首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 988 毫秒
1.
Specific binding proteins for 1,25-dihydroxyvitamin D3 were identified in bovine mammary tissue obtained from lactating and non-lactating mammary glands by sucrose density gradient centrifugation. The macromolecules had characteristic sedimentation coefficients of 3.5-3.7 S. The interaction of l,25-dihydroxy[3H]vitamin D3 with the macromolecule of the mammary gland cytosol occurred at low concentrations, was saturable, and was a high affinity interaction (Kd = 4.2 × 10?10M at 25 °C). Binding was reversed by excess unlabeled 1,25-dihydroxyvitamin D3, was destroyed by heat and/or incubation with trypsin. It is thus inferred that this macromolecule is protein as it is not destroyed by ribonuclease or deoxyribonuclease. 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, and vitamin D3 did not effectively compete with 1,25-dihydroxyvitamin D3 for binding to cytosol of mammary tissue at near physiological concentrations of these analogs, thus demonstrating the specificity of the binding protein for 1,25-dihydroxyvitamin D3. In vitro subcellular distribution of 1,25-dihydroxy[3H]vitamin D3 demonstrated a time- and temperature-dependent movement of the hormone from the cytoplasm to the nucleus. By 90 min at 25 °C 72% of the 1,25-dihydroxy[3H]vitamin D3 was associated with the nucleus. In addition a 5–6 S macromolecule which binds 25-hydroxy[3H]vitamin D3 was demonstrated in mammary tissue. Finally, it is possible that the receptor-hormone complex present in mammary tissue may function in a manner analogous to intestinal tissue, resulting in the control of calcium transport by 1,25-dihydroxyvitamin D3 in this tissue.  相似文献   

2.
The binding of 25-hydroxy-[26,27-3H]vitamin D3 and 1,25-dihydroxy-[26,27-3H]vitamin D3 to the cytosol of intestinal mucosa of chicks and rats has been studied by sucrose gradient analysis. The cytosol from chick mucosa showed variable binding of 1,25-dihydroxyvitamin D3 to a 3.0S macromolecule which has high affinity and low capacity for this metabolite. However, when the mucosa was washed extensively before homogenization, a 3.7S macromolecule was consistently observed which showed considerable specificity and affinity for 1,25-dihydroxyvitamin D3. Although 3.7S binders for 1,25-dihydroxyvitamin D3 could also be located in other organs, competition experiments with excess nonradioactive 1,25-dihydroxyvitamin D3 suggested that they were not identical to the 3.7S macromolecule from intestinal mucosal cytosol. As the 3.7S macromolecule was allowed to stand at 4 °C with bound 1,25-dihydroxy-[3H]vitamin D3, the 1,25-dihydroxy-[3H]vitamin D3 became increasingly resistant to displacement by non-radioactive 1,25-dihydroxyvitamin D3. The 1,25-dihydroxy-[3H]vitamin D3 remained unchanged and easily extractable with lipid solvents through this change, making unlikely the establishment of a covalent bond. Unlike the chick, mucosa from rats yielded cytosol in which no specific binding of 1,25-dihydroxy-[3H]vitamin D3 was detected. Instead, a 5-6S macromolecule which binds both 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 was found. This protein which was also found in chick mucosa shows preferential binding for 25-hydroxyvitamin D3. It could be removed by washing the mucosa with buffer prior to homogenization which suggests that it may not be a cytosolic protein. Although the 3.7S protein from chick mucosa has properties consistent with its possible role as a receptor, the 5-6S macromolecule does not appear to have “receptor”-like properties.  相似文献   

3.
Sucrose density gradient analysis was utilized to determine whether 1,25-dihydroxyvitamin D3 receptors are present in the rat uterus. A distinct 3.6S [3H]1,25-dihydroxyvitamin D3 binding component was observed in chromatin extracts of estrogen-primed, ovariectomized rat uteri. Binding to this putative 1,25-dihydroxyvitamin D3 receptor was inhibited by excess 1,25-dihydroxyvitamin D3, but not by 25-hydroxyvitamin D3, estradiol-17β, promegestone, or cortisol. Low levels of the receptor seemed to be present in the unprimed uterus. Estrogen injection significantly increased the number of 1,25-dihydroxyvitamin D3 receptors and progesterone co-administration reduced, but did not abolish, this effect.  相似文献   

4.
A synthesis of radiochemically pure 25-hydroxy[26,27-3H]vitamin D3 with a specific activity of 160 Ci/mmol is reported. The structure and biological activity of the radiolabeled compound was verified by comigration on high-pressure liquid chromatography with synthetic 25-hydroxyvitamin D3 to constant specific activity, and by conversion in vitro to 1α,25-dihydroxy[26,27-3H]vitamin D3 with the chick kidney 1α-hydroxylase.  相似文献   

5.
As a further means of evaluating 1,25-dihydroxyvitamin D3-parathyroid gland interaction and its relation to calcium homeostasis, a comparative study of the subcellular localization of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]in the parathyroid glands, intestinal mucosa, kidney, and liver of rachitic chickens has been carried out. Only in the chromatin fraction from parathyroids and intestinal mucosa could there be demonstrated selective and specific localization of the 1,25(OH)2D3. The chromatin-bound picomoles of 1,25(OH)2D3 (per gram of tissue) was in the ratio (mucosa:parathyroids:kidney:liver) of 1.0:0.23:0.11:0.17 2 h after an intracardial injection of 290 pmol of [3H]1,25(OH)2D3. This same ratio after a 30-min (23 °C) homogenate incubation with 1 × 10?8m [3H]1,25(OH)2D3 was 1.0:1.0:0.10:0.03. Analogous results were obtained when reconstituted chromatin and cytosol fractions from the different tissues were compared for chromatin localization efficiency. This chromatin localization of 1,25(OH)2D3 in the parathyroid glands was temperature dependent. In addition, parathyroid glands were found to contain 3.0–3.5 S cytoplasmic and KCl-extractable chromatin receptors specific for 1,25(OH)2D3.  相似文献   

6.
Synthesis of 25-hydroxy[23,24-3H]vitamin D3   总被引:3,自引:0,他引:3  
A synthesis of 25-hydroxy[23,24-3H]vitamin D3 leading to a radiochemically pure product with a specific acitivity of 78 Ci/mmol is described. The structure of the product was confirmed by comparison with unlabeled material and its biological activity was established by in vitro conversion to 1α,25-dihydroxy[23,24-3H]vitamin D3 using the chick kidney 1α-hydroxylase system.  相似文献   

7.
1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient rats suppresses accumulation of 1,25-dihydroxy-[3α-3H]vitamin D3 and stimulates accumulation of 24,25-dihydroxy-[3α-33H]vitamin D3 from 25-hydroxy-[3α-3H]vitamin D3 equally well in the presence and absence of parathyroid glands. These results demonstrate that this regulatory action is not mediated by the parathyroid glands and support conclusions from invitro studies that this represents a direct action of 1,25-dihydroxyvitamin D3.  相似文献   

8.
1,25-Dihydroxyvitamin D3 receptors in rat kidney cytosol   总被引:5,自引:0,他引:5  
Rat kidney cytosol contains a 3.3 S high affinity binding component for 1,25-dihydroxyvitamin D3 as detected by DNA-cellulose chromatography and subsequent sucrose gradient analysis. The semipurified aporeceptor demonstrates specificity for 1,25-dihydroxyvitamin D3 and an apparent dissociation constant for this sterol-hormone of 3.4 × 10?10M at 25°C. The physicochemical properties of this binding component are in agreement with those observed for the chick intestinal 1,25-dihydroxyvitamin D3 receptor, suggesting that this component may function as a specific receptor for the hormone in the kidney.  相似文献   

9.
A reexamination of the equilibrium and the kinetics of 1,25-dihydroxy vitamin D3 binding with its receptor in chick intestinal cytosol was performed because of the recent availability in our laboratory of high specific activity 1,25-dihydroxy[3H-26,27]vitamin D3 (160 Ci/mmol). Under saturating conditions at 25 °C, Scatchard analysis revealed an equilibrium dissociation constant (Kd) of 7.1 × 10?11m which is several fold lower than previously reported for this binding reaction. Furthermore, an estimate of 1.8 × 103 receptor sites per cell was obtained from the intercept of the line with the abscissa of the Scatchard plot. From a kinetic analysis of 1,25-dihydroxy vitamin D3 binding with chick intestinal cytosol, association and dissociation rate constants were determined. Values that were obtained at 25 °C for these processes were 9.5 × 108m? min? and 7.1 × 10?3 min?, respectively. Although these studies, such as for other steroid hormones, were carried out using a crude native cytosol preparation, we have been able to demonstrate unequivocally through the use of high specific activity 1,25-dihydroxy[3H-26,27] vitamin D3 a truly high affinity binding site.  相似文献   

10.
Cytosol fractions prepared from the uterine mucosa of egg-laying Japanese Quail were analysed for binding of the metabolites of cholecalciferol. When the uterus was incubated at 37 degrees C with various radioactive metabolites of cholecalciferol, the nuclear fraction incorporated only 1 alpha,25-dihydroxy[3H]cholecalciferol. When the uterus was incubated at 0 degree C with 1 alpha,25-dihydroxy[3H]cholecalciferol, most of the radioactivity was found in the cytosol. Translocation of 1 alpha,25-dihydroxy[3H]cholecalciferol from the cytosol to the nucleus was temperature-dependent. The addition of 100-fold excess amounts of unlabelled 1 alpha-25-dihydroxycholecalciferol significantly diminished the nuclear binding of 1 alpha,25-dihydroxy[3H]cholecalciferol. The cytosol fraction contained a 3.5 S macromolecule that specifically binds 1 alpha,25-dihydroxy[3H]cholecalciferol. The dissociation constant was 0.39 nM and the maximal binding was 55 fmol/mg of protein. These results strongly suggest that the uterus in egg-laying birds is a target organ or 1 alpha,25-dihydroxycholecalciferol.  相似文献   

11.
Localization of 1,25-dihydroxyvitamin D3 in intestinal nuclei in vivo   总被引:5,自引:0,他引:5  
Autoradiography of frozen sections of intestinal tissue taken from rachitic chickens given a single intravenous dose of 1,25-dihydroxy[23,243H]vitamin D3 (650 pmol, 78 Ci/ mmol) has been carried out. Specific localization of label in the nuclei of intestinal villi and crypt cells could be demonstrated at 2.5 to 6 h postinjection. In contrast, no concentration or localization of radioactivity could be detected in intestinal muscle, liver, and skeletal muscle. These results strongly support the concept that the function of 1,25-dihydroxyvitamin D3 in intestine is mediated by a nuclear mechanism.  相似文献   

12.
1alpha, 25-Dihydroxycholecalciferol (1,25-(OH)2D3), the active form of vitamin D, like other steroid hormones, initiates its action by binding to cytoplasmic receptors in target cells. Although the 1,25-(OH)2D3 receptor has been well studied in intestine, little information beyond sucrose gradient analyses is presently available from mammalian bone. We, therefore, employed primary cultures of mouse calvarial cells to characterize the mammalian receptor in bone. A hypertonic molybdate-containing buffer was found to protect receptor binding. On hypertonic sucrose gradients, the 1,25-(OH)2-[3H]D3 binder sedimented at 3.2 S. Scatchard analysis of specific 1,25-(OH)2[3H]D3 binding sites at 0 degrees C yielded an apparent Kd of 0.26 nM and an Nmax of 75 fmol/mg of cytosol protein. Competitive binding experiments revealed the receptor to prefer 1,25-(OH)2D3 greater than 25-(OH)-D3 = 1 alpha-(OH)-D3 greater than 24R,25-(OH)2D3; vitamin D3, dihydrotachysterol, sex steroids, and glucocorticoids exhibited negligible binding. As shown in other systems, the receptor could be distinguished from a 25-(OH)-[3H]D3 binder which sedimented at approximately 6 S. In summary, cultured mouse calvarial cells possess a macromolecule with receptor-like properties. This system appears to be an ideal model for the investigation of 1,25-(OH)2D3 receptor binding and action in mammalian bone.  相似文献   

13.
We have investigated the reason for the lack of specific 1,25-dihydroxyvitamin D-3 binding activity in extracts of ATCC HL-60 cells. Although intact ATCC HL-60 cells specifically and saturably take up 1,25-dihydroxy[3H]vitamin D-3, whole cell extracts have little or no specific binding of 1,25-dihydroxyvitamin D-3. The absence of specific binding can now be explained by the action of a serine proteinase in these cells. When diisopropylfluorophosphate (DFP), a potent inhibitor of serine proteinase, is added to the buffer used for extraction, specific binding of 1,25-dihydroxy[3H]vitamin D-3 in the extract is observed. The loss of specific binding could not be prevented by hydrolyzed DFP or other serine proteinase inhibitors, such as phenylmethylsulfonylfluoride, benzamidine and aprotinin. The proteolytic activity from ATCC cells also destroyed specific 1,25-dihydroxy[3H]vitamin D-3 binding in high-salt extracts from pig intestinal nuclei or from another HL-60 cell line (LG HL-60 cells). However, the proteinase did not affect the levels of the specific binding in these preparations if the receptor was occupied with 1,25-dihydroxy[3H]vitamin D-3 prior to exposure to the proteinase. The binding and sedimentation characteristics of the receptors from various sources were not changed by the presence of DFP. The Kd of the receptor in ATCC HL-60 cells is 1.2.10(-10) M, which is identical to that in the LG HL-60 cells. The 1,25-dihydroxy[3H]vitamin D-3 receptor complex from the ATCC cells sediments as a single 3.5 S component and elutes from DNA-Sephadex column in two peaks at 0.09 and 0.15 M KCl. The material eluting at 0.15 M KCl has the same DNA-binding activity as preparations from pig intestine or LG HL-60 cells. Immunoprecipitation studies demonstrated that monoclonal antibodies to the pig receptor, IVG8C11, quantitatively precipitate the 1,25-dihydroxy[3H]vitamin D-3-binding activity from ATCC HL-60 cells as well as that from LG HL-60 cells or pig intestinal nuclei. Therefore, the previous failure to demonstrate the 1,25-dihydroxyvitamin D-3 receptor in ATCC HL-60 cells is because of the presence of a potent serine proteinase and not because of an abnormal or absent receptor.  相似文献   

14.
Vitamin D-deficient laying hens were repleted with 25-hydroxy[26,27-3H]vitamin D3 or 1,25-dihydroxy[26,27-3H]vitamin D3. Egg production returned to normal for both groups of hens by the third week. Eggs from hens fed either 25-hydroxy[26,27-3H]vitamin D3 or 1,25-dihydroxy[26,27-3H]vitamin D3 contained 1,25-dihydroxy[26,27-3H]vitamin D3. Eggs from hens fed 25-hydroxy[26,27-3H]vitamin D3 contained substantial amounts of 25-hydroxy[26,27-3H]vitamin D3, while those from hens fed 1,25-dihydroxy[26,27-3H]vitamin D3 contained none. Plasma from 18-day embryos from hens fed 1,25-dihydroxy[26,27-3H]vitamin D3 contained little or no 1,25-dihydroxy[26,27-3H]vitamin D3, while that from 18-day embryos from hens given 25-hydroxy[26,27-3H]vitamin D3 had normal levels of 1,25-dihydroxy[26,27-3H]vitamin D3. No eggs from hens fed 1,25-dihydroxy[26,27-3H]vitamin D3 hatched, while eggs from hens fed 25-hydroxy[26,27-3H]vitamin D3 achieved a hatchability of 90%. It appears that embryos from hens maintained on 1,25-dihydroxyvitamin D3 as their sole source of vitamin D are essentially vitamin D deficient.  相似文献   

15.
The primary culture of kidney cells from vitamin D deficient chicks is described. After four days in culture the cells reach confluency and retain their ability to metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3. Addition of one unit of bovine parathyroid hormone to the culture medium for 48 hours prior to assay had no effect on the cells' ability to produce 1,25-dihydroxy vitamin D3, whereas after 24 hours in the presence of 5×10?8M 1,25-dihydroxyvitamin D3 the cells produced not this metabolite, but 24,25-dihydroxyvitamin D3. This cell culture system will allow the investigation of the regulation of renal 25-hydroxyvitamin D3 metabolism under controlled in vitro conditions.  相似文献   

16.
Two separate liver cytosolic proteins have been partially purified and identified by their selectivity for binding either [1α,2α(n)-3H]vitamin D3 or 25-hydroxy [26(27)-methyl-3H]vitamin D3. The chromatographic properties of the two proteins were not distinguishable by ion-exchange nor were they dependent upon the vitamin D3 nutritional status of the birds. However, in molecular exclusion chromatography, the binding proteins can be successfully resolved into two discrete entities. Their binding properties suggest that they are not identical with plasma vitamin D3 binding protein.  相似文献   

17.
Various 1α-hydroxylated side chain analogs of vitamin D3 have been studied for their ability to compete with 1α,25-dihydroxy[3H]vitamin D3 for binding to the chick intestinal receptor. Of the analogs examined, 1α,24R-dihydroxyvitamin D3 was found to be nearly equivalent to 1α,25-dihydroxyvitamin D3 in its ability to compete for receptor binding. However, this near equivalence was not shared by its stereoisomer, 1α,24S-dihydroxyvitamin D3, which was only 10% as effective a competitor. It is proposed that the ability of a 24R-hydroxyl group to mimic the 25-hydroxyl group is not due to a lack of side chain specificity on the part of the receptor, but is instead due to the similar orientation of the 25-hydroxyl and the 24R-hydroxyl such that they can be accommodated equivalently by the receptor.  相似文献   

18.
Vitamin D3-deficient chick kidney microsomes invitro metabolize 25-hydroxy-[26(27)-methyl-3H]-vitamin D3 to yet structurally unidentified polar metabolites previously designated MIC-I and MIC-II. Kidney microsomes of vitamin D3-repleted chicks could not be demonstrated to produce these metabolites when 3H was the radioactive isotope in positions C-26 and C-27 of the substrate. However, when 25-hydroxy-[26,27-14C]-vitamin D3 was the radioactive substrate, MIC-I and MIC-II production was independent of the vitamin D3 status of the chicks. These results suggest that under conditions of vitamin D3-sufficiency, there is augmented sequential kidney metabolism of 25-hydroxyvitamin D3 to products with modified side-chains involving C-26 and/or C-27. It is possible that this metabolism is responsible for the regulation of kidney cellular concentrations of 25-hydroxyvitamin D3.  相似文献   

19.
Structural similarities between 25S,26-dihydroxyvitamin D3 and 25-hydroxyvitamin D3-26,23-lactone and their concomitant multifold increase in the plasma of animals treated with pharmacological doses of vitamin D3 suggest a precursor-product relationship. However, a single dose of 25S,26-[3H]dihydroxyvitamin D3 given to rats treated chronically with pharmacological amounts of vitamin D3 did not result in detectable plasma 25-[3H]hydroxyvitamin D3-26,23-lactone. Multiple doses of synthetic 25S,26-dihydroxyvitamin D3 given to vitamin D3-deficient rats treated chronically with pharmacological amounts of vitamin D2 also did not result in detectable plasma 25-hydroxyvitamin D3-26,23-lactone. Furthermore, homogenates prepared from vitamin d-deficient chickens, dosed with 1,25-dihydroxyvitamin D3, converted 25-[3H]hydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. But these same homogenates did not convert 25S,26-[3H]dihydroxyvitamin D3 to 25-[3H]hydroxyvitamin D3-26,23-lactone. These data indicate that 25,26-dihydroxyvitamin D3 is not an intermediate in 25-hydroxyvitamin D326, 23-lactone formation.  相似文献   

20.
Abstract: The binding of radioactive piperidine-4-sulphonic acid ([3H]P4S) to thoroughly washed, frozen, and thawed membranes isolated from cow and rat brains has been studied. Quantitative computer analysis of the binding curves for four regions of bovine brain revealed the general presence of two binding sites. In these brain regions less satisfactory computer fits were obtained for receptor models showing one or three binding sites or negative cooperativity. With the use of Tris-citrate buffer at 0°C the two affinity classes for P4S in bovine cortex membranes revealed the following binding parameters: KD= 17 ± 7 nM (Bmax= 0.15 ± 0.07 pmol/mg protein) and KD= 237 ± 100 nM (Bmax= 0.80 ± 0.20 pmol/mg protein). Heterogeneity was also observed for association and dissociation rates of [3H]P4S. The slow binding component (kon= 5.6 × 107 or 8.8 × 107 M-1 min-1, kOff= 0.83 min-1, and KD= 14.7 or 9.4 nM, determined by two different methods in phosphate buffer containing potassium chloride) corresponds to the high-affinity component of the equilibrium binding curve (KD= 11 nM, Bmax= 0.12 pmol/mg protein in the same buffer system). The association and dissociation rates for the subpopulation of rapidly dissociating sites, apparently corresponding to the low-affinity sites, were too rapid to be measured accurately. The binding of [3H]P4S appears to involve the same two populations of sites with Bmax values similar to those for [3H]GABA binding to the same tissue, although the kinetic parameters for the two ligands are somewhat different. Furthermore, comparative studies on the inhibition of [3H]P4S and [3H]GABA binding by various GABA analogues, strongly suggest that P4S binds to the GABA receptors. The different effects of P4S and GABA on benzodiazepine binding are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号