首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

3.
Rho GTPases such as RhoA, Rac1 and Cdc42 are crucial players in the regulation of signal transduction pathways required for neuronal differentiation. Using an in vitro cell culture model of neuroblastoma SH-SY5Y cells, we demonstrated previously that RhoA is an in vivo substrate of tissue transglutaminase (TGase) and retinoic acid (RA) promoted activation of RhoA by transamidation. Although activation of RhoA promoted cytoskeletal rearrangement in SH-SY5Y cells, it was not involved in induction of neurite outgrowth. Here, we demonstrate that RA promotes activation of Rac1 in SH-SY5Y cells in a transamidation-independent manner. RA-induced activation of Rac1 is mediated by phosphatidylinositol 3-kinase (PI3K), probably because of phosphorylation of the p85 regulatory subunit by Src kinases. Over-expression of constitutively active PI3K or Rac1-V12 induces neurite outgrowth, activation of mitogen activated protein kinases (MAPKs), and expression of neuronal markers. The PI3K inhibitor LY294002, or over-expression of dominant negative Rac1-N17, blocks RA-induced neurite outgrowth, activation of MAPKs, and expression of neuronal markers, suggesting that activation of PI3K/Rac1 signaling represents a potential mechanism for regulation of neuronal differentiation in SH-SY5Y cells.  相似文献   

4.
5.
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC(1) and VIP/PACAP receptor type 2 (VPAC(2)) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC(1) receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC(2) receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC(1) receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2',5'-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC(1) receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.  相似文献   

6.
7.
The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc mRNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC8) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC8 it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.  相似文献   

8.
All-trans-retinoic acid (RA) plays a crucial role in survival and differentiation of neurons. For elucidating signaling mechanisms involved in RA-induced neuronal differentiation, we have selected SH-SY5Y cells, which are an established in vitro cell model for studying RA signaling. Here we report that RA-induced neuronal differentiation of SH-SY5Y cells is coupled with increased expression/activation of TGase and in vivo transamidation and activation of RhoA. In addition, RA promotes formation of stress fibers and focal adhesion complexes, and activation of ERK1/2, JNK1, and p38alpha/beta/gamma MAP kinases. Using C-3 exoenzyme (RhoA inhibitor) or monodansylcadaverine (TGase inhibitor), we show that transamidated RhoA regulates cytoskeletal rearrangement and activation of ERK1/2 and p38gamma MAP kinases. Further, by using stable SH-SY5Y cell lines (overexpressing wild-type, C277S mutant, and antisense TGase), we demonstrate that transglutaminase activity is required for activation of RhoA, ERK1/2, JNK1, and p38gamma MAP kinases. Activated MAP kinases differentially regulate RA-induced neurite outgrowth and neuronal marker expression. The results of our studies suggest a novel mechanism of RA signaling, which involves activation of TGase and transamidation of RhoA. RA-induced activation of TGase is proposed to induce multiple signaling pathways that regulate neuronal differentiation.  相似文献   

9.
Treatment of SH-SY5Y human neuroblastoma cells with the protein kinase inhibitor staurosporine, induced both morphological and functional differentiation in these cells. The effects of staurosporine were comparable to those induced by the protein kinase C (PKC) activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA), with respect to induction of neuronal differentiation, i.e. neurite outgrowth, inhibition of DNA synthesis, induction and down-regulation of c-myc protein expression, induction of mRNA for both neuropeptide Y (NPY) and growth associated protein 43 (GAP-43) and stimulation of tyrosine hydroxylase expression. Staurosporine failed to translocate PKC to the membrane fraction or to stimulate phosphorylation of the endogenous PKC substrate M(r) 80,000 (p80). Instead, staurosporine inhibited TPA-induced phosphorylation of p80.  相似文献   

10.
Previous studies have shown that platelet-derived growth factor (PDGF) and PDGF receptors are expressed in the mammalian central nervous system and that primary cultured neuroblasts from rat hindbrain have functional PDGF beta-receptors. Here, it is shown that cultured human neuroblastoma cells express PDGF alpha- and beta-receptors, but not PDGF-A and PDGF-B chain mRNA. In contrast to alpha-receptor expression, beta-receptor expression appears to be associated with a mature neuronal phenotype. Under serum-free growth conditions, PDGF-AA and -BB induce a trophic and weak mitogenic response in SH-SY5Y neuroblastoma cells, showing that the PDGF receptors in these cells are functional. In combination with 12-O-tetradecanoylphorbol-13-acetate, all three PDGF isoforms induce sympathetic neuronal differentiation of the SH-SY5Y cells, as shown by morphology and by increased expression of the genes coding for growth-associated protein 43 and neuropeptide tyrosine, respectively. This indicates a potential role for PDGF in the development of sympathetic neurons in particular and of the nervous system in general.  相似文献   

11.
12.
Causes of retinoid resistance often observed in neuroblastomas are unknown. We studied all trans-retinoic acid (RA) signaling in neuroblastoma cells differing in N-myc levels in terms of neurite formation, expression of tissue transglutaminase, neuronal marker proteins, matrix metalloproteinases (MMPs), and activation of Rac1 and Cdc42. Poor invasiveness observed in SH-SY5Y, LA-N-5, and SMS-KCNR cells was associated with RA-induced neurite formation, Cdc42 activation and N-myc down regulation; expression of constitutively active Cdc42 down regulated N-myc expression and reduced invasion in RA-resistant SK-N-BE(2) and IMR32 cells. RA treatment for 24 h transiently increased invasion and expression of MMP9 in SH-SY5Y, LA-N-5 and MMP2 in SMS-KCNR cells. MMP inhibition prevented RA-induced neurite formation indicating a role in differentiation. Variation in RA signaling thus follows a defined pattern and relates to invasive potential. A defective RA signaling might result in retinoid resistance and unpredictable clinical outcome observed in some neuroblastomas.  相似文献   

13.
Staurosporine is one of the best apoptotic inducers in different cell types including neuroblastomas. In this study we have compared the efficiency and final outcome of three different anti-apoptotic strategies in staurosporine-treated SH-SY5Y human neuroblastoma cells. At staurosporine concentrations up to 500 nm, z-VAD.fmk a broad-spectrum, noncompetitive inhibitor of caspases, reduced apoptosis in SH-SY5Y cells. At higher concentrations, z-VAD.fmk continued to inhibit caspases and the apoptotic phenotype but not cell death which seems to result from oxidative damage. Stable over-expression of Bcl-2 in SH-SY5Y protected cells from death at doses of staurosporine up to 1 microm. At higher doses, cytochrome c release from mitochondria occurred, caspases were activated and cells died by apoptosis. Therefore, we conclude that Bcl-2 increased the threshold for apoptotic cell death commitment. Over-expression of Bcl-X(L) was far more effective than Bcl-2. Bcl-X(L) transfected cells showed a remarkable resistance staurosporine-induced cytochrome c release and associated apoptotic changes and survived for up to 15 days in 1 microm staurosporine. In these conditions, SH-SY5Y displayed a remarkable phenotype of neuronal differentiation as assessed by neurite outgrowth and expression of neurofilament, Tau and MAP-2 neuronal specific proteins.  相似文献   

14.
The proto-oncogene product pp60c-src is a tyrosine-specific kinase with a still unresolved cellular function. High levels of pp60c-src in neurons and the existence of a neuronal pp60c-src variant, pp60c-srcN, suggest participation in the progress or maintenance of the differentiated phenotype of neurons. We have previously reported that phorbol esters, e.g., 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulate human SH-SY5Y neuroblastoma cells to neuronal differentiation, as monitored by morphological, biochemical, and functional differentiation markers. In this report, we describe activation of the pp60src (pp60c-src and pp60c-srcN) kinase activity observed at 6 h after induction of SH-SY5Y cells with TPA. This phenomenon coincides in time with neurite outgrowth, formation of growth cone-like structures, and an increase of GAP43 mRNA expression, which are the earliest indications of neuronal differentiation in these cells. The highest specific src kinase activity (a three- to fourfold increase 4 days after induction) was noted in cells treated with 16 nM TPA; this concentration is optimal for development of the TPA-induced neuronal phenotype. During differentiation, there was no alteration in the 1:1 ratio of pp60c-src to pp60c-srcN found in untreated SH-SY5Y cells. V8 protease and trypsin phosphopeptide mapping of pp60src from in vivo 32P-labeled cells showed that the overall phosphorylation of pp60src was higher in differentiated than in untreated cells, mainly because of an intense serine 12 phosphorylation. Tyrosine 416 phosphorylation was not detectable in either cell type, and no change during differentiation in tyrosine 527 phosphorylation was observed.  相似文献   

15.
We are employing recent advances in the understanding of the cell cycle to study the inverse relationship between proliferation and neuronal differentiation. Nerve growth factor and aphidicolin, an inhibitor of DNA polymerases, synergistically induce neuronal differentiation of SH-SY5Y neuroblastoma cells and the expression of p21WAF1, an inhibitor of cyclin-dependent kinases. The differentiated cells continue to express p21WAF1, even after removal of aphidicolin from the culture medium. The p21WAF1 protein coimmunoprecipitates with cyclin E and inhibits cyclin E-associated protein kinase activity. Each of three antisense oligonucleotides complementary to p21WAF1 mRNA partially blocks expression of p21WAF1 and promotes programmed cell death. These data indicate that p21WAF1 expression is required for survival of these differentiating neuroblastoma cells. Thus, the problem of neuronal differentiation can now be understood in the context of negative regulators of the cell cycle.  相似文献   

16.
17.
Apoptosis Signal-regulating Kinase 1 (ASK1) is known to either induce apoptosis or differentiation in various cell lines of neuronal origin. We analyzed the effect of the constitutively active mutant of ASK1 (ASK1-Delta N) in an adenoviral vector in four neuroblastoma cell lines, two murine, C1300 and NXS2, and two human, SH-SY5Y and IMR-32. Already after 24 h upon infection, C1300 and SH-SY5Y cells arrested in growth when judged by [(3)H]thymidine incorporation, and the majority of the cells demonstrated apoptotic appearance, which was confirmed by DNA-laddering in gel electrophoresis. In contrast, NXS2 and IMR-32 cell lines remained unaffected. Immunoblotting revealed strongly phosphorylated p38 MAPK accompanied by weakly phosphorylated JNK in C1300 and SH-SY5Y, whereas none of these kinases were activated by adenoviruses expressing the kinase negative ASK1 mutant or beta-galactosidase. There was no expression of phosphorylated kinases in IMR-32 cells, but NXS2 showed a faint band of phosphorylated p38 MAPK. Addition of the p38 MAPK specific inhibitor, SB203580, protected C1300 and SH-SY5Y cells from apoptosis induced by ASK1-Delta N. The anti-neoplastic agent, paclitaxel, activates ASK1 and JNK, and promotes the in vitro assembly of stable microtubules. Addition of 10 nM paclitaxel sensitised the NXS2 cell line to ASK1-induced cell death. Our results indicate that ASK1 induces apoptosis in neuroblastoma cells mainly via the p38 MAPK pathway, and resistant neuroblastoma cells can be sensitised to ASK1 by paclitaxel.  相似文献   

18.
Fibroblast growth factor 1 (FGF1) is a multipotent factor in the development and differentiation of the central nervous system. Recent studies in PC12 cells attribute these effects to high endogenous FGF1 expression. To examine the differentiation mechanisms induced by FGF1, we performed studies in SH-SY5Y human neuroblastoma cells. We monitored the impact of FGF1 overexpression in SH-SY5Y either after addition of exogenous FGF1 and heparin or after stable transfection with the FGF1 eukaryotic expression vector. Under both conditions, the FGF1 endogenous rise caused SH-SY5Y cell differentiation with morphological changes (appearance of neuritic extensions), increased GAP-43 gene expression, decreased of N-myc gene expression, and prolonged long-term survival in serum-free media. These modifications were correlated with Bcl-2 upregulation. These results suggest that there is a link between the endogenous FGF1 signaling pathway and Bcl-2 in neuronal survival modulation.  相似文献   

19.
Cadmium (Cd), a highly toxic environmental pollutant, induces neurodegenerative diseases. Recently we have demonstrated that Cd may induce neuronal apoptosis in part through activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (Erk1/2) pathways. However, the underlying mechanism remains enigmatic. Here we show that Cd induced generation of reactive oxygen species (ROS), leading to apoptosis of PC12 and SH-SY5Y cells. Pretreatment with N-acetyl-L-cysteine (NAC) scavenged Cd-induced ROS, and prevented cell death, suggesting that Cd-induced apoptosis is attributed to its induction of ROS. Furthermore, we found that Cd-induced ROS inhibited serine/threonine protein phosphatases 2A (PP2A) and 5 (PP5), leading to activation of Erk1/2 and JNK, which was abrogated by NAC. Overexpression of PP2A or PP5 partially prevented Cd-induced activation of Erk1/2 and JNK, as well as cell death. Cd-induced ROS was also linked to the activation of caspase-3. Pretreatment with inhibitors of JNK (SP600125) and Erk1/2 (U0126) partially blocked Cd-induced cleavage of caspase-3 and prevented cell death. However, zVAD-fmk, a pan caspase inhibitor, only partially prevented Cd-induced apoptosis. The results indicate that Cd induction of ROS inhibits PP2A and PP5, leading to activation of JNK and Erk1/2 pathways, and consequently resulting in caspase-dependent and -independent apoptosis of neuronal cells. The findings strongly suggest that the inhibitors of JNK, Erk1/2, or antioxidants may be exploited for prevention of Cd-induced neurodegenerative diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号