vaccine antigen candidate.  相似文献   

8.
To investigate conformations of C-cadherin associated with functional activity and physiological regulation, we generated monoclonal antibodies (mAbs) that bind differentially to monomeric or dimeric forms. These mAbs recognize conformational epitopes at multiple sites along the C-cadherin ectodomain aside from the well known Trp-2-mediated dimer interface in the N-terminal EC1 domain. Group 1 mAbs, which bind monomer better than dimer and the Trp-2-mutated protein (W2A) better than wild type, recognize epitopes in EC4 or EC5. Dimerization of the W2A mutant protein via a C-terminal immunoglobulin Fc domain restored the dimeric mAb-binding properties to EC4-5 and partial homophilic binding activity but did not restore full cell adhesion activity. Group 2 and Group 3 mAbs, which bind dimer better than monomer and wild type better than W2A, recognize epitopes in EC1 and the interface between EC1 and EC2, respectively. None of the mAbs could distinguish between different physiological states of C-cadherin at the cell surface of either Xenopus embryonic cells or Colo 205 cultured cells, demonstrating that changes in dimerization do not underlie regulation of adhesion activity. On the cell surface the EC3-EC5 domains are much less accessible to mAb binding than EC1-EC2, suggesting that they are masked by the state of cadherin organization or by other molecules. Thus, the EC2-EC5 domains either reflect, or are involved in, cadherin dimerization and organization at the cell surface.  相似文献   

9.
The genome sequence of the oral pathogen Streptococcus mutans predicts the presence of two putative polysaccharide deacetylases. The first, designated PgdA in this paper, shows homology to the catalytic domains of peptidoglycan deacetylases from Streptococcus pneumoniae and Listeria monocytogenes, which are both thought to be involved in the bacterial defense mechanism against human mucosal lysozyme and are part of the CAZY family 4 carbohydrate esterases. S. mutans cells in which the pgdA gene was deleted displayed a different colony texture and a slightly increased cell surface hydrophobicity and yet did not become hypersensitive to lysozyme as shown previously for S. pneumoniae. To understand this apparent lack of activity, the high-resolution X-ray structure of S. mutans PgdA was determined; it showed the typical carbohydrate esterase 4 fold, with metal bound in a His-His-Asp triad. Analysis of the protein surface showed that an extended groove lined with aromatic residues is orientated toward the active-site residues. The protein exhibited metal-dependent de-N-acetylase activity toward a hexamer of N-acetylglucosamine. No activity was observed toward shorter chitooligosaccharides or a synthetic peptidoglycan tetrasaccharide. In agreement with the lysozyme data this would suggest that S. mutans PgdA does not act on peptidoglycan but on an as-yet-unidentified polysaccharide within the bacterial cell surface. Strikingly, the pgdA-knockout strain showed a significant increase in aggregation/agglutination by salivary agglutinin, in agreement with this gene acting as a deacetylase of a cell surface glycan.  相似文献   

10.
Streptococcus pyogenes is an exclusively human pathogen. Streptococcal attachment to and entry into epithelial cells is a prerequisite for a successful infection of the human host and requires adhesins. Here, we demonstrate that the multidomain protein Epf from S. pyogenes serotype M49 is a streptococcal adhesin. An epf-deficient mutant showed significantly decreased adhesion to and internalization into human keratinocytes. Cell adhesion is mediated by the N-terminal domain of Epf (EpfN) and increased by the human plasma protein plasminogen. The crystal structure of EpfN, solved at 1.6 Å resolution, shows that it consists of two subdomains: a carbohydrate-binding module and a fibronectin type III domain. Both fold types commonly participate in ligand receptor and protein-protein interactions. EpfN is followed by 18 repeats of a domain classified as DUF1542 (domain of unknown function 1542) and a C-terminal cell wall sorting signal. The DUF1542 repeats are not involved in adhesion, but biophysical studies show they are predominantly α-helical and form a fiber-like stalk of tandem DUF1542 domains. Epf thus conforms with the widespread family of adhesins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), in which a cell wall-attached stalk enables long range interactions via its adhesive N-terminal domain.  相似文献   

11.
Compact single-domain antibodies (sdAbs) are nearly 13 times smaller than full-size monoclonal antibodies (mAbs) and have a number of advantages for biotechnological applications, such as small size, high specificity, solubility, stability, and great refolding capacity. Carcinoembryonic antigen (CEA) is a tumor-associated glycoprotein expressed in a variety of cancers. Detection of CEA on the tumor cell surface may be carried out using anti-CEA antibodies and conventional fluorescent dyes. Semiconductor quantum dots (QDs) are brighter and more photostable than organic dyes; they provide the possibility for labeling of different recognition molecules with QDs of different colors but excitable with the same wavelength of excitation. In this study, the abilities for specific detection of CEA expressed by tumor cells with anti-CEA sdAbs biotinylated in vitro and in vivo, as well as with anti-CEA mAbs biotinylated in vitro, were compared using flow cytometry and the conjugates of streptavidin with QDs (SA-QDs). The results demonstrated that either in vitro or in vivo biotinylated anti-CEA sdAbs are more sensitive for cell staining compared to biotinylated anti-CEA mAbs. The data also show that simultaneous use of biotinylated sdAbs with highly fluorescent SA-QDs can considerably improve the sensitivity of detection of CEA on tumor cell surfaces.  相似文献   

12.
Secretory IgA (SIgA) is the principal immunoglobulin isotype present in the mucosal secretions of humans. SIgA is thought to play a major role in host defense at these surfaces by inhibiting the colonization of potentially pathogenic microorganisms. A number of bacteria that are mucosal pathogens of humans produce a protease that specifically cleaves the IgA1 subclass of humans and great apes at the hinge region to produce Fab and Fc fragments. In order to study the effect of IgA1 protease on the ability of SIgA1 antibodies to inhibit bacterial adherence, an in vitro assay that quantifies the adsorption of radiolabeled Streptococcus mutans to hydroxyapatite (HA) beads was employed. High titer S. mutans-specific SIgA1 and SIgA2 antibodies were induced in chimpanzee milk for use in the assay. Fabα1 fragments had significantly reduced ability to inhibit adherence of S. mutans to saliva-coated HA compared to intact SIgA1 or SIgA2 anti-S. mutans antibodies. These data support the potential importance of IgA1 proteases as an ecological determinant in the oral cavity and their role as a determinant of pathogenesis of pathogenic bacteria whose portal of entry is the mucosal surface.  相似文献   

13.
Hot and cold aqueous extracts were prepared from 22 commonly ingested fruits, vegetables, and seeds. When tested by agar diffusion, extracts from 13 and 10 of the foods formed precipitin bands with samples of normal rabbit serum and human saliva, respectively; extracts from four of the foods also reacted with antigen extracts of strains of Streptococcus mutans. When added to rabbit antiserum, extracts from 18 of 21 foods tested inhibited reactivity with antigen extracts derived from S. mutans MT3. Extracts from 16 foods agglutinated whole S. mutans cells, whereas those from 10 foods agglutinated human erythrocytes of blood types A and B. The lectin-like activities of extracts which reacted with human saliva were studied further. Pretreatment of saliva-coated hydroxyapatite (S-HA) beads with extracts of bananas, coconuts, carrots, alfalfa, and sunflower seeds markedly reduced the subsequent adsorption of S. mutans MT3. Pretreatment of S-HA with banana extract also strongly inhibited adsorption of S. mutans H12 and S. sanguis C1, but it had little effect on attachment of Actinomyces naeslundii L13 or A. viscosus LY7. Absorption experiments indicated that the component(s) in banana extract responsible for inhibiting streptococcal adsorption to S-HA was identical to that which bound to human erythrocytes. The banana hemagglutinin exhibited highest activity between pH 7 and 8, and it was inhibited by high concentrations of glucosamine, galactosamine, and, to a lesser extent, mannosamine. Other sugars tested had no effect. The selective bacterial adsorption-inhibiting effect noted for banana extract was also observed in studies with purified lectins. Thus, pretreating S-HA with wheat germ agglutinin and concanavalin A inhibited adsorption of S. mutans MT3 cells, whereas peanut agglutinin, Ulex agglutinin, Dolichos agglutinin, and soybean agglutinin had little effect; none of these lectins affected attachment of A. viscosus LY7. Collectively, the observations suggest that many foods contain lectins which can interact with components of human saliva and S. mutans cells. Because of their potential to influence host-parasite interactions in the mouth and elsewhere in the gastrointestinal canal, these reactions warrant further study.  相似文献   

14.
The Haemophilus cryptic genospecies (HCG) causes genital tract infections in pregnant and postpartum women and respiratory infections in neonates. The major surface adhesin in HCG is called Cha, which mediates bacterial adherence to cultured human epithelial cells. In this study, we report that there are two antigenically distinct variants of Cha, dubbed Cha1 and Cha2. These variants are encoded by the same genetic locus in diverse strains and have nearly identical N-terminal export and C-terminal surface anchoring domains but significantly different internal adhesive domains. Based on the comparison of derivatives of a laboratory strain of Haemophilus influenzae expressing either surface-associated Cha1 or surface-associated Cha2, Cha1 mediates a higher level of adherence to cultured human epithelial cells and Cha2 mediates a higher level of adherence to abiotic surfaces. We hypothesize that variation in the Cha1 and Cha2 internal region results in changes in binding specificity or binding affinity and may be associated with adaptation to different host environments during colonization and disease.  相似文献   

15.
The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adherence to the respiratory epithelium. In this report, we show that the structure of Hia is characterized by a modular architecture containing repeats of structurally distinct domains. Comparison of the structures of HiaBD1 and HiaBD2 adhesive repeats and a nonadhesive repeat (a novel fold) shed light on the structural determinants of Hia adhesive function. Examination of the structure of an extended version of the Hia translocator domain revealed the structural transition between the C-terminal translocator domain and the N-terminal passenger domain, highlighting a highly intertwined domain that is ubiquitous among trimeric autotransporters. Overall, this study provides important insights into the mechanism of Hia adhesive activity and the overall structure of trimeric autotransporters.  相似文献   

16.
The inflammation-associated long pentraxin PTX3 plays key roles in innate immunity, female fertility, and vascular biology (e.g. it inhibits FGF2 (fibroblast growth factor 2)-mediated angiogenesis). PTX3 is composed of multiple protomers, each composed of distinct N- and C-terminal domains; however, it is not known how these are organized or contribute to its functional properties. Here, biophysical analyses reveal that PTX3 is composed of eight identical protomers, associated through disulfide bonds, forming an elongated and asymmetric, molecule with two differently sized domains interconnected by a stalk. The N-terminal region of the protomer provides the main structural determinant underlying this quaternary organization, supporting formation of a disulfide-linked tetramer and a dimer of dimers (a non-covalent tetramer), giving rise to the asymmetry of the molecule. Furthermore, the PTX3 octamer is shown to contain two FGF2 binding sites, where it is the tetramers that act as the functional units in ligand recognition. Thus, these studies provide a unifying model of the PTX3 oligomer, explaining both its quaternary organization and how this is required for its antiangiogenic function.  相似文献   

17.
Adherence of Streptococcus pneumoniae is directly mediated by interactions of adhesins with eukaryotic cellular receptors or indirectly by exploiting matrix and serum proteins as molecular bridges. Pneumococci engage vitronectin, the human adhesive glycoprotein and complement inhibitor, to facilitate attachment to epithelial cells of the mucosal cavity, thereby modulating host cell signaling. In this study, we identified PspC as a vitronectin-binding protein interacting with the C-terminal heparin-binding domain of vitronectin. PspC is a multifunctional surface-exposed choline-binding protein displaying various adhesive properties. Vitronectin binding required the R domains in the mature PspC protein, which are also essential for the interaction with the ectodomain of the polymeric immunoglobulin receptor and secretory IgA. Consequently, secretory IgA competitively inhibited binding of vitronectin to purified PspC and to PspC-expressing pneumococci. In contrast, Factor H, which binds to the N-terminal part of mature PspC molecules, did not interfere with the PspC-vitronectin interaction. Using a series of vitronectin peptides, the C-terminal heparin-binding domain was shown to be essential for the interaction of soluble vitronectin with PspC. Binding experiments with immobilized vitronectin suggested a region N-terminal to the identified heparin-binding domain as an additional binding region for PspC, suggesting that soluble, immobilized, as well as cellularly bound vitronectin possesses different conformations. Finally, vitronectin bound to PspC was functionally active and inhibited the deposition of the terminal complement complex. In conclusion, this study identifies and characterizes (on the molecular level) the interaction between the pneumococcal adhesin PspC and the human glycoprotein vitronectin.  相似文献   

18.
Streptococcus mutans is the main cause of dental caries. We evaluated the therapeutic effect of variable regions of a llama heavy chain antibody fragments directed against S. mutans named S36-VHH (S for Streptococcus) alone or fused with glucose oxidase (GOx) from Aspergillus niger. Western blot analysis and ELISA revealed binding of the S36-VHH to the streptococcal antigen I/II adhesin molecule of S. mutans serotype C. In a rat-desalivated caries model, daily administration of S36-VHH significantly reduced the development of smooth surface caries. No additional therapeutic effect of GOx was observed. Our results suggest that llama VHH antibodies may be a potential benefit as prophylaxis against dental caries.  相似文献   

19.
A phosphoprotein (P) is found in all viruses of the Mononegavirales order. These proteins form homo-oligomers, fulfil similar roles in the replication cycles of the various viruses, but differ in their length and oligomerization state. Sequence alignments reveal no sequence similarity among proteins from viruses belonging to the same family. Sequence analysis and experimental data show that phosphoproteins from viruses of the Paramyxoviridae contain structured domains alternating with intrinsically disordered regions. Here, we used predictions of disorder of secondary structure, and an analysis of sequence conservation to predict the domain organization of the phosphoprotein from Sendai virus, vesicular stomatitis virus (VSV) and rabies virus (RV P). We devised a new procedure for combining the results from multiple prediction methods and locating the boundaries between disordered regions and structured domains. To validate the proposed modular organization predicted for RV P and to confirm that the putative structured domains correspond to autonomous folding units, we used two-hybrid and biochemical approaches to characterize the properties of several fragments of RV P. We found that both central and C-terminal domains can fold in isolation, that the central domain is the oligomerization domain, and that the C-terminal domain binds to nucleocapsids. Our results suggest a conserved organization of P proteins in the Rhabdoviridae family in concatenated functional domains resembling that of the P proteins in the Paramyxoviridae family.  相似文献   

20.
In sectors like healthcare and hospitality, it has been realized that fabrics play a pivotal role in transfer of nosocomial infections. However, there is a major gap in drawing correlation between different fibre types and their interaction with microorganisms. Such information is important to formulate guidelines for textile materials for use in these sectors. In the current study, the adherence of four important bacteria, Staphylococcus aureus, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa was studied on six different fibre types namely polyester, wool, polypropylene, viscose, silk and cotton. Among these fibres, viscose showed maximum adherence while silk fibres showed the least attachment of bacterial strains. Bacterial adhesion was correlated with the surface characteristics (surface charge, hydrophobicity etc.) of bacteria, and nanoroughness of fibres. Adhesion of these bacteria was tested on five hydrocarbons of different hydrophobicities. E. coli, the weakest biofilm producer, and with the highest surface energy and lowest hydrophobicity amongst the bacteria compared in the study, had the lowest load on all fibres. Scanning electron microscopy revealed non-uniform binding of gram-negative and gram-positive bacteria. Nanoroughness of fibres favored bacterial adhesion. The study showed correlation between surface properties and adherence of bacteria on fibres, with the results being of direct significance to medical and hospitality sectors.Electronic supplementary materialThe online version of this article (10.1007/s12088-020-00903-5) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号