首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Apoptosis (programmed cell death) could contribute to fluctuations in sperm production and involution of testis in dependence on seasonal, genetic, environmental or individual factors. Investigations of such factors require a reliable quantitative examination of apoptotic processes. Therefore, a standardized procedure was developed for quantification of apoptosis in samples of testicular parenchyma in bull. This test is based on a highly sensitive DNA-fragmentation ELISA which was used originally for somatic cells in culture. Aliquots of testicular parenchyma were minced and homogenized by freezing/thawing and subsequent sonification at 4 degrees C. In comparison, aliquots were lysed in original buffer from the cell death detection ELISA-kit. Nucleosomes from the cell cytoplasm were obtained in supernatant of homogenate or lysate after centrifugation. The absorbance was linear over the range of sample concentrations from 5 to 20 microg testis equivalent/100 microl solution. Therefore, samples were standardized to a final concentration of 10 microg testis equivalent/100 microl. The recorded values were expressed in units per mg tissue (U/mg). The method was used to study testicular apoptotic processes in the guinea pig and roe deer. The results showed that apoptosis can be detected in testicular homogenate prepared from 0.01 mg testis parenchyma within 24 h after recovery of testes without significant variations. Detectable apoptosis levels showed differences among sexually active guinea pig (7.08 +/- 1.95 U/mg), roe deer (16.32 +/- 3.45 U/mg), and cattle (29.0 +/- 7.1 U/mg). This species-specificity suggests different cross reactivity of the monoclonal antibody used in the ELISA. A significantly higher amount of testicular apoptosis was detected in a population of guinea pigs with increased inbreeding coefficients (f = 0.785 - 0.998) than in outbred animals (11.41 +/- 3.50 U/mg and 7.08 +/- 1.95 U/mg, respectively). The inverse relationship of testicular apoptosis and proliferation in these two populations was significant (r = -0.531; P < 0.05). In conclusion, the relative simplicity and high sensitivity of this nonradioactive method provides a useful approach to investigate spermatogenesis under different conditions. Results in the guinea pig showed that apoptosis plays an important role in the regulation of gonadal efficiency.  相似文献   

2.
Apoptosis is involved in the regulation of spermatogenesis. The involution of testes in seasonal breeders might be expected to involve enhanced apoptotic cell elimination. We have compared seasonally changing testicular apoptosis in roe deer with that in non-seasonally breeding cattle. Apoptotic cells were detected as TUNEL-positive cells by both flow-cytometric analysis and in situ localisation of fragmented DNA in tissue sections. Apoptosis-induced DNA fragments were also assessed by enzyme-linked immunosorbent assay (ELISA) in homogenised testicular parenchyma. As expected, the testis mass and the percentage of haploid cells in roe deer showed a seasonal pattern with a significant maximum during the rut (August), whereas no annual variation of these parameters was found in bulls. All three methods for determining apoptosis showed similar findings. Roe deer exhibited significant seasonal fluctuation of total apoptotic activity (ELISA, apoptotic cells per tubule cross section) with a maximum during the breeding season. However, the seasonal differences in the number of apoptotic cells corresponded to the variable total numbers of spermatogonia and spermatocytes per tubule cross section. Thus, the percentages of TUNEL-positive cells related to the combined number of both germ cell types showed no seasonal variance, as confirmed by percentages of apoptotic cells analysed flow-cytometrically. The maximum level of apoptosis during the rut in roe deer was similar to the values obtained during the invariably high spermatogenic activity in cattle. These results suggest that, in roe deer, apoptosis is not the cause of the seasonal involution of testes. This study was partially supported by grant Bl 319/6-1 from the Deutsche Forschungsgemeinschaft.  相似文献   

3.
Blottner S  Roelants H 《Theriogenology》1998,49(7):1275-1287
We compared 2 methods for the quantification of proliferation in somatic and spermatogenic compartments of post mortem-collected testes in cattle and roe deer. Proliferation was evaluated by estimation of the tissue polypeptid specific antigen (TPS) using an ELISA. This proliferation-specific marker was detected in homogenized cells after selective enrichment of different cell types by density gradient centrifugation. The haploid, diploid and tetraploid cells were monitored by one-parameter flow cytometry and analyzed for mitotic cell cycle. Somatic and spermatogenic cells were discriminated by dual-parameter flow cytometry after DNA staining with propidium iodide and selective labelling of stromatic cells with a vimentin antibody. The TPS was related to the ploidy of cells and their somatic or spermatogenic type. High concentrations of TPS were found in both species. The TPS values varied with different contents of spermatogenic and somatic cells in the fractions of the density gradient. The TPS was positively correlated with spermatogenic cells in the G2/M phase of mitotic cycle (r = 0.474; P < 0.01) and negatively correlated with somatic cells (r = -0.676; P < 0.0001) in roe deer (n = 40). Discrimination of germinative and stromatic cells in the G2-M phase showed their varying proliferation during the annual cycle in roe deer. The quantification of tetraploid spermatogenic cells allowed the calculation of an exact meiotic transformation (ratio haploid:tetraploid cells). In conclusion, TPS indicates proliferation in the germinative compartment of the testes. However, this marker provides only relative values, without information on the number and type of proliferating cells. Dual-parameter flow cytometry using specific staining for vimentin proves to be a better method for studying changing mitotic and meiotic steps during the involution and recrudescence of testes in seasonally breeding ruminants, as it relates proliferative processes directly to both spermatogenic and somatic cells.  相似文献   

4.
Roe deer is a seasonal breeder characterised by a short rutting season in summer. Mature males show synchronised cycles of testicular involution and recrudescence. Therefore, this species is a valuable model to study seasonal regulation of spermatogenesis in ruminants. It is hypothesised that a time-dependent production of testicular growth factors is required to regulate seasonal changes in testis growth and spermatogenesis. To identify potential candidates, total RNA from roe deer testis tissue was extracted at three different seasonal periods (April, August, December), and using RT-PCR the presence of several growth factors (aFGF, bFGF, IGF-I, IGF-II, TGF-alpha, TGF-beta1, TGF-beta3 and two isoforms of VEGF) was detected. Sequencing of the growth factor PCR fragments revealed a high sequence homology between cattle and roe deer. To further explore the expression patterns of the identified growth factors in roe deer their expression levels were standardised using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression. The study demonstrates the expression of several growth factors in roe deer testis and supports the assumption of their seasonally diverse regulation. These results provide the basis to investigate the role of growth factors in the regulation of circannual changes of testicular activity.  相似文献   

5.
Adult roe deer males show seasonal cycles of testicular growth and involution. The exact timing of these cycles requires endocrine regulation and local testicular control by autocrine/paracrine factors. Recent findings suggest that the vascular endothelial growth factor (VEGF) might have effects on both vascular and germinative cells in testis. Thus, we studied the expression pattern of vascular endothelial growth factor (VEGF) in roe deer testis using quantitative RT-PCR. The strength of VEGF mRNA expression depended on season. It reached its highest level at the peak of spermatogenesis during the pre-rutting period and had its nadir at the end of the rut when involution already began. The results suggested that VEGF may directly affect the regulation of spermatogenesis but may not be involved predominantly in testicular microvasculature as initially expected.  相似文献   

6.
Blottner S  Schön J  Jewgenow K 《Theriogenology》2006,66(6-7):1593-1598
Seasonal changes in spermatogenesis were studied with respect to testicular production of both testosterone and epidermal growth factor (EGF) in mink. The testes were collected in November (n = 15; testis recrudescence), February (n = 15; before breeding season), March (n = 14; breeding season), and May (n = 11; testis involution) and the following parameters of testicular activity were quantified: testicular mass, number of testicular spermatozoa, percentages of haploid, diploid, and tetraploid (G2/M-phase) cells and content of testosterone and EGF. The growth factor was immunohistochemically localized in the parenchyma. Testis mass, spermatogenic activity, and the production of both testosterone and EGF were maximal in March, but were not significantly different from the levels in February. The correlation between testis weight and sperm per testis was r = 0.825 (P < 0.001). Testosterone and EGF levels were correlated to each other (r = 0.78; P < 0.001) and had significant positive correlations to testis mass, number of sperm and proportion of haploid cells; and negative correlations to percentages of mitotic cells. EGF was localized in interstitial cells and in the luminal region of seminiferous tubules, where it occurred during the last steps of spermiogenesis. We inferred that intensified seasonal spermatogenesis was stimulated by testosterone and by autocrine/paracrine effects of EGF.  相似文献   

7.
Roe deer are seasonal breeders with a short rutting season from mid-July to mid-August. The seasonality of reproductive activity in males is associated with cyclic changes between growth and involution of both testes and the accessory sex glands. This study characterizes morphological and functional parameters of these organs prior to, during and after breeding season in live adult roe deer bucks. Size and morphology of the reproductive tract was monitored monthly by transcutaneous (testes, epididymis) and transrectal (accessory glands) ultrasonography. Semen was collected by electroejaculation. Concentration, motility and morphological integrity of spermatozoa as well as the content of proteins and testosterone in semen plasma were evaluated. Proportions of haploid, diploid and tetraploid cells were estimated by flow cytometry in testicular tissue biopsies. Serum testosterone was measured by enzyme immunoassay. Most parts of the male reproductive tract showed distinct circannual changes in size and texture. These changes were most pronounced in the testes, seminal vesicles, and prostate. All reproductive organs were highly developed during the rut only. The volume of ejaculates, total sperm number and percentages of motile and intact spermatozoa also showed a maximum during this period and corresponded with high proportions of haploid cells in the testis. The highest percentages of tetraploid cells were found in the prerutting period. The production of motile and intact spermatozoa correlated with both the protein content of semen plasma and the concentration of testosterone in semen plasma and blood serum. These results suggest the importance of combined actions of the testes and accessory sex glands and the crucial role of testosterone in facilitating the optimal timing of intensified semen production to ensure sufficient numbers of normal spermatozoa in seasonal breeders.  相似文献   

8.
The reproductive physiology of Corynorhinus mexicanus includes a testes growth-involution cycle. Testis recrudescence begins in May-June, peaks in August and then undergoes a profound involution being totally regressed in November. Adult, male individuals were captured monthly during one year and ROS scavenging enzyme activities were measured in testes and expressed per total wet-weight and per mg protein. SOD total activity is very low from October to February; increases sharply one full month before testes recrudescence starts, and in August, when testis activity was at its peak, SOD is 3-4 times lower than in July. Catalase total activity is bimodal. The main peak of activity occurs during testicular recrudescence with an additional smaller peak, two months before the onset of recrudescence. Glutathione peroxidase total activity parallels almost exactly the testis growth cycle, increases in July, reaches a peak in August and decreases through September to almost disappear in October. SOD specific activity shows a pre-testicular increase of activity, maintains its activity from March to July and then descends drastically to almost nil in August, maintaining these low values until February. Catalase specific activity is particularly important during the period of testicular regression. GPX specific activity is low from March to July, months of testicular recrudescence; whereas its activity increases in August and peaks in November, when testes regression occurs. Our data show that ROS-scavenging enzymes may play a very important role during testes involution-recrudescence in C. mexicanus, and we believe their participation could be equally important in all seasonally breeding mammals.  相似文献   

9.
Testes were obtained from 47 1-20-year-old stallions during the natural breeding season. Total testicular testosterone and testosterone/g testis increased with age (P less than 0.005), and total testicular testosterone was associated with larger testis size (P less than 0.05). Neither testosterone per gram nor per paired testes were related to total Sertoli cell number (P greater than 0.05), but greater testosterone per paired testes was associated with fewer Sertoli cells per unit of seminiferous tubule length (P less than 0.005) or basement membrane area (P less than 0.02) and with a higher number of germ cells supported per Sertoli cell (P less than 0.05). Although values for testosterone per gram and per paired testes were unrelated (P greater than 0.10) to sperm production/g testis or to the yield of spermatids/spermatogonium, testosterone per paired testes was positively related to sperm production per paired testes (P less than 0.05). It is concluded that intratesticular testosterone increases with age, is related in a positive manner to quantitative rates of sperm production, and can account for some of the differences in sperm production among individual stallions within a single breeding season.  相似文献   

10.
Seasonality deeply affects the physiology and behavior of many species, and must be taken into account when biological resource banks (BRBs) are established. We have studied the effect of seasonality on many reproductive parameters of free-ranging Iberian red deer, roe deer and Cantabrian chamois, living in Spain. Testicles from hunted animals were collected and sent to our laboratory at different times during the year. We recorded the weight and volume of testis, the weight of the epididymis and its separate parts (caput, corpus, and cauda), the weight of the sperm sample collected from the cauda epididymis, and several sperm parameters (sperm concentration, spermatozoa recovered, motility, HOS test reactivity, acrosomal status, and viability). We studied the data according to several periods, defined accordingly to each species. For red deer, we defined rut (mid-September to mid-October), post-rut (mid-October to mid-December), and non-breeding season (February). For roe deer, they were pre-rut (June), rut (July), post-rut (first fortnight of August), and non-breeding season (September). For chamois: non-breeding season (June to mid-September) and breeding season (October-November). The rut/breeding season yielded significantly higher numbers for almost all parameters. However, in the case of red deer, sperm quality was higher in the post-rut. For roe deer, testicular weight was similar in the pre-rut and in the rut, and sperm quality did not differ significantly between these two periods, although we noticed higher values in the rut. In the case of chamois, sperm quality did not differ significantly from the breeding season, but data distribution suggested that in the non-breeding season there are less males with sperm of good quality. On the whole, we find these results of interest for BRB planning. The best season to collect sperm in this species would be the breeding season. However, post-rut in red deer, pre-rut in roe deer, and non-breeding season in chamois could be used too, because of the acceptable sperm quality, despite the lower quantity salvaged. More in-depth research needs to be carried out on the quality of sperm salvaged at different times of the year in order to confirm these findings.  相似文献   

11.
The research was conducted during the hunting season in Poland from May to September 2012 in which materials of 58 roe deer bucks carcass, antler and testis masses were compared. In addition, the size of testes with epididymides was assessed. Significantly enlarged testes masses were observed in May till July (one-way ANOVA and LSD test). In August and September, the testes underwent abrupt involution. According to the literature and the results of this study, the enlargement of the testes which starts from the end of February, indicates that spring time is a preparatory period for the rut. On the other hand, monthly carcass mass fluctuations were not observed. There is, however, a trend suggesting that heavier roe deer individuals can display larger antler mass.  相似文献   

12.
Several species of cervids are currently classified as threatened or endangered due to a rapid decline in their populations. Sperm cryopreservation, in association with assisted reproductive technologies, can find application for the conservation of endangered cervids. In cases of unsuccessful sperm retrieval through other means prior to the death of the animal, adult testis is the only source of sperm. Recovery of viable sperm from adult testes depends on the effective preservation of testicular tissues through optimization of cryopreservation protocols. The present study evaluated combinations of 10% dimethyl sulfoxide (DMSO) with 0% or 80% fetal bovine serum (FBS) and 20% DMSO with 0 or 20% FBS for the cryopreservation of testicular tissues of three adult cervids using uncontrolled slow freezing protocol. The cryopreserved testis was compared to chilled tissue without cryoprotectants. Results revealed that testicular tissues of barking deer cryopreserved in 20% DMSO (D20) had all the analyzed 7 parameters (number of TNP1-, PRM2 and acrosin-expressing cells/tubule and, the number of viable, morphologically normal, acrosome intact, Annexin V-negative sperm) comparable to the chilled testis. However, testicular tissues of sambhar and hog deer cryopreserved only in D20S20 had 5 of 7 parameters comparable to the chilled testis. In conclusion, D20 is acceptable for cryopreservation of barking deer and D20S20 for sambar and hog deer testes.  相似文献   

13.
Among individuals of many nontropical species, seasonal breeding is timed by tracking changes in the daily photoperiod. Transfer of rodents to short (< 12 h of light/day) day lengths for 6 to 14 weeks can induce regression of the testes mediated by apoptosis. After 16 to 20 weeks of short day exposure, reproductive function is "spontaneously" initiated, and testicular recrudescence is observed. The gonadal mechanisms that underlie testicular recrudescence are not fully understood. If the onset of testicular regrowth that occurs during spontaneous recrudescence reflects a down-regulation of apoptotic signals, then a decline in apoptosis should be noted concurrent with increased testis mass. This experiment sought to assess the role of apoptosis in the restoration of reproductive capacity to photoperiod-inhibited white-footed mice. Males were assigned to long (16:8 LD) or short (8:16 LD) photoperiods for 0, 14, 18, 22, 26, or 30 weeks. At each of these time points, testis mass and testosterone concentrations were assessed. In addition, apoptotic activity was measured using both in situ terminal deoxynucleotidyl transferase dNTP end labeling (TUNEL) and DNA laddering. Short photoperiod exposure induced maximal decreases in testicular parameters after 14 weeks (p < 0.05). After 26 weeks of short days, testis mass was no longer different between males housed in long days and those housed in short days. In contrast, the high incidence of apoptotic TUNEL labeling and DNA laddering observed at 14 weeks was reduced to long day values after 22 weeks of short day exposure. Together, our results establish that a decrease in testicular apoptosis coincides with testicular recrudescence in white-footed mice. The current study demonstrates a decline in the incidence of testicular cell death concomitant with changes in testis mass or length, elucidating a timeline of changes at the cellular level related to the onset of recrudescence.  相似文献   

14.
This study characterized (in vivo) morphological and functional parameters of reproductive organs of adult male lynx (n = 3) prior to, during, and after the breeding season (n = 3). Size and morphology of the reproductive tract were monitored by transcutaneous (testes) and transrectal (accessory sex glands) ultrasonography. Semen was collected by electroejaculation. Ejaculate volume, sperm number, motility, and morphology of spermatozoa as well as testosterone concentrations in blood serum and feces were evaluated. The testes and prostate had seasonal changes in size and echotexture. The mean (+/- S.D.) maximum and minimum testicular volume were 2.8 +/- 0.8 cm3 and 1.5 +/- 0.3 cm3, respectively. Fecal testosterone concentrations were highest in February (1240 +/- 393 ng/g feces), with a second increase in May (971 +/- 202 ng/g feces), but concentrations were lowest in January (481 +/- 52.9 ng/g feces). Ejaculate volume, total sperm number and percentage of motile, and intact spermatozoa were maximal in March (the middle of the breeding season). In one of the eight litters, multiple paternity was proven; however, in the remaining seven litters, all 16 cubs were sired by the same male. This particular male had the most developed and active testes and best semen quality, which may be important for sperm competition.  相似文献   

15.
16.
Seasonal variation in reproduction is common in mammals as an adaptation to annual changes in the habitat. In lynx, male reproduction activity is of special interest because female lynxes are monoestric with an unusual narrow (about 1 month) breeding season. In Eurasian lynx, mating occurs between January and April depending on the latitude. To characterize the seasonal pattern of sperm and testosterone production in free-ranging Eurasian lynxes, long-term frozen-stored testis material obtained postmortem from 74 hunted or road-killed lynxes in Sweden was used to analyze annual changes in testis mass, testicular testosterone content, and spermatogenetic activity. Values of most gonadal parameters obtained in subadult lynxes were significantly different from the values observed in adult males. In adult lynxes, a moderate annual fluctuation of gonadal parameters was found which was most profound for testis weight and testicular testosterone concentration reaching highest values in March (median of 2.18 g and 2.67 μg/g tissue respectively). Grouping the data of pre-/breeding (January–April) and postbreeding season (May–September) revealed significant changes in testis weight and testosterone concentration. The relative spermatogenetic activity remained high in postbreeding testes. However, net sperm production decreased according to reduction of testis mass and a tendency to lower cauda epididymal sperm numbers in the postbreeding period was observed. Our results demonstrate that it is possible to analyze the gonadal activity of frozen testis/epididymis tissue postmortem and that male Eurasian lynxes show—opposite to the females—only moderate seasonal changes in their reproductive capacity.  相似文献   

17.
The roe deer (Capreolus capreolus) is a seasonal breeder. The cyclic changes between totally arrested and highly activated spermatogenesis offer an ideal model to study basic mechanisms of spermatogenesis. In this study, we demonstrated, to our knowledge for the first time, c-kit receptor-positive cells in the testis of roe deer. They were immunohistologically identified mainly as spermatogonia. Analysis of the amount of those cells by flow cytometry shows a distinct seasonal pattern, with pronounced differences between cells in the diploid state and in the G2/M phase of mitosis. The specific seasonal pattern of spermatogonial proliferation results in the increased relative abundance of spermatogonia as well as in their increased total number per testis in November and December. This suggests that cell divisions continue on a level sufficient to accumulate spermatogonia during winter. The serum concentrations of LH and FSH showed a peak in spring; testosterone showed a maximum concentration during the rut (July/August). The peak of both gonadotropins seems to precede the period of stimulated spermatogonial proliferation in spring. The testosterone peak coincides with maximal meiotic intensity in August. The results suggest the importance of testosterone for sperm production, and they provide a basis for detailed investigations of regulatory factors of the proliferation of spermatogonia.  相似文献   

18.
Influence of age on sperm production and testicular weights in men   总被引:4,自引:0,他引:4  
Age-related changes in daily sperm production (DSP) and testicular weights were investigated in paired testes from 89 men aged 21-50 years and 43 men aged 51-80 years. For both DSP/testis and DSP/g parenchyma, remarkably large standard deviations exceeded 50% of mean values. However, DSP/g and DSP/testis for both right and left testes were approximately 30% higher in the younger than in the older group (P less than 0.01) and were negatively correlated with age (P less than 0.01) when data from both groups were pooled. Weights of whole testes and of testicular parenchyma were similar in both age groups and were not significantly correlated with age. However, testicular tunic weights were 29% higher in the older group (P less than 0.001) and were positively correlated with age (P less than 0.001). Both testicular tunic weight and the % of total testis occupied by tunic were negatively correlated with DSP/g (P less than 0.01); these correlations were weakened by removing the effect of age. Although total testicular weight and testicular parenchymal weight did not change with age, these values were about 10% lower on the left than on the right (P less than 0.001). In addition to its increase with age, testicular tunic weight was about 8% greater for right than for left testes in all men (P less than 0.001). Although the average size of the testis varied from right to left, DSP/g was similar in paired testes (P = 0.15), and the correlation between right and left DSP/g was high (rho = +0.89, P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Testes of the Western spotted skunk enlarge and regress seasonally. The pineal hormone, melatonin, may be important in timing this seasonal reproductive activity. Likewise, the suprachiasmatic nuclei (SCN) have been implicated as possible neural regulators of pineal and reproductive events. These experiments were conducted to determine whether ablation of the SCN or constant administration of melatonin alters timing of the seasonal pattern of testicular regression and recrudescence. Male skunks (n = 24) were treated as follows: six received two empty Silastic capsules, six received two melatonin-filled Silastic capsules, six received sham lesions to the SCN, and six received lesions to the SCN (SCNx). All skunks were exposed to a natural photoperiod and had regressed testes at the onset of the experiment. Four of six males from the SCNx group had an average of 94 +/- 11.3% of these nuclei destroyed. Sham SCNx, animals with less than 40% of the SCN ablated, and males with empty capsules did not have fully enlarged testes until October. SCNx and melatonin-treated skunks exhibited a hastening of testicular recrudescence with maximal testis size being reached in June. Skunks with lesions to the SCN maintained enlarged testes for 5 months while all other groups exhibited rapid regression after attaining maximal testis size. Testicular regression occurred from July through October in animals receiving continuous melatonin, while controls exhibited recrudescence during this same period. Our data suggest that the SCN, melatonin, and thus the pineal gland, play a role in regulating the seasonal testicular cycle of the spotted skunk.  相似文献   

20.
Spermatogenesis is a costly process that is expected to be under selection to maximise sperm quantity and quality. Testis size is often regarded as a proxy measure of sperm investment, implicitly overlooking the quantitative assessment of spermatogenesis. An enhanced understanding of testicular function, beyond testis size, may reveal further sexual traits involved in sperm quantity and quality. Here, we first estimated the inter-male variation in testicular function and sperm traits in red deer across the breeding and non-breeding seasons. Then, we analysed the relationships between the testis mass, eight parameters of spermatogenic function, and seven parameters of sperm quality. Our findings revealed that the Sertoli cell number and function parameters vary greatly between red deer males, and that spermatogenic activity co-varies with testis mass and sperm quality across the breeding and non-breeding seasons. For the first time in a seasonal breeder, we found that not only is the Sertoli cell number important in determining testis mass (r = 0.619, p = 0.007 and r = 0.248, p = 0.047 for the Sertoli cell number assessed by histology and cytology, respectively), but also sperm function (r = 0.703, p = 0.002 and r = 0.328, p = 0.012 for the Sertoli cell number assessed by histology and cytology, respectively). Testicular histology also revealed that a high Sertoli cell number per tubular cross-section is associated with high sperm production (r = 0.600, p = 0.009). Sperm production and function were also positively correlated (r = 0.384, p = 0.004), suggesting that these traits co-vary to maximise sperm fertilisation ability in red deer. In conclusion, our findings contribute to the understanding of the dynamics of spermatogenesis, and reveal new insights into the role of testicular function and the Sertoli cell number on testis size and sperm quality in red deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号