首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ant invasions exert a range of effects on recipient communities, from displacement of particular species to more complex community disruption. While species loss has been recorded for a number of invasion events, a little examined aspect of these invasions is the mechanisms for coexistence with resident ant species.The yellow crazy ant, Anoplolepis gracilipes (Smith), is considered one of the world’s worst ant invaders and has recently undergone rapid population growth in Tokelau. We surveyed the ground-dwelling ant fauna in two plots on each of five invaded and three uninvaded islands across two atolls in Tokelau to examine community characteristics of the ant fauna in areas with and without yellow crazy ants. We also used three types of food bait (tuna, jam and peanut butter) to experimentally test if species are able to coexist by consuming different food resources. Anoplolepis gracilipes was found to coexist with two to six other ant species at any one site, and coexisted with a total of 11 ant species. Four species never co-occurred with A. gracilipes. Non-metric multidimensional scaling showed significant differences in community composition and the relative abundance of species between areas that had, and had not, been invaded by A. gracilipes. The number of other ant species was significantly lower in communities invaded by the yellow crazy ant, but did not decline with increasing A. gracilipes abundance, indicating that impacts were independent of population density. The yellow crazy ant dominated all tuna and jam baits, but had a low attendance on peanut butter, allowing four other ant species to access this resource. Our results demonstrate community level impacts of an ant invader on a tropical oceanic atoll and suggest that differing use of food resources can facilitate coexistence in ant communities. Received 11 September 2006; revised 15 January 2007; accepted 22 February 2007.  相似文献   

2.
In terrestrial walking organisms, long legs help to decrease the cost of running, allowing animals to step over environmental interstices rather than walking through them. However, long legs can complicate the infiltration of these interstices, which may contain food sources and refugia. Since the number of environmental interstices perceived by an organism (rugosity) increases as it body size decreases (size-grain hypothesis, SGH), natural selection should favor proportionally smaller legs with decreasing body size. Recent work demonstrated that ants fit this hypothesis. We experimentally tested the assumption of the SGH that small ants, which have proportionally smaller legs than larger ants, are more successful in exploring environmental interstices because they can easily penetrate them. We examined the ability of tropical litter ant species with different body sizes to access food baits in 'landscapes' (=plots) with different levels of rugosity and food exposure. In the first experiment, three levels of landscape rugosity were defined by manipulating the density of leaf litter placed on the ground plots: a) plain landscape: no litter fall, b) intermediate rugosity (∼0.5 kg of litter fall) and c) high rugosity (∼1 kg). In a second experiment, food baits were in plain landscapes, exposed or covered by leaf litter. The body lengths of ants that first accessed food baits ranged from 1.5 to 12 mm. Ants that first reached food baits in the most rugose landscapes were ∼40% smaller than ants that first found baits in plain landscapes. Smaller ants were also the first to access covered food. The application of a phylogenetic comparative method suggested the same patterns. We conclude that these results support the size grain hypothesis. Environmental rugosity might have operated as a selective force to shape the morphological characteristics of litter ant species.  相似文献   

3.
Invasions by introduced ant species can be ecologically destructive and affect a wide range of taxa, particularly native ants. Invasive ant species often numerically dominate ant communities and outperform native ant species in effective resource acquisition. Here, we describe interactions between the invasive ant Anoplolepis gracilipes (Smith) and resident ant species in disturbed habitats in NE Borneo. We measured interference competition abilities of A. gracilipes by performing arena bioassays between two A. gracilipes colonies and seven local ant species, and measured its effective resource competition at baits within supercolonies and at supercolony boundaries. Furthermore, we compared ant species diversity and composition at baits among (A) core areas of A. gracilipes supercolonies, (B) supercolony boundaries and (C) outside supercolonies. Anoplolepis gracilipes was behaviorally dominant over most ant species except Oecophylla smaragdina. Within supercolonies, A. gracilipes discovered all food baits first, and monopolized the vast majority throughout the course of the experiment. At supercolony boundaries, A. gracilipes discovered baits later than resident ant species, but subsequently monopolized half of the baits. Furthermore, the activity and diversity of the ant community within A. gracilipes supercolonies was lower than at its boundaries and outside supercolonies, and the ant communities differed significantly between infested and noninfested areas. Our study supports the hypothesis that successful establishment of A. gracilipes in anthropogenically disturbed habitats may negatively affect resident ant communities through high levels of direct interspecific aggression and almost complete monopolization of resources within high‐density supercolonies.  相似文献   

4.
Populations of invasive species often exhibit a high degree of spatial and temporal variability in abundance and hence their effects on resident communities. Here, we examine behavioural, genetic and environmental factors that influence variation in populations of the yellow crazy ant, Anoplolepis gracilipes, on the remote Nukunonu Atoll of Tokelau, Pacific Ocean. Behavioural assays revealed high levels of aggression between two groups of yellow crazy ants from different islands, and genetic analysis confirmed the presence of two distinct populations with unique mitochondrial (mt)DNA haplotypes, designated A and D. The two populations likely resulted from two separate invasion events. The populations exhibited significant differences in abundance of A. gracilipes, with a mean sevenfold difference in relative abundance between the two main haplotypes. The higher density haplotype D population coexisted with 50% fewer other ant species and altered ant community composition. Vegetation composition was also significantly different on islands harbouring the two populations. The results suggest genetic differences could play a role in the spatial and temporal variation in the effect of the yellow crazy ant on a small oceanic atoll. We could not differentiate between genetic effects and effects of vegetation. However, our results indicate that spatial variability in behaviour and impacts within populations of invasive species could be in part due to genetic differences, and play a substantial role in influencing the outcome of biological invasions.  相似文献   

5.
Populations of invasive species are often studied when their effects are perceived as a problem. Yet observing the dynamics of populations over longer time periods can highlight changes in effects on invaded communities, and assist with management decisions. In this study we revisit an invasion of the yellow crazy ant (Anoplolepis gracilipes) in the Tokelau archipelago to determine if the distribution and abundance of the ant has changed ~7 years after surveys completed in 2004. We were particularly interested in whether populations of a previously identified invasive haplotype (D) had increased in distribution and abundance, as this haplotype was implicated in negative effects on resident ant communities. Indeed, haplotype D populations have become more widespread since the initial survey, more likely owing to new introductions or movement by humans, rather than intrinsic characteristics of the haplotype. We also found that despite no significant change in the abundance of A. gracilipes overall, haplotype D populations have declined in abundance. Residents of the Tokelau atolls no longer consider the ant to be a pest as they did 7 years ago, when populations of this ant interfered with their food production and many other aspects of daily life. We observed no significant differences between A. gracilipes invaded and uninvaded communities, which suggests that the ant is at a level of abundance below which significant negative ecological effects may occur. Population declines of invasive species are not infrequent, and understanding these population dynamics, particularly the underlying mechanisms promoting population declines or stabilisation, should be a high priority for invasion ecology.  相似文献   

6.
紫胶园异质性栖境下的蚂蚁共存机制   总被引:1,自引:0,他引:1  
为了弄清紫胶园中蚂蚁群落共存的机制,在云南省墨江县雅邑乡紫胶园中调查了蚂蚁群落组成、蚂蚁发现及掌握食物资源的能力,并探讨了蚂蚁身体大小与其在不同栖境类型中发现食物能力的相关性.紫胶园中共存的6种主要蚂蚁类群为飘细长蚁、粗纹举腹蚁、立毛举腹蚁、黑可可臭蚁、邻居多刺蚁和巴瑞弓背蚁.6种蚂蚁头宽(x)与后足长(y)呈异速生长关系,其回归方程为y=0.56+1.02x+5.97x2-10.85x3.不同种类蚂蚁在不同的栖境中发现食物资源的实际次数和相对次数均存在显著差异,但其实际掌握食物资源的次数无显著差异.头宽、身体大小指数大的蚂蚁发现简单栖境中食物资源的能力强,头窄、后足短、身体大小指数小的蚂蚁发现复杂栖境中食物资源的能力强.栖境的异质性使蚂蚁共存,身体较小的蚂蚁生活于复杂栖境中,身体较大者则生活于简单栖境中;数量占优势的蚂蚁类群不能占据所有资源,从而给其他种类蚂蚁获得资源的机会,实现共存.  相似文献   

7.
Ants are highly successful invaders, especially on islands, yet undisturbed mainland environments often do not contain invasive ants, and this observation is largely attributed to biotic resistance. An exception is the incursion of Yellow crazy ant Anoplolepis gracilipes within northeast Arnhem Land. The existence of A. gracilipes within this landscape’s intact environments containing highly competitive ant communities indicates that biotic resistance is not a terminally inhibitory factor mediating this ant’s distribution at the regional scale. We test whether biotic resistance may still operate at a more local scale by assessing whether ecological impacts are proportional to habitat suitability for A. gracilipes, as well as to the competitiveness of the invaded ant community. The abundance and species richness of native ants were consistently greater in uninfested than infested plots but the magnitude of the impacts did not differ between habitats. The abundance and ordinal richness of other macro-invertebrates were consistently lower in infested plots in all habitats. A significant negative relationship was found for native ant abundance and A. gracilipes abundance. No relationships were found between A. gracilipes abundance and any measure of other macro-invertebrates. The relative contribution of small ants (<2.5 mm) to total abundance and relative species richness was always greater in infested sites coinciding with a reduction of the contribution of the larger size classes. Differences in the relative abundance of ant functional groups between infested and uninfested sites reflected impacts according to ant size classes and ecology. The widespread scale of these incursions and non-differential level of impacts among the habitats, irrespective of native ant community competitiveness and abiotic suitability to A. gracilipes, does not support the biotic resistance hypothesis.  相似文献   

8.
The introduced yellow crazy ant or long-legged ant Anoplolepis gracilipes was first reported in Seychelles in 1969 and now occurs on at least nine islands in the Central Seychelles. We describe the yellow crazy ant's effects on vegetation and invertebrate communities on one of these, Bird Island; in 2000, Anoplolepis (first reported in 1991) occurred there at densities at least 80 times higher than on other islands in the Central Seychelles. They were associated with high densities of coccid scale insects on foliage, especially of the native tree Pisonia grandis, in some instances causing tree death. Yellow crazy ants on Bird Island also significantly affected invertebrate communities on foliage and on the ground, both in terms of taxonomic composition and the density of specific taxa, apparently causing the local exclusion of some invertebrates.  相似文献   

9.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

10.
Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co‐operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions.  相似文献   

11.
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to δ15 N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in δ15 N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Throughout the tropics, agroforests are often the only remaining habitat with a considerable tree cover. Agroforestry systems can support high numbers of species and are therefore frequently heralded as the future for tropical biodiversity conservation. However, anthropogenic habitat modification can facilitate species invasions that may suppress native fauna. We compared the ant fauna of lower canopy trees in natural rainforest sites with that of cacao trees in agroforests in Central Sulawesi, Indonesia in order to assess the effects of agroforestry on occurrence of the Yellow Crazy Ant Anoplolepis gracilipes, a common invasive species in the area, and its effects on overall ant richness. The agroforests differed in the type of shade-tree composition, tree density, canopy cover, and distance to the village. On average, 43% of the species in agroforests also occurred in the lower canopy of nearby primary forest and the number of forest ant species that occurred on cacao trees was not related to agroforestry characteristics. However, A. gracilipes was the most common non-forest ant species, and forest ant richness decreased significantly with the presence of this species. Our results indicate that agroforestry may have promoted the occurrence of A. gracilipes, possibly because tree management in agroforests negatively affects ant species that depend on trees for nesting and foraging, whereas A. gracilipes is a generalist when it comes to nesting sites and food preference. Thus, agroforestry management that includes the thinning of tree stands can facilitate ant invasions, thereby threatening the potential of cultivated land for the conservation of tropical ant diversity.  相似文献   

13.
The crazy ant (Anoplolepis gracilipes) invaded Bird island, Seychelles, in the 1980s. In 1997, its range expanded and population densities increased. The impacts of this change were studied in 2001 using a combination of arthropod collecting methods. The ant population excluded larger invertebrates (principally the large ant Odontomachus simillimus and the crabs, principally Ocypode spp.). Cockroaches, however, remained abundant in ant-infested areas and tree-nesting birds (Lesser Noddy Anous tenuirostris) appear to be able to breed successfully in the presence of the crazy ant. The ants are only abundant in areas of deep shade which provide cool nesting areas, yet enabling them to forage in the open when ground temperatures fall. The expansion of the ants was correlated with the regeneration of woodland on the island. Recommendations are made for the management of the woodland which may reduce the impacts of the crazy ant.  相似文献   

14.
Braschler B  Baur B 《Oecologia》2005,143(2):291-300
Different species may respond differently to habitat fragmentation. Theory predicts that abundant generalist species should be less affected by fragmentation than specialist species. In ant communities, the most abundant species is often behaviourally dominant. Thus, habitat fragmentation could alter competitive interactions between the dominant ant species and the other species. We tested this hypothesis in a long-term grassland fragmentation experiment. Fragments of different size (20.25 and 2.25 m2) were isolated by a 5-m wide strip of frequently mown vegetation. Control plots were situated in adjacent undisturbed grassland. Ant density and species composition were assessed 3 and 6 years after initiation of the experimental fragmentation. The effect of the dominant ant species on the resource use of the other species was examined at natural sugar resources (aphids and extrafloral nectaries) and at artificial sugar baits. Lasius paralienus was the most abundant ant species (72% of nests) in the grasslands examined. Species richness and forager density in the other species decreased with increasing density of L. paralienus in fragments but not in control plots. The overall forager density of the other species was positively related to their habitat niche overlap with L. paralienus. The density of foragers of the other species at sugar resources was not affected by L. paralienus forager density. The experimental fragmentation resulted in an increase in natural sugar resources in fragments. This may have reduced the intensity of interspecific competition for sugar resources. Our study shows that the grassland fragmentation altered interactions between the dominant L. paralienus and the other ant species.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

15.
H. Gibb  C. L. Parr 《Oecologia》2010,164(4):1061-1073
Habitat complexity can mediate key processes that structure local assemblages through effects on factors such as competition, predation and foraging behaviour. While most studies address assemblage responses to habitat complexity within one locality, a more global approach allows conclusions with greater independence from the phylogenetic constraints of the target assemblages, thus allowing greater generality. We tested the effects of natural and manipulated habitat complexities on ant assemblages from South Africa, Australia and Sweden, in order to determine if there were globally consistent responses in how functional measures of foraging success are regulated by habitat complexity. Specifically, we considered how habitat complexity affected ant foraging rates including the speed of discovery and rate of monopolisation. We also tested if habitat complexity affected the body size index, a size-related morphological trait, of ants discovering resources and occupying and monopolising the resources after 180 min. Ants were significantly slower to discover baits in the more complex treatments, consistent with predictions that they would move more slowly through more complex environments. The monopolisation index was also lower in the more complex treatments, suggesting that resources were more difficult to defend. Our index of ant body size showed trends in the predicted direction for complexity treatments. In addition, ants discovering, occupying and monopolising resources were smaller in simple than in complex natural habitats. Responses of discovering ants to resources in natural habitats were clear in only one of three regions. Consistent with our predictions, habitat complexity thus affected functional measures of the foraging success of ants in terms of measures of discovery and monopolisation rates and body size traits of successful ants. However, patterns were not always equally clear in manipulative and mensurative components of the study.  相似文献   

16.
L. Gallé 《Ecography》1991,14(1):31-37
Ant assemblages of a successional dune area (Tvärminne, south Finland) were analysed at three levels: the distribution of species among habitats, the distribution of colonies within habitats and the spatio-temporal distribution of individuals. The distribution of ant species among habitat patches representing different stages of succession is correlated with the composition of the epigeic fauna, the number and condition of dead twigs on the ground and the vegetation architecture. The composition of ant assemblages seems relatively independent of the plant species composition, and there are uncoordinated successional steps between the vegetation and ant communities.
In the early successional stages interference competition is weak and insignificant, as indicated by the random spatial arrangement of colonies, the absence of postcompetitive niche segregation and the low encounter rates of ant workers on the ground and at baits. In the aggressive behavioural hierarchy, Formica cinerea is a submissive species as compared with either Formica sanguinea or Lasius alienus.  相似文献   

17.
Yellow crazy ants (Anoplolepis gracilipes) threaten invertebrates on many tropical islands, but little work has been done in continental ecosystems. We found 4.4–16.0 times more cruiser butterfly caterpillars were attacked in Australian rain forest sites with A. gracilipes than in native ant sites, and extrafloral nectar had little influence.  相似文献   

18.
Wilkinson EB  Feener DH 《Oecologia》2007,152(1):151-161
Species must balance effective competition with avoidance of mortality imposed by predators or parasites to coexist within a local ecological community. Attributes of the habitat in which species interact, such as structural complexity, have the potential to affect how species balance competition and mortality by providing refuge from predators or parasites. Disturbance events such as fire can drastically alter habitat complexity and may be important modifiers of species interactions in communities. This study investigates whether the presence of habitat complexity in the form of leaf litter can alter interactions between the behaviorally dominant host ants Pheidole diversipilosa and Pheidole bicarinata, their respective specialist dipteran parasitoids (Phoridae: Apocephalus sp. 8 and Apocephalus sp. 25) and a single species of ant competitor (Dorymyrmex insanus). We used a factorial design to manipulate competition (presence/absence of competitors), mortality risk (presence/absence of parasitoids) and habitat complexity (presence/absence of leaf litter). Parasitoid presence reduced soldier caste foraging, but refuge from habitat complexity allowed increased soldier foraging in comparison to treatments in which no refuge was available. Variation in soldier foraging behavior correlated strongly with foraging success, a proxy for colony fitness. Habitat complexity allowed both host species to balance competitive success with mortality avoidance. The effect of fire on habitat complexity was also studied, and demonstrated that the immediate negative impact of fire on habitat complexity can persist for multiple years. Our findings indicate that habitat complexity can increase dominant host competitive success even in the presence of parasitoids, which may have consequences for coexistence of subordinate competitors and community diversity in general.  相似文献   

19.
L. Lach 《Insectes Sociaux》2005,52(3):257-262
Summary. Plant and insect exudates are known to play a key role in structuring tropical ant communities, but less is known about the utilization of these resources in communities dominated by invasive ants. Invasive ants are thought to require large amounts of carbohydrates such as honeydew or nectar to maintain their high abundances. Invasive ants that consume floral nectar may compete with legitimate floral visitors through interference or exploitation competition. I compared the nectar-thieving behavior of three widespread invasive ant species: long-legged ants (Anoplolepis gracilipes), Argentine ants (Linepithema humile), and big-headed ants (Pheidole megacephala) in inflorescences of the native Hawaiian ‘ōhi’a tree, an important food source for native fauna. A. gracilipes was least likely to leave inflorescences unvisited and visited inflorescences in higher numbers than both L. humile and P. megacephala. A. gracilipes and L. humile visited more flowers in an inflorescence and were less likely to retreat from a flower with a competitor than P. megacephala. A. gracilipes was able to take 5.5 and 11.3 times the amount of nectar than L. humile and P. megacephala, respectively. Thus, A. gracilipes may be effective at both interference and exploitation competition against other nectarivores, L. humile may be effective at interference competition, and P. megacephala may be relatively weak at both types of competition against other nectarivores. Ascertaining the competitive abilities of invasive ants against legitimate floral visitors will be especially important in agricultural and other systems that are nectar or pollinator limited.Received 6 December 2004; revised 13 January 2005; accepted 14 January 2005.  相似文献   

20.
Benefits arising from facultative mutualisms between ants and plants vary with the identity of the ant partner. Invasive and native ants are both attracted to plants that offer extrafloral nectar, but few studies have compared their abilities to displace herbivores and benefit plants. Yellow crazy ants Anoplolepis gracilipes have invaded eucalypt woodlands of Arnhem Land, northern Australia, where they displace the native dominant weaver ant Oecophylla smaragdina. We compared the plant defense services provided by A. gracilipes and O. smaragdina ants on trees with (Acacia lamprocarpa) and without (Eucalyptus tetrodonta) extrafloral nectar rewards through surrogate herbivore (termite) addition experiments and surveys of herbivore damage. Anoplolepis gracilipes were more likely than O. smaragdina to discover termites on A. lamprocarpa, but the likelihood of termite discovery on E. tetrodonta did not vary with ant species. Anoplolepis gracilipes were also more thorough in their attacks of termites, recruited 3.4–4 times more workers to termites, and were 3.4 times quicker at discovering termites on A. lamprocarpa than were O. smaragdina. Discovery of termites by other predators did not vary significantly between trees in A. gracilipes and O. smaragdina sites. Herbivory scores did not reflect the foliage patrolling pattern by the ants. Old A. lamprocarpa leaves and both new and old leaves and branches on E. tetrodonta in A. gracilipes sites had higher chewing herbivory scores than their counterparts in O. smaragdina sites. Our results reveal that the more aggressive and efficient foliar patrolling by A. gracilipes does not translate to increased plant protection. Ant invasions can disrupt native ant–plant mutualisms despite invasive ants possessing many traits associated with effective plant guarding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号