首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in land management and reductions in fire frequency have contributed to increased cover of woody species in grasslands worldwide. These shifts in plant community composition have the potential to alter ecosystem function, particularly through changes in soil processes and properties. In semi-arid grasslands, the invasion of shrubs and trees is often accompanied by increases in soil resources and more rapid N and C cycling. We assessed the effects of shrub encroachment in a mesic grassland in Kansas (USA) on soil CO2 flux, extractable inorganic N, and N mineralization beneath shrub communities (Cornus drummondii) and surrounding undisturbed grassland sites. In this study, a shift in plant community composition from grassland to shrubland resulted in a 16% decrease in annual soil CO2 flux(4.78 kg CO2 m–2 year–1 for shrub dominated sites versus 5.84 kg CO2 m–2 year–1 for grassland sites) with no differences in total soil C or N or inorganic N. There was considerable variability in N mineralization rates within sites, which resulted in no overall difference in cumulative N mineralized during this study (4.09 g N m–2 for grassland sites and 3.03 g N m–2 for shrub islands). These results indicate that shrub encroachment into mesic grasslands does not significantly alter N availability (at least initially), but does alter C cycling by decreasing soil CO2 flux.  相似文献   

2.
R. S. Singh 《Plant Ecology》1993,106(1):63-71
Burning increased the mean annual canopy and belowground biomass of a dry tropical savanna by 40% and 12%, respectively, while littermass was reduced by 85% in comparison to control savanna. Mean annual aboveground and belowground net primary production were 471 and 631 g m-2 in control, and 584 and 688 g m-2 in burned savanna, respectively. Fire caused an increase in mean aboveground net production of 24% and in belowground net production of 9%.Concentration of carbon, nitrogen and phosphorus in vegetation of unburned plots ranged between 34.01–38.59%, 0.85–1.53% and 0.04–0.11% and in soil from 0.95–1%, 0.011–0.13% and 0.017–0.02%, respectively. Fire increased the mean concentrations of N and P by 16% and 42% in vegetation and 18.18% and 17.65% in soil, respectively. Thus winter fire can be an important tool for the management of dry tropical savanna with respect to biomass production and nutritive quality.  相似文献   

3.
Summary The accession and cycling of elements in a 14-year-old coastal stand ofPinus radiata D. Don was measured for one year. The element contents (mg m–2 year–1) of bulk precipitation and throughfall respectively were: NO3–N 41, 12; NH4–N 133, 154; organic-N 157, 396; Na 4420, 9700; K 387, 2900; Ca 351, 701; Mg 486, 1320. Of the increase in element content of rainwater beneath the forest canopy 20% (NH4–N), 70% (organic-N), 3% (Na), 90% (K), 20% (Ca) and 30% (Mg) was attributed to leaching; the remainder to washing of aerosols filtered from the atmosphere by the vegetation. The canopy absorbed approximately 40 mg m–2 year–1 of NO3–N. Litterfall was the major pathway for the above-ground biogeochemical cycle of N (93%), Ca (96%) and Mg (74%), and leaching was the major (73%) pathway for K.  相似文献   

4.
In a pristine evergreen rainforest of Nothofagus betuloides, located at the Cordillera de los Andes in southern Chile (41 °S), concentrations and fluxes of nutrients in bulk precipitation, cloud water, throughfall water, stemflow water, soil infiltration and percolation water and runoff water were measured. The main objectives of this study were to investigate canopy-soil-atmosphere interactions and to calculate input-output budgets. From May 1999 till April 2000, the experimental watershed received 8121 mm water (86% incident precipitation, 14% cloud water), of which the canopy intercepted 16%. Runoff water volume amounted 9527 mm. Bulk deposition of inorganic (DIN) and organic (DON) nitrogen amounted 3.6 kg ha–1 year–1 and 8.2 kg ha–1 year–1 respectively. Occult deposition (clouds + fog) contributes for 40% to the atmospheric nitrogen input (bulk + occult deposition) of the forest. An important part of the atmospheric ammonium deposition is retained within the canopy or converted to nitrate or organic nitrogen by epiphytic bacteria or lichens. Also the export of inorganic (0.9 kg ha–1 year–1) and organic (5.2 kg ha–1 year–1) nitrogen via runoff is lower than the input to the forest floor via throughfall and stemflow water (3.2 kg DIN ha–1 year–1 and 5.6 kg DON ha–1 year–1). The low concentrations of NO 3 and NH 4 + under the rooting depth suggest an effective biological immobilization by vegetation and soil microflora. Dry deposition and foliar leaching of base cations (K+, Ca2+, Mg2+) was estimated using a canopy budget model. Bulk deposition accounted for about 50% of the total atmospheric input. Calculated dry and occult deposition are both of equal value (about 25%). Foliar leaching of K+, Ca2+, and Mg2+ accounted for 45%, 38% and 6% of throughfall deposition respectively. On an annual basis, the experimental watershed was a net source for Na+, Ca2+ and Mg2+.  相似文献   

5.
Summary Net aerial primary production and accumulation of nutrients by the grasses and nongrasses of the ground layer community of a cerrado vegetation in central Brazil were determined in burnt and unburnt areas. The net aerial primary production of the ground layer community was 327 gm–2 in the unburnt area and only 242 gm–2 in the burnt area during the first year after fire. Grasses contributed 68 to 78% of the aerial biomass of the ground layer in the unburnt area. The live biomass in the burnt and unburnt areas was comparable by the end of the first dry period after the fire. The major part of N, P and K in the aerial biomass was in the grasses. The concentration of all nutrients in the aerial biomass was generally higher in the burnt area during the first year after the fire.  相似文献   

6.
Productivity studies were carried out from September, 1985 to August, 1987 in two mangrove stands, i.e. estuarine and island fringing, in Dutch bay, a lagoon situated on the northwestern coast of Sri Lanka. Net above-ground primary productivity was measured by monitoring litterfall and above-ground biomass increment. The average annual rate of litterfall in the estuarine and island-fringing mangrove stands are 588.14 g m–2 (approximately 6 t ha–1) and 407.33 g m–2 (approximately 4 t ha–1) respectively. The average annual rates of above ground woody growth are 614.74 g m–2 (approximately 6 t ha–1) in the estuarine stands and 286.8 g m–2 (approximately 3 t ha–1) in the island-fringing mangrove stands. Hence estuarine mangrove stands record a higher annual rate of above-ground net primary production (NPP; 1207.88 g m–2 or approximately 12 t ha–1) than the fringing mangrove stands (694.22 g m–2); approximately 7 t ha–1). The annual rate of NPP in the water front zones of the stands (1300.47 g m–2 in the estuarine stands and 874.56 g m–2 in the fringing stands) are greater than those in the back-mangrove zones (115.28 g m–2 in the estuarine stands and 513.88 g m–2 in the island-fringing stands). These variations may be attributed to the differences in tidal flushing and influence of freshwater in the two localities.  相似文献   

7.
Carbon balance of a tropical savanna of northern Australia   总被引:7,自引:0,他引:7  
Chen X  Hutley LB  Eamus D 《Oecologia》2003,137(3):405-416
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1.  相似文献   

8.
Annual inputs of symbiotic N2-fixation associated with 3 species of alpine Trifolium were estimated in four alpine communities differing in resource supplies. We hypothesized that fixation rates would vary according to the degree of N, P, and water limitation of production, with the higher rates of fixation in N limited communities (dry meadow, moist meadow) and lower rates in P and water limited communities (wet meadow, fellfield). To estimate N2-fixation rates, natural abundance of N isotopes (15N) were measured in field collected Trifolium and reference plants and in Trifolium plants grown in N-free medium in a growth chamber. All three Trifolium species relied on a large proportion of atmospherically-fixed N2 to meet their N requirements, ranging from 70 to 100%. There were no apparent differences in the proportion of plant N derived from fixation among the communities, but differences in the contribution of the Trifolium species to community cover resulted in a wide range of annual N inputs from fixation, from 127 mg m–2 year–1 in wet meadows to 810 mg m–2 year–1 in fellfields. Annual spatially integrated input of symbiotic N2-fixation to Niwot Ridge, Colorado was estimated at 490 mg m–2 year–1 (5 kg ha–1 year–1), which is relatively high in the context of estimates of net N mineralization and N deposition.  相似文献   

9.
Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan.  相似文献   

10.
Underwater irradiance was measured at intervals of 20 min for one year at 2 water depths (2.5 and 3.5 m below M.L.W.S.) and in 3 spectral regions in the sublittoral region of the rocky island of Helgoland. Data are presented for spectral and total irradiance at water depths ranging from 2 to 15 m (below M.L.W.S.). 90% of the total annual light reaching sublittoral habitats is received during the period from April to September, when Jerlov water type 7 (occasionally water type 5) dominates. During the other half of the year, the water is very turbid, and transparency is so low that long dark periods occur even at moderate water depths. The total annual light received at the lower kelp limit (Laminaria hyperborea), at 8 m water depth, is 15 MJ m–2 year–1 or 70 E m–2 year–1, which corresponds to 0.7% of surface irradiance (visible). At the lower algal limit (15 m water depth) these values are 1 MJ m–2 year–1 or 6 E m–2 year–1, corresponding to 0.05% of surface irradiance. These data are similar to measurements at the same limits in several different geographical areas, and may determine the depth at which these limits occur.  相似文献   

11.
Abstract. The effect of fire on annual plants was examined in two vegetation types at remnant vegetation edges in the Western Australian wheatbelt. Density and cover of non-native species were consistently greatest at the reserve edges, decreasing rapidly with increasing distance from reserve edge. Numbers of native species showed little effect of distance from reserve edge. Fire had no apparent effect on abundance of non-natives in Allocasuarina shrubland but abundance of native plants increased. Density of both non-native and native plants in Acacia acuminata-Eucalyptus loxophleba woodland decreased after fire. Fewer non-native species were found in the shrubland than in the woodland in both unburnt and burnt areas, this difference being smallest between burnt areas. Levels of soil phosphorus and nitrate were higher in burnt areas of both communities and ammonium also increased in the shrubland. Levels of soil phosphorus and nitrate were higher at the reserve edge in the unburnt shrubland, but not in the woodland. There was a strong correlation between soil phosphorus levels and abundance of non-native species in the unburnt shrubland, but not after fire or in the woodland. Removal of non-native plants in the burnt shrubland had a strong positive effect on total abundance of native plants, apparently due to increases in growth of smaller, suppressed native plants in response to decreased competition. Two native species showed increased seed production in plots where non-native plants had been removed. There was a general indication that, in the short term, fire does not necessarily increase invasion of these communities by non-native species and could, therefore be a useful management tool in remnant vegetation, providing other disturbances are minimised.  相似文献   

12.
Gross and net primary production together with chlorophyll-a biomass were investigated with respect to depth and diurnal changes in three categories of inland waters (reservoirs, temporary ponds, brackish water lagoons) in Sri Lanka. Ten field sites, in both the dry and wet zones of the island, were investigated. Bimodal productivity profiles were recorded in two of the three reservoirs studied. The diel pattern of net photosynthetic rate varied between sites although peak photosynthetic efficiency occurred at solar noon. Surface photoinhibition was characteristic of the reservoirs and brackish water lagoons but not of the temporary ponds. Mean gross primary production was 3.02 g C m–2 d–1 but was higher in the temporary ponds than in the reservoirs. The gross primary production in the brackish water Koggala Lagoon at 0.08 g C m–2 d–1 is a record low for tropical lagoons and was 2.5 times less than the two other lagoons investigated. Variability in net primary production between sites was similar to the variation in gross production with a relatively low mean value for tropical inland waters of 0.495 C m–2 d–1. Mean maximum photosynthetic rate was 0.30 mg C m–3 h–1 but was lower in the reservoirs than in the temporary ponds and lagoons.  相似文献   

13.
Abstract Fire intensity measures the heat output of a fire, and variation in fire intensity has been shown to have many effects on the demography of plant species, although the consequent effects on the floristic composition of communities have rarely been quantified. The effects of variation in fire intensity on the floristic composition of dry sclerophyll vegetation with different fire histories near Sydney was estimated. In particular, differences in species abundance of woodland and shrubland communities subjected to four fire‐intensity classes: unburnt, low intensity (<500 kW m?1), medium intensity (500–2500 kW m?1) and high intensity (>2500 kW m?1) were examined. The samples had a standardized previous fire frequency and season, thus minimizing the effects of other aspects of the fire regime. There was a clear effect of fire intensity on the relative abundances of the vascular plant species, with increasing intensity of the fire producing vegetation that was increasingly different from the unburnt vegetation. This pattern was repeated in both the woodland and shrubland vegetation types, suggesting that it was not an artefact of the experimental conditions. However, the effects of fire intensity on floristic composition were no greater than were the differences between these two similar vegetation types, with variation in fire intensity accounting for only approximately 10% of the floristic variation. Nevertheless, the effects of fire intensity on the abundance of individual species were consistent across taxonomic groups, with the monocotyledon and Fabaceae species being more abundant at higher than lower intensities, the Proteaceae and Rutaceae more abundant at intermediate intensities, and the Epacridaceae more abundant at lower rather than higher intensities. The number of fire‐tolerant species increased with increasing fire intensity, and those fire‐tolerant species present were most abundant in the areas burnt with medium intensity. The number of fire‐sensitive species did not respond to fire intensity, and those species present were most abundant in the areas burnt with low intensity. This suggests that either fire‐sensitive species respond poorly to higher fire intensities or fire‐tolerant species respond poorly to lower fire intensities, perhaps because of differences in seed germination, seedling survival or competition among adults.  相似文献   

14.
Heterotrophic bacteria and fungi are widely recognized as crucial mediators of carbon, nutrient, and energy flow in ecosystems, yet information on their total annual production in benthic habitats is lacking. To assess the significance of annual microbial production in a structurally complex system, we measured production rates of bacteria and fungi over an annual cycle in four aerobic habitats of a littoral freshwater marsh. Production rates of fungi in plant litter were substantial (0.2 to 2.4 mg C g−1 C) but were clearly outweighed by those of bacteria (2.6 to 18.8 mg C g−1 C) throughout the year. This indicates that bacteria represent the most actively growing microorganisms on marsh plant litter in submerged conditions, a finding that contrasts strikingly with results from both standing dead shoots of marsh plants and submerged plant litter decaying in streams. Concomitant measurements of microbial respiration (1.5 to 15.3 mg C-CO2 g−1 of plant litter C day−1) point to high microbial growth efficiencies on the plant litter, averaging 45.5%. The submerged plant litter layer together with the thin aerobic sediment layer underneath (average depth of 5 mm) contributed the bulk of microbial production per square meter of marsh surface (99%), whereas bacterial production in the marsh water column and epiphytic biofilms was negligible. The magnitude of the combined production in these compartments (~1,490 g C m−2 year−1) highlights the importance of carbon flows through microbial biomass, to the extent that even massive primary productivity of the marsh plants (603 g C m−2 year−1) and subsidiary carbon sources (~330 g C m−2 year−1) were insufficient to meet the microbial carbon demand. These findings suggest that littoral freshwater marshes are genuine hot spots of aerobic microbial carbon transformations, which may act as net organic carbon importers from adjacent systems and, in turn, emit large amounts of CO2 (here, ~870 g C m−2 year−1) into the atmosphere.  相似文献   

15.
Adair EC  Binkley D  Andersen DC 《Oecologia》2004,139(1):108-116
Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m–2 year–1 for years 10–70, and 2.7 g N m–2year–1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.  相似文献   

16.
The semiarid regions of northwestern Venezuela have extremely low and highly unpredictable precipitation, yet these conditions support species with contrasting phenology and leaf longevity. Episodic rains significantly increased leaf water potential (from –5 to –2.5 MPa) in several species and, in some cases, triggered flowering, leading us to hypothesize that the coexistence of species with contrasting phenology is due to differences in their ability to utilize small rainfall events. Irrigation treatments were used to simulate brief rainfall events, and the response of three species (Erythrina velutina [deciduous], Croton heliaster [semideciduous], and Capparis odoratissima [evergreen]) was monitored over a period of 14 months. To partition the effects of water reaching the canopy versus the soil, irrigation was supplied either in the form of mist to the canopy or by minisprinklers near the base of the trees. Nonirrigated trees were used as controls. Productivity (estimated as aboveground litter production) and water potential were enhanced by soil irrigation in two species. However, in the evergreen species canopy irrigation had a greater effect on water relations and productivity than soil irrigation, as indicated by higher predawn water potential, higher total annual flower (40 g m–2 year–1) and fruit (5 g m–2 year–1) production, and longer leaf longevity (410 days in control trees versus 520 days in canopy-irrigated trees). Canopy irrigation augmented flower and fruit production in all three species. Our findings suggest that reproductive phenology in these species is driven by episodic rains and that evergreen species may sustain productivity by their ability to make use of water deposited on leaf surfaces.  相似文献   

17.
We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome‐BGC simulations of fluxes. The young forest (Y site) was previously an old‐growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m?2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m?2 year?1), and it was largely from soils at both sites (77% of Re). The biological data show that above‐ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m?2 year?1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15‐km swath in the region, ANPP ranged from 76 g C m?2 year?1 at the Y site to 236 g C m?2 year?1 (overall mean 158 ± 14 g C m?2 year?1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome‐BGC model suggest that disturbance type and frequency, time since disturbance, age‐dependent changes in below‐ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget‐based observations to within ± 20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand‐replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10–20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long‐term pools (biomass and soils) in addition to short‐term fluxes has important implications for management of forests in the Pacific North‐west for carbon sequestration.  相似文献   

18.
Spatial and temporal distribution, abundance and production of macroinvertebrate communities were estimated over two years in a fifth-order section of the Widawka River. Discharge of this river has been increased artificially by coal mine water inputs. Additionally, during the second year, one of the highest discharges of the current 20-year period was recorded. Chironomidae were co-dominant in macrobenthos, both in a straight reach (WIA) and in a meandering site (WIB). More mosaic habitats resulted in higher densities of midges, reaching 6215 ind.m–2 in year 1 and 1141 ind.m–2 in year 2 at WIA, while at WIB 896 densities were ind.m–2 and 257 ind.m–2, respectively. Flooding affected the distribution and abundance of the chironomid assemblages. Recolonization by psammophilous Polypedilum began after the various microhabitats were buried with sand. Chironomid production was estimated on a species-specific basis for the dominant taxa. In year 1 (mean annual water temperature 10.0° C) chironomid production was 12.4 g dry wt m–2 yr–1 1 at WIA and 1.9 g dry wt m–2 yr–1 at WIB. These values sharply decreased in year 2 (mean annual water temperature 9.8° C) reaching 1.9 g dry wt m–2 yr–1 at WIA and 0.4 g dry wt m–2 yr–1 at WIB, as effects of the high spate.  相似文献   

19.
The seasonal dynamics of forest floor biomass, pattern of litter fall and nutrient return in Central Himalayan oak forests are described. Fresh and partially decomposed litter layers occur throughout the whole year in addition to herbaceous vegetation. The highest leaf litter value is found in April and May and the minimum in September. Partially and largely decomposed litter tended to increase from January to May with a slight decline in June. The wood litter peaked in March and April. The relative contribution of partially decomposed litter to the forest floor remains greatest the year round. The maximum herbaceous vegetation development was found in September with a total annual net production of 104.3 g m-2yr-1. The total calculated input of litter was 480.8 g m-2yr-1. About 68% of the forest floor was replaced each year with a subsequent turnover time of 1.47 yr. The total annual input of litter ranged from 664 (Quercus floribunda site) –952 g m-2 (Q. lanuginosa site), of which tree, shrub and herbaceous litter accounted for respectively 72.0–86.3%, 6.4 – 19.4% and 5.2 – 8.6%. The annual nutrient return through litter fall amounted to (kg ha-1) 178.0 – 291.0 N, 10.0 – 26.9 P, 176.8 – 301.6 Ca, 43.9 – 64.1 K and 3.98 – 6.45 Na. The tree litter showed an annual replacement of 66.0 – 70.0%, for different nutrients the range was 64 and 84%.  相似文献   

20.
Net production of theEcklonia cava community was monitored on a monthly basis for a year, and annual net production was estimated. Growth rate of blades reached a maximum of about 13 g dry wt·m?2·day?1 in spring and a minimum of about 2 g dry wt·m?2·day?1 in late summer. Annual production of blades was calculated to be 2.84 kg dry wt·m?2·year?1. If the growth of stipes is taken into account, annual net production is estimated to be about 2.9 kg dry wt·m?2·year?1. Standing crop was monitored monthly for two and a half years, and a close negative correlation was found between seasonal change in standing crop and net production. Standing crop reached a maximum of about 3 kg dry wt·m?2 in summer and a minimum of about 1 kg dry wt·m?2 in winter. Low productivity in summer at a period of maximum biomass may be explained by the dense canopy and the large area of reproductive portion occupying a blade, which diminish net assimilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号